
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



�������	
��
����
���
�����
��
�������������
���
�
���� ���

0

Traffic Network Control Based

on Hybrid System Modeling

Youngwoo Kim
Nagoya University, Nagoya

Japan

1. Introduction

With the increasing number of automobiles and complication of traffic network, the traffic
flow control becomes one of significant economic and social issues in urban life. Many re-
searchers have been involved in related researches in order to alleviate traffic congestion.
From viewpoint of modeling, the existing scenarios can be categorized into the following two
approaches:

(A1) Microscopic approach; and

(A2) Macroscopic approach.

The basic idea of Microscopic approach (A1) (2)is that the behavior of each vehicle is affected
by neighboring vehicles, and the entire traffic flow is represented as statistical occurrences.
The Cellular Automaton (CA) based model (3) (4) and (11) is widely known idea to represent
the behavior of each vehicle. In the CA model, the road is discretized into many small cells.
Each cell can be either empty or occupied by only one vehicle. The behavior of each vehicle in
each cell is specified by the geometrical relationship with other vehicles together with some
stochastic parameters. Although many simulation results based on these microscopic models
showed high similarity to the measured real data, these approaches are not suitable for the
large-scale traffic network modeling and its traffic light controller design. This is because
they require enormous computational efforts to find all vehicles’ behavior. Furthermore, the
precise information on initial positions and speeds of all vehicles are usually not available in
advance.
On the other hand, it has been a common strategy in the macroscopic approach (A2) (9) that
the designer uses a fluid approximation model where the behavior of traffic flow is regarded
as a continuous fluid with density k(x, t) and volume q(x, t) at location x and time t. In this
case, k(x, t) and q(x, t) must satisfy the following law of mass conservation;

∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0. (1)

Also, some relationship among q, k and v, which are usually described by

q(x, t) = k(x, t)v(x, t), (2)

is introduced together with the appropriate model of the v(x, t), where v(x, t) denotes the ve-
locity of the traffic flow. By incorporating these two equations, the macroscopic behavior of
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the traffic flow is uniquely decided. This model, however, is applicable only when the density
of the traffic flow k(x, t) is continuous. Although this model expresses well the behavior of the
flow on the freeway, it is unlikely that this model can be applied to the urban traffic network
which involves many discontinuities of the density coming from the existence of intersections
controlled by traffic signals. In order to treat the discontinuity of the density in the macro-
scopic model, the idea of ‘shock wave’, which represents the progress of the boundary of two
neighboring different density area, has been introduced in literature (6) (5) (7) (8). Although
these approaches included judicious use of theoretical ideas for the flow dynamics, it is not
straightforward to exploit them for the design of real-time traffic signal control since the flow
model results in complicated nonlinear dynamics.
This paper presents a new method for the real-time traffic network control based on an inte-
grated Hybrid Dynamical System (HDS) framework. The proposed method characterizes its
synthetic modeling description. The information on geometrical traffic network is modeled
by using Hybrid Petri Net (HPN), whereas the information on the behavior of traffic flow
is modeled by means of Mixed Logical Dynamical Systems (MLDS) description. The former
allows us to easily apply our method to complicated and wide range of traffic network due
to its graphical understanding and algebraic manipulability. The latter allows us to represent
physical features governing the dynamics of traffic flow and control mechanism for traffic
congestion control employing the model predictive control policy (13).
Note that current traffic flow away from the signaler affects future traffic flow behavior.
Through the model predictive control policy, we can construct the decentralized controller
in a manner that each traffic outflow from the intersection or crosswalk is controlled and the
information is shared with neighboring traffic controllers. A large-scale centralized traffic
network controller is not appropriate because of the increased computational effort, synchro-
nization in information processes and so on. In this case, the decentralized controller with
model predictive control policy could be a realistic method.
In order to control large-scale traffic network with nonlinear dynamics, we formulate the traf-
fic network control system based on the Mixed Integer NonLinear Programming (MINLP)
problem. Generally, it is difficult to find the global optimal solution to the nonlinear program-
ming problem. However, if the problem can be recast to the convex programming problem,
the global optimal solution is easily found by applying an efficient method such as Steepest
Descent Method (SDM). We use in this paper general performance criteria for traffic network
control and show that although the problem contains non-convex constraint functions as a
whole, the generated sub-problems are always included in the class of convex programming
problem. In order to achieve high control performance of the traffic network with dynami-
cally changing traffic flow, we adopt Model Predictive Control (MPC) policy. Note that MLDS
formulation often encounters multiplication of two decision variables, and that without mod-
ification, it cannot be directly applied to MPC scheme. One way to avoid the multiplication
is to introduce a new auxiliary variable to represent it. And then it becomes a linear system
formally. However, as we described before, the introduction of discrete variables causes sub-
stantial computational amounts. A new method for this type of control problem is proposed.
Although the system representation is nonlinear, MPC policy is successfully applied by means
of the proposed Branch and Bound strategy.
After verification of the solution optimality, PWARX classifier is applied which describes a
nonlinear feedback control law of the traffic control system. This implies we don’t need a
time-consuming searching process of a solver such as a Branch-and-Bound algorithm to solve
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Fig. 1. Example of Hybrid Petri Net model

a mixed integer nonlinear programming (MINLP) problem, and furthermore the exactly same
solutions are obtained in a very short time.
The problem we address in this paper is a special classification problem where the output y is a
0-1 binary variable, and very good classification performance is desirable even with very large
number of the introduced clusters. If we plot the observational data in a same cluster in the x-y
space, it will show always zero inclination, since we have a binary output, i.e., all components
of θ, a and b except for f will be zeros. This implies we need consideration for a binary output.
A new performance criterion is presented in this paper to consider not only a covariance of
θ, but also a covariance of y. The proposed method is a hierarchical classification procedure,
where the cluster splitting process is introduced to the cluster with the worst classification
performance (which includes 0-1 mixed values of y). The cluster splitting process is follows
by the piecewise fitting process to compute the cluster guard and dynamics, and the cluster
updating process to find new center points of the clusters. The usefulness of the proposed
method is verified through some numerical experiments.

2. Modeling of Traffic Flow Control System (TFCS) based on HPN

The Traffic Flow Control System (TFCS) is the collective entity of traffic network, traffic flow
and traffic signals. Although some of them have been fully considered by the previous studies,
most of the previous studies did not simultaneously consider all of them. In this section, the
HPN model is developed, which provides both graphical and algebraic descriptions for the
TFCS.

2.1 Representation of TFCS as HPN

HPN is one of the useful tools to model and visualize the system behavior with both contin-
uous and discrete variables. HPN is a structure of N = (P, T, I+, I−, C, D). The set of places
P is partitioned into a subset of discrete places Pd and a subset of continuous places Pc. The
set of transition T is partitioned into a subset of discrete transitions Td and a subset of contin-
uous transitions Tc. The incidence matrix of the net is defined as I(p, t) = I−(p, t)− I+(p, t),
where I+(p, t) and I−(p, t) are the forward and backward incidence relationships between the
transition t and the place p which follows and precedes the transition. We denote the preset

(postset) of transition t as • t (t •) and its restriction to continuous or discrete places as (d) t =
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• t ∩ Pd or (c) t = • t ∩ Pc. Similar notation may be used for presets and postsets of places. The
function C and D specify the firing speeds associated to the continuous transitions and the
timing associated to the (timed) discrete transitions. For any continuous transition ti, we let
C(ti) = (vi, Vi), where vi and Vi represent the minimum and maximum firing speed of tran-
sition ti. We associate to the timed discrete transition its firing delay, where the firing delay is
short enough and the state is preserved until next sampling instant. The acquisition of firing
sequence of the discrete transition at every sampling instant is applied to a variety of schedul-
ing and control problems. The marking M = [MC|MD] has both continuous (m dimension)
and discrete (n dimension) parts.
Consider a simple example of First-Order Hybrid Petri Net model, Fig.1, where the control
switch is represented with two discrete transitions and two discrete places connected to the
continuous transition. In Fig.1, p1 is the continuous place with the initial marking mc(τ0) =
mp1 = c0, and p2, p3, p4 and p5 are the discrete places with the initial marking md(τ0) = [mp2,
mp3, mp4, mp5] = [1, 0, 1, 0]. We assume V1a < V2b, where V1 and V2 are firing speed of t1 and
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Fig. 4. Traffic network
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Fig. 5. Hybrid Petri Net model of traffic network

t2 respectively, a and b are the arc weights given by the incidence relationship. The behavior
is illustrated in Fig.2 and Fig.3.
Figure 5 shows the HPN model for the road of Fig.4. In Fig.5, each section i of li-meters
long constitutes the straight road, and two traffic lights are installed at the point of crosswalk.
pc ∈ Pc represents each section of the road, and has maximum capacity (maximum number
of vehicles). Also, pd ∈ Pd represents the traffic signal where green signal is indicated by an
existence of a token. Note that each signal is supposed to have only two states ‘go (green)’ or
‘stop (red)’ for simplicity.T is the set of continuous transitions which represent the boundary
of two successive sections. qj(τ) is the firing speeds assigned to transition tj ∈ T at time τ.
qj(τ) represents the number of vehicles passing through the boundary per time unit of two
successive sections(measuring position) at time τ. The sensors to capture the number of the
vehicles are supposed to be installed at every boundary of the section as show in Fig.4. The
element of I(p, t) is always 0 or αij. αij is the number of traffic lanes in each section. Finally, M0

is specified as the initial marking of the place p ∈ P. The net dynamics of HPN is represented
by a simple first order differential equation for each continuous place pci ∈ Pc as follows:

if pd,k = •tj is not null,

dmC,i(τ)

dt
= ∑

tj∈pci
•∪•pci

I(pci , tj) · qj(τ) · mD,k(τ), (3)

otherwise,

dmC,i(τ)

dt
= ∑

tj∈pci
•∪•pci

I(pci , tj) · qj(τ), (4)

where mC,i(τ) is the marking for the place pci (∈ Pc) at time τ, and mD,k(τ) is the marking for
the place pdk

(∈ Pd). The equation (3) is transformed to its discrete-time version supposing
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that qj(τ) is constant during two successive sampling instants as follows:

mC,i((κ + 1)Ts) = mC,i(κTs)

+ ∑
tj∈pci

•∪•pci

I(pci , tj) · qj(κTs) · mD,j(κTs) · Ts. (5)

where κ is sampling index, and Ts is sampling period.
Note that the transition t is enabled at the sampling instant κTs if the marking of its preced-
ing discrete place pdj

∈ Pd satisfies mD,j(κ) ≥ I+(pdj
, t). Also if t does not have any input

(discrete) place, t is always enabled.

2.2 Definition of flow qi

In order to derive the flow behavior, the relationship among qi(τ), ki(τ) and vi(τ) must be
specified. One of the simple ideas is to use the well-known model

qi(τ) =
(ki(τ) + ki+1(τ))

2

vi(τ) + vi+1(τ)

2
(6)

supposing that the density ki(τ) and ki+1(τ), and average velocity vi(τ) and vi+1(τ) of the
flow in i and (i + 1)th sections are almost identical. Then, by incorporating the velocity model

vi(τ) = v fi
·

(

1 −
ki(τ)

kjam

)

, (7)

with (6), the flow dynamics can be uniquely defined. Here, kjam is the density in which the
vehicles on the roadway are spaced at minimum intervals (traffic-jammed), and v fi

is the
maximum speed, that is, the velocity of the vehicle when no other vehicle exists in the same
section.
If there exists no abrupt change in the density on the road, this model is expected to work
well. However, in the urban traffic network, this is not the case due to the existence of the
intersections controlled by the traffic signals. In order to treat the discontinuities of the density
among neighboring sections (i.e. neighboring continuous places), the idea of ‘shock wave’(10)
is introduced as follows. We consider the case as shown in Fig.6 where the traffic density of
ith section is lower than that of (i + 1)th section in which the boundary of density difference
designated by the dotted line is moving forward. Here, the movement of this boundary is
called shock wave and the moving velocity of the shock wave ci(τ) depends on the densities
and average velocities of ith and (i + 1)th sections as follows:

ci(τ) =
vi(τ)ki(τ)− vi+1(τ)ki+1(τ)

ki(τ)− ki+1(τ)
. (8)

The traffic situation can be categorized into the following four types taking into account the
density and shock wave.

(C1) ki(τ) < ki+1(τ), and ci(τ) > 0,

(C2) ki(τ) < ki+1(τ), and ci(τ) ≤ 0,

(C3) ki(τ) > ki+1(τ),

www.intechopen.com
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Fig. 6. Movement of shock wave in the case of ki(τ) < ki+1(τ) and ci(τ) > 0

(C4) ki(τ) = ki+1(τ) (no shock wave).

Firstly, in both cases of (C1) and (C2) where ki(τ) is smaller than ki+1(τ), the vehicles passing
through the density boundary (dotted line) reduce their speeds. The movement of the shock
wave is illustrated in Fig.6 (ci(τ) > 0) and Fig.7 (ci(τ) ≤ 0). In Fig.6 and Fig.7, the ‘measur-
ing position’ implies the position where transition ti is assigned. Since the traffic flow qi(τ)
represents the numbers of vehicles passing through the measuring position per unit time, in
the case of (C1), it can be represented by n + m in Fig.6, where n and m represent the area of
the corresponding rectangular, i.e. the product of the vi(τ) and ki(τ). Similarly, in the case of
(C2), qi(τ) can be represented by m in Fig.7.
These considerations lead to the following models:

in the case of (C1)

www.intechopen.com
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qi(τ) = vi(τ)ki(τ) (9)

= v fi

(

1 −
ki(τ)

kjam

)

ki(τ), (10)

in the case of (C2)

qi(τ) = vi+1(τ)ki+1(τ) (11)

= v fi+1

(

1 −
ki+1(τ)

kjam

)

ki+1(τ). (12)

In the cases of (C3) and (C4) where ki(τ) is greater than ki+1(τ), the vehicles passing through
the density boundary come to accelerate. In this case, the flow can be well approximated
by taking into account the average density of neighboring two sections. This is intuitively
because the difference of the traffic density is going down. Then in the cases of (C3) and (C4),
the traffic flow can be formulated as follows:

in the cases of (C3) and (C4),

qi(τ) =

(

ki(τ) + ki+1(τ)

2

)

v f (τ)

(

1 −
ki(τ) + ki+1(τ)

2k jam

)

. (13)

As the results, the flow model (9) ∼ (13) taking into account the discontinuity of the density
can be summarized as follows:

qi(τ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ki(τ)+ki+1(τ)
2

)

v f

(

1 − ki(τ)+ki+1(τ)
2k jam

)

i f ki(τ) ≥ ki+1(τ)

v fi

(

1 − ki(τ)
k jam

)

ki(τ)

i f ki(τ) < ki+1(τ) and c(τ) > 0

v fi+1

(

1 − ki+1(τ)
k jam

)

ki+1(τ)

i f ki(τ) < ki+1(τ) and c(τ) ≤ 0

. (14)

Figure 8 shows the HPN model of the ith intersection, where the notation for other than south-
wardly entrance lane is omitted. In Fig.8, lj,E, lj,W , lj,S and lj,N are the length of the corre-
sponding districts, and the numbers of the vehicles in the districts are obtained as for example
pc,jIS

(τ) = kjIS
(τ) · lj,S. The vehicles in pc,jIS

are assumed to have the probability ζ j,SW , ζ j,SN ,
and ζ j,SE to proceed into the district corresponding to pc,jOW

, pc,jON
, and pc,jOE

as follows,

kjSW
(τ) = kjIS

(τ)ζ j,SW(τ), (15)

kjSN
(τ) = kjIS

(τ)ζ j,SN(τ), (16)

kjSE
(τ) = kjIS

(τ)ζ j,SE(τ). (17)
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Fig. 7. Movement of shock wave in the case of ki(τ) < ki+1(τ) and ci(τ) ≤ 0

Note that these probabilities are determined by the traffic network structure, and satisfy at τ,

0 ≤ ζ j,SW(τ) ≤ 1, (18)

0 ≤ ζ j,SN(τ) ≤ 1, (19)

0 ≤ ζ j,SE(τ) ≤ 1, (20)

ζ j,SW(τ) + ζ j,SN(τ) + ζ j,SE(τ) = 1. (21)

Therefore, the traffic flows of the three directions are represented with

q
(

kjSN
(τ), kjON

(τ)
)

, (22)

q
(

kjSW
(τ), kjOW

(τ)
)

, (23)

q
(

kjSE
(τ), kjOS

(τ)
)

. (24)

Note that the mutual exclusion of the same traffic light with the intersecting road is repre-
sented in the Fig.8.
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2.3 Derived flow model

In this subsection, we confirm the effectiveness of the proposed traffic flow model developed
in the previous subsection by comparing it with the microscopic model. The usefulness of
Cellular Automaton (CA) in representing the traffic flow behavior was investigated in (3).
Some of well-known traffic flow simulators such as TRANSIMS and MICROSIM are based on
CA model.
The essential property of CA is characterized by its lattice structure where each cell represents
a small section on the road. Each cell may include one vehicle or not. The evolution of CA is
described by some rules which describe the evolution of the state of each cell depending on
the states of its adjacent cells.
The evolution of the state of each cell in CA model can be expressed by

nj(τ + 1) = nin
j (τ)(1 − nj(τ))− nout

j (τ), (25)

where nj(τ) is the state of cell j which represents the occupation by the vehicle (nj(τ) = 0
implies that the jth cell is empty, and nj(τ) = 1 implies that a vehicle is present in the jth

cell at τ). nin
j (τ) represents the state of the cell from which the vehicle moves to the jth cell,

and nout
j (τ) indicates the state of the destination cell leaving from the jth cell. In order to find

nin
j (τ) and nout

j (τ), some rules are adopted as follows:

Step 1, Acceleration rule: All vehicles, that have not reached at the speed of maximum speed
v f , accelerate its speed v〈j〉(τ) by one unit velocity vunit as follows:

v〈j〉(τ + ∆τ) ≡ v〈j〉(τ) + vunit. (26)
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Step 2, Safety distance rule: If a vehicle has e empty cells in front of it, then the velocity at the
next time instant v〈j〉(τ + ∆τ) is restricted as follows:

v〈j〉(τ + ∆τ) ≡ min{e, v〈j〉(τ + ∆τ)}. (27)

Step 3, Randomization rule: With probability p, the velocity is reduced by one unit velocity
as follows:

v〈j〉(τ + ∆τ) ≡ v〈j〉(τ + ∆τ)− p · vunit. (28)

Figure 9 shows the behavior of traffic flow obtained by applying the CA model to the two suc-
cessive sections which is 450[m] long. The parameters used in the simulation are as follows:
computational interval ∆τ is 1 [sec], each cell in the CA is assigned to 4.5 [m]-long interval on
the road, maximum speed v f is 5 (cells/∆τ), which is equivalent to 81 [Km/h] (=4.5[m/cell] ·
5 [cells/∆τ] · 3600[sec]/1000). The left figure of Fig.9 shows the obtained relationship among
normalized flow qi(τ) and densities ki(τ) and ki+1(τ). The right small figure is the abstracted
illustration of the real behavior.
First of all, we look at the behavior along the edge a in the right figure which implies the case
that the traffic signal is changed from red to green. At the point of ki(τ) = 0 and ki+1(τ) = 0,
the traffic flow qi(τ) becomes zero since there is no vehicle in both ith and (i + 1)th section.
Then, qi(τ) is proportionally increased as ki(τ) increases, and reaches the saturation point
(ki(τ) = 0.9). Next, we look at the behavior along the edge b which implies that the ith section
is fully occupied. In this case, the maximum flow is measured until the density of the (i + 1)th
section is reduced by 50% (i.e. ki+1(τ) = 0.5), and after that the flow goes down according to
the increase of ki+1(τ). Although CA model consists of quite simple procedures, it can show
quite natural traffic flow behavior.
On the other hand, Fig.10 shows the behavior in case of using HPN where the proposed flow
model given by (14) is embedded. We can see that Fig.10 shows the similar characteristics to
Fig.9, especially, the saturation characteristic is well represented despite of the use of macro-
scopic model. As another simple modeling strategy, we consider the case that the average of
two ki(τ) and ki+1(τ) are used to decide the flow qi(τ) (i.e. use (13) ) for all cases. Figure 11
shows the behavior in case of using HPN where the flow model is supposed to be given by (13)
for all cases. Although the qi(τ) shows similar characteristics in the region of ki(τ) ≥ ki+1(τ),
at the point of ki(τ) = 0 and ki+1(τ) = kjam, qi(τ) takes its maximum value. This obviously
contradicts to the natural flow behavior.
Before concluding this subsection, it is worthwhile to compare the computational amount. In
case of using CA, it took 140 seconds to construct the traffic flow dynamics using Athlon XP
2400 and Windows 2000, while only 0.06 seconds in case of using HPN and (14).

3. Model Predictive Control of Traffic Network Control based on MLDS description

The Receding Horizon Control (RHC) or Model Predictive Control (MPC) is one of well -
known paradigms for optimizing the systems with constraints and uncertainties. In RHC
paradigms, the solutions are elements of finite dimensional vector spaces, and finite-horizon
optimization is carried out in order to provide stability or performance analysis. However, the
application of RHC has been mainly restricted to the system with sufficiently long sampling
interval, since finite-horizon optimization is computationally demanding.
This chapter firstly formulate the traffic flow model developed in chapter 2 in the form of
MLDS description coupled with RHC strategy, where wide range of traffic flow is considered.
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Fig. 9. Traffic flow behavior obtained from CA model

This formulation is recast to the canonical form of 0-1 Mixed Integer Linear Programming
(MILP) problem to optimize its behavior and a new Branch and Bound (B&B) based algorithm
is presented in order to abate computational cost of MILP problem.

3.1 MLDS representation of TCCS based on Piece-Wise Affine (PWA) linearization of traffic

flow

Since TCCS is the hybrid dynamical system including both continuous traffic flow dynamics
and discrete aspects for traffic light signal control, some algebraic formulation, which handles
both continuous and discrete behaviors, must be introduced. The MLDS description has been
developed to describe such class of systems considering some constraints shown in the form
of inequalities and can be combined with powerful search engine such as Mixed Integer Linear
Programming (MILP).
The MLDS (12) description can be formalized as following.

x(τ + 1) = Aτ x(τ) + B1τu(τ)

+B2τδ(τ) + B3τz(τ) (29)

y(τ) = Cτ x(τ) + D1τu(τ)

+D2τδ(t) + D3τ(τ) (30)

E2τδ(τ) + E3τz(τ) ≤

E1τu(τ) + E4τ x(τ) + E5τ (31)

In MLDS formulation, (29), (30) and (31) are state equation, output equation and constraint
inequality, respectively, where x, y and u are the state, output and input variable, whose com-
ponents are constituted by continuous and/or 0-1 binary variables, δ(τ) ∈ {0, 1} and z(τ) ∈ ℜ
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Fig. 10. Traffic flow behavior obtained from the proposed traffic flow model

represent auxiliary logical and continuous variables. By introducing the constraint inequal-
ity of (31), non-linear constraints as (14) can be transformed to the computationally tractable
Piece-Wise Affine (PWA) forms.
The traffic flow of Fig. 9 can be approximated as the right figure of Fig. 9 which consists of
three planes as follows,

Plane A: The traffic flow qi is saturated (ki(τ) ≤ a and ki+1(τ) < (kjam − a))

Plane B: The traffic flow qi is mainly affected by the quantity of traffic density ki(τ) (ki(τ) <
a and ki(τ) + ki+1 < kjam)

Plane C: The traffic flow qi is mainly affected by the quantity of traffic density ki+1(τ)
(ki+1(τ) ≤ kjam − a and ki(τ) + ki+1 ≤ kjam)

where a is the threshold value to describe saturation characteristic of traffic flow that if ki(τ) >
a and/or ki+1(τ) < kjam − a, the value of qi(τ) hovers at its maximum value qmax.
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Fig. 11. Traffic flow behavior obtained by averaging ki and ki+1

Fig.12 shows three planes partitioned by introducing three auxiliary variables δP,i,1(τ),
δP,i,2(τ) and δP,i,3(τ) which are defined as follows,

[δP,i,1(τ) = 1]

↔

{

ki(τ) ≥ a
ki+1(τ) ≤ kjam − a

(32)

[δP,i,2(τ) = 1]

↔

{

ki(τ) ≤ a − ε
ki(τ) + ki+1(τ) ≤ kjam

(33)

[δP,i,3(τ) = 1]

↔

{

ki+1(τ) ≥ kjam − a + ε

ki(τ) + ki+1(τ) ≥ kjam + ε
(34)

δP,i,1(τ) + δP,i,2(τ) + δP,i,3(τ) = 1 (35)

where ε is small tolerance to consider equality sign.
Therefore, the traffic flow qi(τ) can be rewritten in a compact form as follows

qi(τ) = qmaxδP,i,1(τ) +
qmaxki(τ)

a
δP,i,2(τ)

+
qmax(1 − ki+1(τ))

a
δP,i,3(τ) (36)

3

∑
i=1

δP,i,j(τ) = 1
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Fig. 12. Assignation of planes by introducing auxiliary variables

where 0 ≤ ki(τ) ≤ kjam, 0 ≤ ki+1 ≤ kjam (= 1), qmax is the maximum value of traffic flow.
Figure xxx shows the piece-wise affine (PWA) dynamics of the traffic flow model developed
in the previous chapter where a = 0.3 and qmax = 1.
The equations (32) to (34) can be generalized as (37) and (38), and transformed to inequality
as (39) The equations (32) and (34) can be generalized as (37) and (38), and transformed to
inequality as (39)

[δP,i,j(τ) = 1] ↔

[[

ki

ki+1

]

∈ ℓj

]

(37)

ℓj =

{[

ki

ki+1

]

: Sjki(τ) ≤ Tj

}

(38)

where ki(τ) = [ki(τ)ki+1(τ)]
T and Sj and Tj are the matrices with suitable dimensions which

satisfy

Sjki(τ) − Tj ≤ Mj
∗[1 − δP,i,j(τ)], (39)

M∗
j

△
= max

ki∈ℓj

Sjki(τ)− Tj. (40)

The traffic flow qi(τ) of (37) is the relationship between ki(τ) and δP,i(τ) =
[δP,i,1(τ) δP,i,2(τ) δP,i,3(τ)] which can be rewritten as follows,

qi(τ) = f (δP,i(τ), ki+1(τ)) (41)

=
3

∑
j=1

(F
j
i (τ)ki(τ) + H

j
i )δP,i,j(τ) (42)
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where δP,i = [δP,i,1, δP,i,2, δP,i,3]
′
. In these equations, each pair of F

j
i and H

j
i represents the

corresponding domain of Fig. 12 as follows,

F1
i = [ 0 0 ] (43)

H1
i = qmax (44)

F2
i = [ qmax

a 0 ] (45)

H2
i = 0 (46)

F3
i = [ 0 −

qmax

a ] (47)

H3
i =

qmax

a
(48)

The traffic flow zi(τ) = [zi,1(τ) zi,2(τ) zi,3(τ)] in consideration of the binary input ui(τ) ∈
{0, 1} for traffic light control can be represented by

zi,j(τ) ≤ Miui(τ)δP,i,j(τ), (49)

zi,j(τ) ≥ miui(τ)δP,i,j(τ), (50)

zi,j(τ) ≤ F
j
i ki(τ) + H

j
i

−mi(1 − ui(τ)δP,i,j(τ)), (51)

zi,j(τ) ≥ F
j
i ki(τ) + H

j
i

−Mi(1 − ui(τ)δP,i,j(τ)). (52)

where Mi and mi are respectively

Mi = max
ki(τ)∈ℓj

{

F
j
i ki(τ) + Hj

}

, (53)

mi = min
ki(τ)∈ℓj

{

F
j
i ki(τ) + Hj

}

. (54)

The product ui(τ) δP,i,j(τ) can be replaced by an auxiliary logical variable δM,i,j(τ) = ui(τ)
δP,i,j(τ) in order to make it tractable to deal with MILP problem. Then this relationship can be
equivalently represented as follows,

− ui(τ) + δM,i,j(τ) ≤ 0, (55)

−δP,i,j(τ) + δM,i,j(τ) ≤ 0, (56)

ui(τ) + δP,i,j(τ) + δM,i,j(τ) ≤ 1. (57)

Therefore, the MLDS description for the proposed system can be formalized as follows,

x(κ + 1) = Ax(κ) + Bz(κ), (58)

z(κ) = C1diag(u(κ))C2δ(κ), (59)

E2δ(κ) + E3z(κ)

≤ E1u(κ) + E4x(κ) + E5 (60)

where the element xi(κ) of x(κ) ∈ ℜ|P|, is marking of the place pci at the sampling instance κ,

the element ui(κ)(∈ {0, 1}) of u(κ) ∈ Z|T|, is the signal of traffic light installed at ith district
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and δ(κ)=[δP(κ), δM (κ)]
′
. Note that if there is no traffic light installed at ith district, ui(κ) is

always set to 1. And A, B, C1, C2, E1, E2, E3, E4 and E5 are the matrices with appropriate
dimensions.

3.2 Model predictive control policy for traffic network control

The traffic system is large-scale dynamical system with uncertainty in the behavior of each car.
In order to develop efficient traffic light control system, a wide range of traffic flow should be
fully considered. In this subchapter, model predictive control policy for traffic light control is
applied to the traffic flow model developed in the previous chapter. In RHC scheme, an input
for next sampling period is decided based on the prediction for next several periods called
the prediction horizon. This allows for the fact that the spatially changing dynamics of traffic
flow are represented by temporal behavior over prediction horizon, since traffic flow can be
considered as probabilistic time-series behavior.
The equation (58) can be modified, enumerating the state and input variables for the future
periods as follows,

x(κ + λ|κ) = Aκx(κ)

+
λ−1

∑
η=0

{Aη(BC1(diag(u(κ + λ − 1 − η|κ)))

·C2δ(κ + λ − 1 − η|κ))} (61)

where x(κ + λ|κ) denotes the predicted state vector at time κ + λ, obtained by applying the
input sequence u(λ|κ) = u(κ), · · · , u(κ + λ) to (58) starting from the state x(λ|κ) = x(κ).
Now we consider following requirements that usually appear in the traffic light control prob-
lems.

(R1) Maximizes traffic flow over entire traffic network.

(R2) Avoid frequent change of traffic signal.

(R3) Avoid concentration of traffic flow in a certain district.

These requirements can be realized by minimizing the following objective function.

J(u(λ|κ), · · · , u(λ + NI |κ)

, x(λ|κ), · · · , x(λ + NI |κ)

, δ(λ|κ), · · · , δ(λ + NI |κ))

=
N

∑
λ=1

{

− ∑
i

w1,i

{(

Θi

[

xi(λ|κ)/li
xi+1(λ|κ)/li+1

]

+Φ

)
′

δM,i(λ|κ)

}

−∑
i

w2,i

{

1 −
∣

∣ui(λ|κ)− ui(λ + 1|κ)
∣

∣

}

+∑
i

w3,i

{ ∣

∣

∣

∣

xi(λ|κ)

li
−

xi+1(λ|κ)

li+1

∣

∣

∣

∣

}

}

(62)

www.intechopen.com



#
����	
��$�%&&������
��,',

where

Θi =

⎡

⎣

0 0
qmax

a 0

0 −
qmax

a

⎤

⎦ (63)

Φi =

⎡

⎣

qmax

0
qmaxki(τ)

a

⎤

⎦ (64)

and w1,i, w2,i and w3,i are positive weight values for ith district which satisfy w1,i + w2,i +
w3,i = 1, and 0 ≤ w1,i ≤ 1, 0 ≤ w2,i ≤ 1 and 0 ≤ w3,i ≤ 1. In (62), the three terms correspond
to the requirement (R1), (R2) and (R3) in order.
Therefore, the optimization problem can be formulated as follows:

f ind δ(λ|κ) = [ δP(λ|κ), δM(λ|κ) ]
′

which minimizes (62)

subject to (32) to (61)

The objective function (62) contains absolute functions, which are not directly trac table for
MILP formulation. Therefore, these absolute functions are equivalently represented as fol-
lows:

J(u(λ|κ), · · · , u(λ + NI |κ)

, x(λ|κ), · · · , x(λ + NI |κ)

, δ(λ|κ), · · · , δ(λ + NI |κ))

=
N

∑
λ=1

{

− ∑
i

w1,i

{(

Θi

[

xi(λ|κ)/li
xi+1(λ|κ)/li+1

]

+Φ

)
′

δM,i(λ|κ)

}

−∑
i

w2,i

{

1 −
(

e+u,i(λ|κ) + e−u,i(λ|κ)
)

}

+∑
i

w3,i

{

(

e+x,i(λ|κ) + e−x,i(λ|κ)
)

}

}

(65)

where

ui(λ|κ)− ui(λ + 1|κ) = e+u,i(λ|κ)− e−u,i(λ|κ), (66)

xi(λ|κ)

li
−

xi+1(λ|κ)

li+1
= e+x,i(λ|κ)− e−x,i(λ|κ), (67)

e+u,i(λ|κ) ≥ 0 , e−u,i(λ|κ) ≥ 0, (68)

e+x,i(λ|κ) ≥ 0 , e−x,i(λ|κ) ≥ 0. (69)
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The MLDS formulation coupled with RHC scheme can be transformed to the canonical form
of 0-1 Mixed Integer Linear Programming (MILP) problem to find optimal solution for the
objective function (65).
Note that the requirements (R1), (R2) and (R3) also can be realized by solving Mixed Integer
Quadratic Programming (MIQP) problem instead of solving Mixed Integer Linear Program-
ming (MILP) problem as in this paper. However, since RHC scheme is by nature computa-
tionally demanding as is witnessed by many applications, the computational effort is one of
the key performance criteria. In this regard, this paper firstly handles MILP problem with
the objective function of (65) that has faster procedure in solution method than conventional
MIQP problems have. And next subchapter, this paper presents a new algorithm designed to
reduce computational amount in 0-1 MILP problems.

4. Convexity Analysis

The problem we formulated in the previous section is recast to the convex programming prob-
lem in this subsection. The convex programming problem, where the constraint and objective
functions are convex, has become quite popular recently for a number of reasons. Some of
them are summarized as follows : (1) The global optimality is guaranteed for the obtained
solution, (2) The attractive algorithm is easily applied, obtaining the solution with high speed
due to the simple structure of the problem, and (3) The bounding process can be efficiently
applied for the MINLP problem.

4.1 Convexity Analysis

In this subsection we first introduce the well-known performance criteria of traffic network
control system and show they can be realized with convex functions. The following perfor-
mance criteria are introduced in this paper: (1) maximization of traffic flow and (2) minimiza-
tion of traffic density difference between neighboring districts. These criteria are numerically
represented as follows,

f =
H−1

∑
η=0

N−1

∑
i=0

zi(κ + η), (70)

and

f =
H

∑
η=1

M−1

∑
i=0

|xi(κ + η|κ)− xi+1(κ + η|κ)|, (71)

where H is the predictive horizon and N and M are the dimension of x(κ) and z(κ), respec-
tively.
In order to verify the convexity of (70), we first show the traffic flow dynamics with three
modes are convex functions at each mode, and show that these dynamics at each mode are
continuous to the neighboring ones. By using this continuity, the overall dynamics of the
traffic flow is proven to be convex.
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Fig. 13. Assignation of traffic flow mode

Consider Fig.(13), where each mode of traffic flow is assigned. Since the Hessian matrices of
q1(

x1
l1

, x2
l2
), q2(

x1
l1

, x2
l2
), and q3(

x1
l1

, x2
l2
) are nonsingular as follows,

∇2q1(x) =

[

∂2q1(x)

∂x1∂x2

]

=

[ v f

2xjam

v f

2xjam
v f

2xjam

v f

2xjam

]

≥ 0, (72)

∇2q2(x) =

[

∂2q2(x)

∂x1∂x2

]

=

[

v f

2xjam
0

0 0

]

≥ 0, (73)

and

∇2q3(x) =

[

∂2q3(x)

∂x1∂x2

]

=

[

0 0

0
v f

2xjam

]

≥ 0, (74)

they are convex at each mode.
In order to show the convexity of the overall dynamics of the traffic flow, we use following
lemma :

Lemma 1 The neighboring two closed convex dynamics D1(Ψ=(ψ1, ψ2, · · · , ψn)) and
D2(Ψ) are convex if they are continuous at the boundary point (ψ̂1, ψ̂2, · · · , ψ̂n) ∈ Θ

(Θ = D1(Ψ)
⋂

D2(Ψ)\D1(Ψ)) and satisfy that

if for ∀ i, γ and μ

∇γD1(Ψ)
∣

∣

∣

ψi=ψ̂i

≤ (≥)∇γD2(Ψ)
∣

∣

∣

ψi=ψ̂i

(75)
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then
∇2

μ,μD1(Ψ)
∣

∣

∣

ψi=ψ̂i

≤ (≥)∇2
μ,μD2(Ψ)

∣

∣

∣

ψi=ψ̂i

(76)

where overline denote the closure of the set, 1 ≤ i, γ, μ ≤ n, ∇γD is the γth element of
∇D, and ∇2

μ,μD is the (μ, μ)th element of the matrix ∇2D.

The continuity at the boundary is easily confirmed by letting k1(τ) = k2(τ) = k(τ) as follows,

q1(k1(τ), k2(τ)) = q2(k1(τ), k2(τ)) (77)

= q3(k1(τ), k2(τ)) (78)

= k(τ)v f

(

1 −
k(τ)

kjam

)

. (79)

Lastly, with following eqs. (80) to (83),

∇q1(x)
∣

∣

∣

x1=x̂1

=

[

v f

kj
k −

v f

2
,

v f

kj
k −

v f

2

]

(80)

∇2q1(x)
∣

∣

∣

x1=x̂1

=

[ v f

2xjam

v f

2xjam
v f

2xjam

v f

2xjam

]

(81)

∇q2(x)
∣

∣

∣

x1=x̂1

=

[

2v f
k

kjam
− v f , 0

]

(82)

∇2q2(x)
∣

∣

∣

x1=x̂1

=

[

v f

2xjam
0

0 0

]

, (83)

the convexity condition of lemma 1 was satisfied, since

∇1q1(x) ≤ ∇1q2(x) (84)

in pair with

∇2
1q1(x) ≤ ∇2

1q2(x). (85)

In the same way,

∇1q2(x) ≤ ∇1q3(x) , ∇1q1(x) ≤ ∇1q3(x) (86)

are satisfied , paired together with

∇2
1q2(x) ≤ ∇2

1q3(x) , ∇2
1q1(x) ≤ ∇2

1q3(x). (87)

Therefore, the convexity of overall dynamics are confirmed.
Note that although z is the multiplication of q and u, the performance criteria (70) is a convex
function. This is because u is the vector whose elements ui ∈ {0, 1} are binary variables, if
ui = 1, zi remains as it stands now, otherwise the term zi is dropped off from the performance
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criterion. And (71) is also a convex function, since |x1 − x2| can be transformed to (e+x + e−x ),
minimizing e+x + e−x with the conditions of

e+x ≥ 0 (88)

e−x ≥ 0 (89)

e+x − e−x = x1 − x2 (90)

where e+x and e−x are equivalently

e+x =
(x1 − x2) + |x1 − x2|

2
(91)

e−x =
−(x1 − x2) + |x1 − x2|

2
. (92)

Since all the constraints are described in the form of Eq.(30), the problems (70) and (71) are
included in the class of the convex programming problem.

4.2 Convex Programming

The efficient method such as Penalty Method (PM) can be easily applied to the convex pro-
gramming problem with performance scheme as follows,

minimize F(x, r) = f (x) + rP(x) (93)

P(x)

{

= 0, x ∈ X
> 0, x �∈ X

(94)

where f (x) is the convex performance criterion of the original problem, r(> 0) is the cost
coefficient which increases as iteration l increases, X is the convex set, and P is the continuous
penalty function satisfying Eq.(94).
This function can be constructed as follows.

Step 1 Describe the solution space in the following form: Gx ≤ W .

Step 2 Define active constraints as the set of constraints which fulfill Gix = Wi, and inactive
constraints as the set which fulfills Gix < Wi. Here, Gi and Wi are the ith raw of the
matrix G and W , respectively. The active set Σ(x) is the set of indices of the active
constraints, that is, Σ(x) = {i ∈ {1, · · · , q}|Gix = Wi}.

Step 3 Define pi as follows :

pi(x) = Nix + e (95)

where x ∈ ℜn, N ∈ ℜn, |N| = 1 is the unit normal vector to the line Gix − Wi = 0, and
e ∈ ℜn is the vector which describes parallel translation from the origin. Note that N
takes outward direction from the convex sets defined by the active constraints, that is
Nx + e ≤ 0 for the feasible solution x.

Step 4 Obtain the distance di as follows,

if Gix − Wi ≤ 0, then di(x) = 0

otherwise di(x) = |pi(x)|
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Therefore the condition (94) can be translated as follows,

P(x) =

{

if (Υ = φ) P = 0
otherwise P = min[Υ]

(96)

where Υ is the set of di(x), (i ∈ Σ) which is not equal to 0.
The penalty algorithm is implemented as follows,

Step 1 Select initial point xlO (= xlI ) and r1, and set lI ≡ 1 and lO ≡ 1.

Step 2 If rlO P(xlO ) < ǫ, terminate the algorithm. Otherwise, set rlO+1 ≡ crlO , lO ≡ lO + 1 and
xlI ≡ xlO .

Step 3 If ||∇ f (x)|| < ǫ, set xlO ≡ xlI and go to Step 2. Otherwise, go to Step 4.

Step 4 Find the steepest descent direction, d (= −∇T f (xlI )).

Step 5 Find the step width αlI , do xlI+1 = xlI + αlI dlI , and set lI ≡ lI + 1. And go to Step 3.

Here, ǫ is small tolerance, and c and αlI are heuristically obtained.
If we can select the feasible initial solution, the optimal solution would be found in a short
time. In this paper, the existence of solution is verified as follows.

Lemma 2 The range of xi(κ) where 1 ≤ i ≤ m is 0 ≤ xi(κ) ≤ likjam. If xi(κ + 1) always exists
within the range for all i in the case of 0 ≤ xi(κ) ≤ likjam for all i, the feasible solution
x(κ + 1) can be found.

Proof : Consider the following equation :

liki(κ + 1)− liki(τ)

= −q(ki−1(κ), ki(κ))Ts

+q(ki(κ), ki+1(κ))Ts. (97)

It is obvious that xi is within the range if and only if

liki(τ) ≥ −q(ki(τ), ki+1(τ))Ts (98)

likjam − liki(τ) ≤ q(ki−1(τ), ki(τ))Ts. (99)

By substituting q of (98) to (14), following inequality is obtained from the both ki(κ) ≥
ki+1(κ) and ki(κ) < ki+1(κ).

1 ≥
v f

li

(

1 −
ki

kjam

)

Ts. (100)

Since
v f Ts

li
≪ 1, (98) can be easily confirmed. In the similar way, the condition (99) can

be easily confirmed.
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5. 0-1 Classification based on PWARX System

The MINLP based traffic network controller introduced in the previous chapter is generally
known to require large computational effort. In this chapter, we propose a new controller
design method for hybrid systems with a binary output. The proposed method develops a
classification map of the modified PWARX system, which relates a binary output and all ob-
servational variables including past inputs and outputs. The output y(κ) (which corresponds
to the plant input up(κ)) is obtained by finding the corresponding cluster among the classi-
fication map, while in the conventional methods, the MINLP problems were solved at every
sampling instant.
Figure describes a block diagram of the proposed controller design method, where the MINLP
controller is constructed to control the traffic flow in each traffic intersection in a decentralized
manner. The traffic inflows from the outside and outflow to the outside are closely affected
by the traffic flows at the adjoining traffic intersections. In order to construct the classification
map, we need history of inputs and output of the MINLP controller obtained by applying it
to various situations of the network.

5.1 Classification problem of hybrid dynamics

The PWARX (Piece-Wise Auto Regressive eXogeneous) system is a well-formulated classifi-
cation technique for a hybrid and nonlinear dynamics. The PWARX system contains the state
vector x which consists of past inputs and past outputs of the system as follows

x(κ) = [y′(κ − 1), y′(κ − 2), · · · , y′(κ − na), (101)

u′(κ − 1), u′(κ − 2), · · · , u′(κ − nb)]
and this vector is involved in one of the polyhedral convex regions defined by

χi = {x|V ix(κ) ≤ W i}. (102)

The entire behavior of the state vector is represented in a piece-wise manner. The dynamics of
each region is defined as follows

fi(x(κ)) = θiρ(κ) (103)

where ρ(κ) is [x(κ), 1]′, and θ is the coefficient vector as follows.

θi = [ai,1, · · · , ai,na
, b′i,1, · · · , b′i,nb

, fi]
′ (104)

The problem we address in this paper is a special classification problem where the output
y is a 0-1 binary variable, and very good classification performance is desirable even with
very large number of the introduced clusters. If we plot the observational data in a pure (not
mixed) cluster in the x-y(k) space, it will show always zero inclination, since we have a binary
output, i.e., all the components of θ, a and b expect for f will be zeros.
For this type of clustering problem, the conventional PWARX system does not well reproduce
the 0-1 output. Since it simultaneously obtains clusters and its (linear) dynamics applying
the least squared method to each of the fixed number of clusters, the overall accuracy of their
reproduced model is not so high. Furthermore they are very sensitive to the initialization
concerning the number of clusters, center of initial clusters, and so on.
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5.2 Classification based on PWARX system

The identification procedure of the hybrid dynamics using the PWARX system is described as
follows.

Step 1 Set the number of clusters, s, centers of s clusters, μ, and the threshold value ǫ > 0.

Step 2 Obtain the cluster Di of ξ points which minimize the following performance crite-
rion

J =
s

∑
i=1

∑
ξ j∈Di

||ξ j − μi||
2
R−1

j

(105)

Step 3 Update the centers μ according to the following formula.

μ̃i =
∑j:ξ j∈Di

ξ jwj

∑j:ξ j∈Di
wj

(106)

If max(||μ̃i − μi||) < ǫ, exit, else set

μ = μ̃i (107)

and go to Step 2.

In Step 2, Rj is defined as

Rj =

[

Vj 0

0 Qj

]

(108)

where

Vj =
Sj

c − (na + nb) + 1
(Φ′

jΦj)
−1 (109)

Qj = ∑
(x,y)∈Cj

(x − mj)(x − mj)
′ (110)

Φj =

[

x1 x2 · · · xc

1 1 · · · 1

]

(111)

Sj = y′cj
(I − Φj(Φ

′
jΦj)

−1Φ′
j)ycj (112)

mj =
1

c ∑
(x,y)∈Cj

x, j = 1, · · · , N (113)

ξ j = [(θj)
′, m′

j] (114)

wj =
1

√

(2π)(2na+2nb+1)det(Ri)
. (115)

Vj is the empirical covariance matrix which measures the relevance criterion, Qj is the scatter
matrix which measures the sparsity of data in the cluster j, Sj is the sum of squared residuals,
Cj is the cluster in the x space, xj is the regressor vector belonging to Cj, ycj is the output vector
included in Cj.
The main difference of this method from the conventional K-means method is that based on
the confidence level wj, the proposed method assigns the vectors ξ to the cluster Di in the
parameter vector θ-x space, while K-means assigns the data to the cluster Ci in the state vector
x space. This property serves for identification of y that mixed clusters are suppressed being
referred to the dynamics of y.
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5.3 0-1 classification based on modified PWARX system

The desired outputs are continued by the same values, 0 or 1 in the x-y space. All values
except for the offset variable f among parameters of θ will be zeros, i.e., the dynamics in θ-x
space will be almost same. Therefore in the conventional PWARX system, the regions with
same dynamics were often considered to be included in the same cluster.
The proposed method described below is a hierarchical PWARX system for a 0-1 classification
as follows.

Step 1 (Initialization Process) Set the number of clusters, s, the number of the splitting clus-
ters, sr, the cluster centers, μi (i ∈ [1, s]), the initial data group number N, the renew data
group number N′ and the threshold values ǫ > 0 and γ > 0. Using K-means, obtain
small N data groups so that neighboring data may be belonged to the same groups.

Step 2 (Piecewise Fitting Process) Obtain the cluster Di of ξ points which minimizes the
following performance criterion.

Jχ =
s

∑
i=1

∑
ξ j∈Di

||ξ j − μi||
2
R−1

j

(116)

Obtain the guard V i and W i by solving a quadratic problem for all i and i′ which satisfy
1 ≤ i ≤ s and 1 ≤ i′ ≤ s (i �= i′) as follows.

find V i,i′ and W i,i′ (117)

minimize V i,i′V
T
i,i′ (118)

subject to ζl(V
T
i,i′ xl + W i,i′ ) ≥ 1 (119)

where l is the data number and ζ is defined as follows.

ζl =

{

1 i f ξ(xl) ∈ Di

−1 i f ξ(xl) ∈ Di′
(120)

Here ξ(x) is the function which obtains the corresponding value of ξ from x, i.e., ξ is a
translation of x in the θ-x space. Then V i and W i are obtained as follows.
V i = [V T

i,1, · · · , V T
i,i−1, V T

i,i+1, · · · , V T
i,s]

T and W i =

[W i,1, · · · , W i,i−1, W i,i+1, · · · , W i,s]
T .

Step 3 (Cluster Updating Process) Update the centers μ according to the following formula.

μ̃i =
∑j:ξ j∈Di

ξ jwj

∑j:ξ j∈Di
wj

(121)

If max||μ̃i − μi||) < ǫ, go to Step 4, otherwise set

μ = μ̃i (122)

and go to Step 2.

Step 4 (Cluster Splitting Process) Obtain Ji for all i ∈ [1, s] which is defined by

Ji = σ2(y(κ)). (123)
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Step 4-1 For all i ∈ [1, s], do the following. If Ji ≤ γ, do the following

χ = χ − χi (124)

χi = {x|V ix ≤ W i} (125)

otherwise set new centers of the sr clusters, μr in Di randomly, and do the following.

s = s + sr (126)

Here, σ2(y(κ)) is the covariance of y(κ) in the cluster Di.

Step 4-2 Set im as follows.

im = arg min
i∈[1,s]

σ2(y(κ)) (127)

Step 4-3 If Jim
≤ γ, terminate with success, otherwise, obtain N′ data group of the

corresponding region of Dim
and go to Step 2.

Note that in Step 2, the maximum margin of the data point x from the hyper-plane V i,i′ x +

W i,i′ ≤ 0 is proportional to (V T
i,i′V i,i′ )

−1 since letting the hyperplane which maximize the

margin α from the data points x+ and x− as follows

V x+ + W = α (128)

and
V x− + W = −α, (129)

the maximal margin αMAX is defined as follows

αMAX =
1

2

( V

||V ||2
x+ −

V

||V ||2
x−
)

(130)

=
1

2||V ||2
(V x+ − V x−) (131)

=
α

||V ||2
(132)

Therefore by minimizing (V T
i,i′V i,i′ ), the margin can be maximized.

6. Numerical Experiments

6.1 Numerical Environments

In order to show the usefulness of our proposed method, we show, in this section, some results
of the numerical experiments. We considered the traffic network of Fig. 14, where the square
network with 1000× 1000 [m2] consists of 16 intersections and 112 districts, all with 2 lanes bi-
directionally. Four controllers are applied to find optimal traffic light for the overall network.
Each controller is assigned to the network with 500 × 500 [m2]. We assume that from the
outside of the network traffic flows of vehicles move into the network with random speeds,
whereas the traffic flows inside the network, move from the network with the speed of infinity
(no congestion arises and affects the traffic flow inside the network). The variables used in this
paper are as follows; x ∈ ℜ56, q ∈ ℜ80, δ ∈ {0, 1}4. We used (70) as a performance criterion.
All results are obtained from simulations over 30 minutes, where the sampling interval Ts is
10 [sec].
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Fig. 14. Traffic network

No Control H = 1 H = 2

A 2724 2884 2913

B - 3.1 370.4

C - 1.2 14.6

Table 1. Numerical experimental result WRT H

6.2 Traffic Flow Control System for Traffic Network

We show the results obtained by applying our proposed methods in Table 1, where H denotes
the length of the prediction horizon, ‘No Control’ implies that the traffic light is changed at
every 30 second, and

A: Number of cars passing through the boundary of every two consecutive districts,

B: Average computation time,

C: Average number of the generated sub-problems.

From the results in Table 1, we find that although the MPC with longer prediction horizon
enables more vehicles to pass through the traffic network, the difference between the cases
of H = 1 and H = 2 is not so remarkable. This implies that the proposed method can be
applied to find semi-optimal solution for the real traffic control system with a proper selection
of prediction horizon length.
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Length Proposed Method Method of (1)
of H A B C A B C

1 616 0.02 4 616 14.98 244

2 724 1.34 8 718 265.18 488

3 869 129.20 12 870 2688.6 732

Table 2. Comparison of the computational efforts

No Control H = 1 H = 2

A 5249 5660 5717

B - 3.1 370.4

C - 1.2 14.6

Table 3. Experimental result in case of no arterial road

6.3 Comparison of computational amount

In order to evaluate the computational amount of the presented method, we compare in Table
2 computational times obtained by applying our method and conventional method (1). We
used Athlon XP 2400 and Windows 2000 for this experiments. Note that our method finds
better solution with a shorter time. This is because the presented method does not approx-
imate nonlinear dynamics(1) and solves non-linear programming problem, reformulating it
to the convex programming problem. Furthermore, the presented refining process enables to
avoid introduction of an enormous number of auxiliary variables.

6.4 TFCS for large-scale traffic network

In this subsection, the effectiveness of our method for large-scale traffic network control with
the arterial roads is shown. If the traffic light controller is applied to the large-scale traffic
network in a centralized manner, the computational amount would be fairly enormous. The
presented method, as in Fig.14, designates the control block which groups some traffic lights
in order that the feasible solutions may be obtained during the sampling interval. Fig. 14
illustrates that four control blocks (CB) constitute the entire traffic network where the sensory
information at each boundary of CBs is shared for the control of both blocks. Note that two
arterial roads are running north-south (second road from the left) and east-west (second road
from the top), respectively. Table 3 and Table 4 show the obtained solutions by applying the
presented method both in the case that there is no arterial roads and in the case that there are 2
arterial roads. In both numerical experiments, traffic densities at each road were set to exactly
same value. The results in both cases show that the presented method has good solution in
both cases. Note that our method has always better or equal solutions, compared with the
cases of ‘No Control’.

7. Classification Results

7.1 MINLP controller coupled with Model Predictive Control

The 5000 data sets obtained in the previous chapter are classified based on the 0-1 classification
method. For this simulation, we set the number of initial clusters, s, to be 100 and whenever
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No Control H = 1 H = 2

A 6060 6980 7185

B - 3.6 250.4

C - 1.3 10.4

Table 4. Experimental result in case of 2 arterial roads

Step Red Blue Mixed Total

1 7 5 38 50
2 27 29 32 88
3 48 46 26 120
4 64 63 19 146
5 72 75 18 165
6 87 81 15 183
7 95 92 11 198
8 102 98 9 209
9 110 103 5 218

10 114 107 2 223
11 116 109 0 225

Table 5. Stepwise Cluster Number (H=1)

we split the polyhedron defined by the guard V and W in the cluster splitting process, we
split into two (sr =2).
We show the classification results in TABLE 5 - 8. In TABLE 5 and 7, "Red" and "Blue" imply
the traffic signals of the clusters that if a data set is included in this cluster, the control input
u will represent this colors, while "Mixed" implies the clusters are not fully classified that Red
and Blue signals are mixed in the cluster. The numbers of data in "Red", "Blue" and "Mixed"
are shown in TABLE 6 and 8.
While the data shown in TABLE 5 and 6 are obtained by applying the MPC horizon H = 1, the
data shown in TABLE 7 and 8 are obtained by applying the MPC horizon H = 3, respectively.

7.2 Comparison with conventional PWARX system

The conventional PWARX system is compared with our presented method. TABLE 9 and
10 compare the cluster number and the data number in the clusters. In TABLE 9 and 10,
the conventional method is applied with the initial cluster number of 100, 200, 300, 400 and
500 respectively. Although most of data were well classified introducing a large number of
clusters, 2.8 and 1.6 percents of the total data were not correctly classified. In contrast the
presented method perfectly classified introducing relatively a small number of clusters.

8. Concluding remarks

In this paper we have presented a new design method for a traffic network hybrid feedback
controller. Since the output of the traffic network controller is 0-1 binary signals, the output
of the developed controller has been reproduced through 0-1 classifications of the PWARX
systems. The developed PWARX classifier describes nonlinear feedback control laws of traffic
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Step Red Blue Mixed

1 188 238 2072
2 447 646 1405
3 670 801 1027
4 862 1013 623
5 952 1066 480
6 1063 1132 303
7 1110 1238 150
8 1131 1273 94
9 1149 1304 45
10 1169 1317 12
11 1171 1327 0

Table 6. Stepwise Data Number in the cluster(H=1)

Step Red Blue Mixed Total

1 5 8 37 50
2 23 27 37 87
3 45 46 33 124
4 66 66 25 157
5 81 82 19 182
6 92 93 16 201
7 105 105 7 217
8 112 108 4 224
9 116 112 0 228

Table 7. Stepwise Cluster Number (H=3)

Step Red Blue Mixed

1 90 266 2142
2 356 570 1572
3 614 803 1081
4 794 999 705
5 953 1105 440
6 1010 1212 276
7 1058 1276 164
8 1138 1299 61
9 1175 1323 0

Table 8. Stepwise Data Number in the cluster(H=3)
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Total Red Blue Mixed

Proposed 225 116 109 0

Conventional 100 30 32 38
200 67 96 37
300 127 135 38
400 185 183 32
500 228 255 17

Table 9. Comparison of cluster number (H=1)

Cluster Data Number Blue Mixed
Number of Red Clusters

Proposed 225 1171 1327 0

Conventional 100 614 853 1031
200 926 1113 459
300 984 1180 334
400 1014 1250 234
500 1095 1263 140

Table 10. Comparison of data number in the cluster (H=1)

Total Red Blue Mixed

Proposed 228 116 112 0

Conventional 100 32 29 39
200 78 83 39
300 136 136 28
400 186 184 30
500 240 246 14

Table 11. Comparison of cluster number (H=3)

Cluster Data Number Blue Mixed
Number of Red Clusters

Proposed 228 1175 1323 0

Conventional 100 609 715 1174
200 830 1089 579
300 1040 1245 213
400 1047 1227 224
500 1148 1266 84

Table 12. Comparison of data number in the cluster (H=3)
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Fig. 15. Density of traffic flow

control systems. As we checked in chapter VII, very good solutions are obtained in a very
short time, compared with the one obtained with the conventional MINLP controller.
In a classification problem considered in this paper, very good classification performance is
required even with very large number of the introduced clusters. In our PWARX system for-
mulation, we have adopted a new performance criterion related with the covariance of the
control output. If a well-classified cluster is found, the cluster is separated from the classifica-
tion map. If a bad-classified mixed cluster is found, the cluster is split into smaller sr pieces,
and at the next iteration, this cluster is reclassified. The developed classification method has
been applied to a traffic network control system, successfully reproducing the output of the
conventional MINLP controller.
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[Matrices in MLDS]

A = I (133)

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 0 · · · · · · 0

0 −1 1 0
. . .

. . .
...

0 −1 0 1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 0 0 0 · · · −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(134)

E1 =
[

0 0 I −I 0 0 Γ1

]T
(135)

E2 =
[

0 0 0 0 −I I 0
]T

(136)

E4 =
[

I −I 0 0 0 0 0
]T

(137)

E5 =
[

0 0 Λx 0 0 Λy Γ5

]T
(138)

where

Λx =
[

−xmax −xmax · · · −xmax
]

(139)

Λz =
[

zmax zmax · · · zmax
]

(140)

Γ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γ1 0 · · · · · · 0

0 γ1 0
. . . 0

... 0 γ1
. . . 0

...
. . .

. . .
. . .

...
0 · · · · · · · · · γ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(141)

Γ5 =
[

γ5 γ5 · · · γ5

]T
(142)

γ1 =

⎡

⎣

1 −1 0 0
0 0 1 −1
1 0 −1 0

⎤

⎦ (143)

γ5 =
[

0 0 1
]T

(144)

u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

uE,1

uW,1

uN,1

uS,1

uE,2

uW,2

uN,2

uS,2
...

uS,m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(145)
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