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1. Introduction

This work is concerned with fault detection of Switched Linear Systems (SLS) and the
design of asymptotic diagnosers for this class of systems. In the approach herein addressed
a system can evolve from a normal behavior to a faulty behavior selected from an a priori
known set of possible faulty behaviors. The faulty or normal behaviors are represented by a
family of Linear Systems (LS) and an Interpreted Petri Net (IPN) is used to represent the
way in which the normal and faulty behaviors are visited. Moreover, there could exist
several LS representing the system normal behavior in some operation points. Notice that
several real systems can be represented with this model, for instance power systems can be
represented by a family of LS, one for each operation point and one for each fault.

In LS there are works dealing with continuous fault diagnosis. In (Massoumnia et al., 1989) a
residue is used to show when a fault f; can be detected in the system. Fault f; can be seen on
the output of a residual model for fault fi. However the number of faults that may be
detected is restricted to the range of the output matrix. In (Gertler et al., 2002) the design of
residual diagnosers is proposed.

The diagnosability in Discrete Event Systems (DES) has been addressed using Finite
Automata (FA) (Sampath et al 1995), where a DES is diagnosable if there is no F;
indeterminate cycles. Some extensions have been made to previous work, as (Hashtrudi-Zad
et al., 2003), where the diagnoser and the system are allowed to start in different initial
conditions. Diagnosability in DES has been also addressed using Petri Nets (PN)
(Hadjicostis et al., 1999), (Hadjicostis et al., 2000) where a fault is detected if a conservative
marking law is not fulfilled. In (Ramirez et al., 2007) a fault is detected when a siphon is
unmarked, leading to a deadlock in the whole PN.

In (Fourlas et al., 2005) and (Fourlas 2009) the problem of fault diagnosability in hybrid
system was addressed. That approach detects and isolates faults using the event sequences
and associating to each faulty event a guard that can be taken from the continuous variables
or discrete labels. The way in which continuous variables are chosen, however, is not
mentioned.

This work is focused in fault diagnosis of systems where the set of potential faults can be a
priori known. However the occurrence of them in real time needs to be detected and
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322 Petri Nets: Applications

isolated. A normal assumption followed in this work is that the faults are fired from certain
system states, i.e. they cannot occur everywhere. For instance, a motor can be broken if it is
working.

In the present work the diagnosability is addressed combining the residue generation,
distinguishability and indeterminate cycles. Fault rises are represented by the firing of some
PN transitions, herein named faulty transitions. Thus the SLS jump from one LS
representing a normal behavior to another LS representing a faulty behavior by the firing of
faulty transitions. Thus the fault detection and isolation could be carried out by detecting or
computing the firing of such faulty transitions. In order to do such task, the knowledge of
both, continuous and discrete parts of the input-output SLS information, are used.

In particular, the firing of a faulty transition can be detected if it is event detectable. This
concept was derived for IPN (Ramirez et al., 2007), now this concept is extended to SLS in
the three following ways.

If the faults are detectable in the sense introduced in (Massoumnia et al., 1989) then a set of
residue generators, one generator per fault, can be built. Thus, when the output of generator
representing fault f; is different from zero, then that transition t;, (representing fault f;) was
fired for sure, i.e. the fault and the firing of a faulty transition was detected and isolated.

If the LS ¥, evolving before the firing of a faulty transition t;, is distinguishable from the LS
I, evolving after the firing of ¢, then the firing of t;, can be detected and isolated by
computing which LS systems is evolving, either X, or X,.

If the firing of a faulty transition cannot be detected because it is not event detectable, the
faults are not detectable as in (Massoumnia et al., 1989) and distinguishability does not hold,
then the not firing of a faulty transition can be detected if the firing of transitions
representing the SLS normal behavior is detected.

This paper is organized as follows. In Section 2 the background of LS, and IPN are
presented, as well as the SLS definition and diagnosability in SLS. In Section 3 the
characterization of diagnosability using the concepts of distinguishability and event
detectable is presented. The diagnoser design is presented in Section 4, and an illustrative
example is reported in Section 5. The last section presents the conclusions and future work.

2. Preliminaries

Through this work, SLS are represented by the tuple (F, (Q, My)), where F is a family of
continuous LS and (Q, M) is an IPN. Next two subsections are devoted to briefly present
these dynamical systems. An interested reader can consult (Chen, 1970; Wonham, 1979) for
LS, and (Desel and Esparza, 1995; Rivera-Rangel, 2005) for Petri nets and interpreted Petri
nets. Afterwards, the formal definition of SLS is presented.

2.1 Linear systems

Definition 2.1 A Linear System (LS) is described by for all t=0
{)’((T) = Ax(t) + Bu(t), x(Tt9) = Xo
y(1) = Cx(7)

where x € R" is the state vector, u € RP is the system input vector, y € R? is the system

output vector, and A, B, and C are, respectively, n X n, n X p and g X n constant matrices.

The state space of the dynamical equation (2.1) is X.

Through this work, equation (2.1) will be referred as the LS 2(4, B, C) or simply system E.

(2.1)
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Definition 2.2 A LS, Z(A, B, C), is said to be observable at T, if there exists a finite T, > T,
such that for any state x, at time t,, the knowledge of the input u[ty, t;] and the output
y[to, T1] over the time interval [ty T,] suffices to determine the state x,. Otherwise, the
dynamic equation X(4, B, C) is said to be unobservable at 1.
Theorem 2.3 Let X(A,B,C) be a LS. Then Z(A B,C) is observable if and only if the
unobservable subspace V' € X of (A, B, C) is the trivial subspace 0, i.e. for all t=0

N =Nk, ker(CA™Y) =0 (2.2)
or equivalently, if and only if it does not exist a nontrivial subspace V € X, such that
PV € kerC and V is A-invariant (i.e. AV € V).
Proof. The proof is presented in (Wonham, 1979). m

2.2 Petri nets and Interpreted Petri nets
Definition 2.4 A Petri net system or Petri net N = (G, M) is a bipartite digraph where
G=(P,T,F) and:

e P = {p;,p,, ...} is a finite set of vertices called places,

* T = {ty, t, ... } is a finite set of vertices called transitions,

e Fisarelationon PUT suchthat FN (P XP)=FnNn (T xXT) = Q.

* M, is the initial token distribution or initial marking, where a marking
M:P — Z* is the number of tokens associated to each place, this is usually expressed as a
vector of dimension equal to |P|.

The incidence matrix of G is C = [c;;] such that

0 if (pi,tj) ¢F and(t-,pi) ¢ F or
(pi, tj) € F and (t-,pl-) EF

-1 if (pl-, tj) EF and(t-,pi) ¢ F

1 if (putj) €F and (t;,p;) EF.

In a PN system, a marking M enables a transition ¢; if it marks every place p; such that
(pi, tj) € F; if t; is enabled at M, then the transition ¢; can be fired reaching a new marking

j
My +1 (written as My, = My44).
In a PN, o = tyt,...t; is a firing transition sequence leading from M to M, (written as

M3 My) it M t—1> M, t—2> 2; My. A marking M is said to be reachable from M if M 5 M, for
some firing transition sequence o. The reachability set of a PN is the set of all possible
markings reached from M, this set is denoted by R(G, M).

A Petri net (G, M,) is live if, for every M € R(G,M,) and every t € T there exists a marking
M' € R(G, M) which enables ¢; it is cyclic if M, is reachable from every M € R(G, M,) and it is
binary if for every marking M; € R(G, M) and every place p; € P My (p;) < 1.

As mentioned before, IPN are used to capture the discrete nature of SLS, this extension
allows to associate input and output signals to PN models. These nets are defined as follows.
Definition 2.5 An interpreted Petri net (IPN) is the pair (Q, M) with Q = (G,§, T, A, ¢) where:

* (G,M,) is a PN system.
* & = {ay, ay, ... } is a finite set of input symbols.
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* I' = {y3, ¥, ...} is a finite set of output symbols.

* 1:T - & U {&} is a labeling function of transitions with the following constraint:
Vtj, ty €T, j # k, A(t;) # &, A(ty) # ¢ if there exists p; such that (ps, tj) €F and (p;, t;) EF
then A(t;) # A(ty), where A(t) = € represents a silent transition and ¢ is an internal system
event.
There exists an output relation ¢ c P x I associating to each place a set of output symbols,
where (p;,¥;j) € ¢ if the output symbol y; is generated as an output when the place p; is
marked. The relation ¢ can be represented in a matricial form, where ¢;; = 1 if (p;,¥;) € ¢
and ¢;; = 0 otherwise.
If A(t;)) = a; # € and the symbol a; is present as an input when ¢; is enabled, then ¢; must
fire. If A(t;) = ¢ and ¢; is enabled then t; can be fired. The transition ¢; is said to be
manipulated if A(t;) # €. Otherwise it is non manipulated.
The reachability set of (Q,M,) is denoted as R(Q,M,) and is defined in a similar way as
R(G,M,). Notice that R(Q,M,) € R(G,M,) since the labeling function 2 may force two

transitions equally labeled to fired simultaneously in the IPN.
t; t; t
Definition 2.6 Let M; = M;,q =S M, be a marking sequence. The input-output

sequence w = (@g,Yo) - (ak, Vi) generated by M; --- M, is defined inductively as follows:

°*ay, =¢and y, = pM;.

o If a, = A(t)) and y, = pM; then a,,, = A(t;) and y, .1 = M, if @M, + pM;
and there is no My, occurring after M; and before My such that oMy, # @M; and oMy, # @M.
Note that, if 9 M; = ¢M;,, then the input-output sequence generated by M;M;, is the same
as the one generated by M; or M;,4, say w = (&, o M;).

The marking sequences set corresponding to w is defined as for all t=0

Sw = {M; -+ My |M; --- M, generates the input — output sequence w} (2.3)

2.3 Switched linear system
Definition 2.7 A Switched Linear System (SLS) is the tupla SLS = {F, N}, where F is a family
of Linear Systems (LS) {Z,%; ...,Z;} and N is an Interpreted Petri Net (IPN), where the
following considerations are fulfilled:
e  The interpreted Petri net N is live, binary and cyclic.
o O:P - FU{u}is a function associating to each place a LS or u, ®(p;) = K
indicates that p; has not associated LS, where the following constraint is fulfilled:
Vt] eT ZpiE .L'j dim ) (pl) = Zpketj. dim ) (pk)
e Vtj such that {pl, ...,pq} € °tj and {pq, ...,pg} € t;° is defined 5tj: R" —
X1 (T ") Xq (Tk)
R™ with Stj : = : , where X, has the same dimension than
Xq(Tk™) Xg (T1)
O(p;), pi € 'tj and X, has the same dimension then O(p;), p; € t;". The final
state at time Ty, when ¢ is fired, X, (Ty) is the initial condition of ®(p;).
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e If the output symbol ¥, where (p;, )/j) € @ appears more than one time, then it
must be associated to places of the same P-component.

e The dwell time in a state M}, is finite and different from zero.

Definition 2.8 Let {F, N} be a SLS. The SLS is named a Complete SLS if the system faults are
included in the model in the following way. A faulty transition tf, and a faulty place pf, are
added to the IPN in order to represent each fault f; that the SLS model must capture. The
place p; of the SLS where the system can evolve from a normal behavior into a faulty
behavior, where fault f; is present, must be connected through an arc from p; to t;, and also
an arc from t;, to py, must be added. The set F is recomputed as F' = F U {CD(pfl), duy (D(pfk)}.
Remark 2.9 Through this work, F, P and T are decomposed as F = Fy U Fr, P = Py U Pr and
T =Ty UTr in a Complete SLS {F,N}, where Fy, Py,and Ty are elements of the SLS and
Fp,Pp,and Ty are the faulty elements added to the Complete SLS to include the faulty
behavior in the SLS.

Definition 2.10 Let {F, N} be a Complete SLS and Tr = {tr,, ..., tr,} the set of faulty transitions.
A place py € "Ty is named a risk place and a transition t; € T — Tz where ¢; € p;® is named

a post-risk transition.

2.4 Example
Example 2.11 Consider the SLS where the discrete part is represented by the IPN depicted
below

Fig. 1. Normal behavior of the SLS.
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The LS associated to each place are presented in the next table:

P ®(Py) = (A, B,C
-2 0 1 0 1 0
NP E R | P L | PR
-3 2 1 1 00
P2 Ay = _32 :é B, = [_13] C;=[1 3]
p3 Az = _27 ___; B; = (1) C;=[7 15]
Pa Ay = _33 _04 B, = 1 C,=1[0 1]
Ps As = _03 _34 Bs = ; Cs=1[2 —1]
Pe Ag = _25 _14 Bg = (1) Ce =[15 12]
Py A, = :i _22 B, = (1) C,=[1 0]
Pg Ag = _01 _32 Bg = 1 Cg=1[2 -9]
Po Ag = :g _12- By = i Co=1[1 1]

Table 1. Linear Systems associated to [PN places.

Notice that the LS evolving when the place p; is marked is of dimension four with two
inputs and two outputs, when the transition t, is fired the LS associated to the places p, and
pg evolves independently from each other, each one of dimension two with a single input
and a single output, this situation may be interpreted as a decoupled of two machines
cooperating with each other, in a similar way the firing of transition tg represents that two
machines are cooperating in such a way that their dynamics couple together.

Then the faulty behavior Fp = {p;y,p11} is added according to the proposed model. The
resulting Complete SLS model with both behaviors is represented in next figure.

Fig. 2. Normal and faulty behavior of the SLS
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The post-risk transitions are t; and t;, while Tr = {tq, t;o}. The faults ®(p;o) and ®(p;,) have
the following information associated:

P ®(Pp) = 2(A,B,0)
P1o | A10 = [_22 _05] By = [(1)] Cio=[1 0]

P11 | A1 = [_33 :;] By = [ﬂ Ciy =[-3 -1]

Table 2. Linear Systems associated to IPN places.

3. Characterization of diagnosable Complete SLS

The characterization of diagnosability in SLS is based on the observation of the firing
transition sequence containing a faulty transition. However, since the marking of some
places cannot be observed from the output information, then an output information
sequence could be generated by several possible firing transition sequences, some of them
containing the faulty transition.

The diagnosability characterization is then reduced to compute the actual fired transition
sequence in a finite number of fired transitions when a faulty transition is fired. Notice that
the firing of a faulty transition is equivalent to that post risk transitions cannot be fired. Thus
the idea behind this work is to detect if post risk transitions can be fired (the SLS is normaly
evolving) or not (the SLS is in a fault behavior).

In order to ensure that the detection of the firing of post risk transitions is computed in a
finite number of transition fires, the concept of relative distance between transitions is
presented. Although the computation of this distance seems to be an NP complete problem,
the finiteness of this distance can be computed efficently for the IPN used in the SLS.

3.1 Relative Distance Concepts

Definition 3.1 The relative distance between any pair of transitions ¢;,t; € T, D(ti, tj), in the
IPN, is the maximum number that ¢; can be fired when a token is held in the place °t;. The
maximum relative distance between any pair of transitions t;,t; €T is Dy(t;,t;) =
max (D(t;, t;), D(t, t;)).

Notice that in live, cyclic and binary IPN the finiteness of this distance can be computed
easily. For instance, the IPN of the SLS in Example 2.12 is covered by P-components, and
these P-components become siphons when faulty transitions are added. Thus the firing of a
faulty transition unmarks a P-component, thus all transitions of the P-component cannot fire
anymore, thus the maximum relative distance between any pair of transitions of the P-
component is finite. The next proposition states that when all T-Components share
transitions with a P-component, if the P-component becomes unmarked, then the IPN is no
longer live.

Proposition 3.2 Let {F, N} be a SLS and {F’, N'} be a Complete SLS, where all T-Components
of the IPN in the SLS share transitions with a P-component containing a risk place (p;). If the
faulty transition connected to the risk place is fired, then after a finite number of transition
tiring the IPN is no longer live (or blocked).

Proof. Since the IPN of the SLS is live and binary, then it is covered by P-Components
(Dessel et al., 1995). When the faulty transition is added, the places of the P-Component
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become a siphon, thus the firing of the faulty transition unmarks the siphon. Since siphons
cannot be marked again, then all transition in the P-Component cannot be fired. Moreover,
since all T-Component share transitions with the P-Component, and every T-Component
needs to fire all its transitions to be live, then eventually the transitions of the T-Component
cannot be fired, since they need the firing of the transitions in the P-component. m

Corollary 3.3 Let {F,N} be a SLS and {F',N'} be a Complete SLS, where all T-
Components of the IPN in the SLS share transitions with any P-component containing a risk
place (p;). Then t;, t; €T is Dy(t;, tj) < oo, where t; is the post risk transition t; € "p;.

Since the firing of any sequence contains transition t; € "p; then the idea is to add a
“marker” to transition t; € "p; in such a way that the firing (or not firing) of this transition
can be observed from the SLS output. The firing of such transition can be detected using the
LS input output information based on distinguishability property or the IPN input output
information, based en event detectability property. Next subsection formalizes these ideas.

3.2 Distinguishability Concepts

Definition 3.4 The linear systems Z;(4;, B;, C;), Zj(Aj,Bj, Cj) are said to be distinguishable
from each other if the knowledge of the input u[ty, t;] and the output y[t,, t;] over the finite
time interval [t, t;] suffices to determine which LS is evolving.

Notation 3.5 Let X;(4;, B;, C;), and J; (Aj, B;, C]) be two SISO linear systems, then the linear
system {4, B, C} denotes the extended LS form with the matrices for all t=0

e )
B= [Bﬂ G
C=[C, -Gl

Lemma 3.6 Let X, (4,, By, C;), 2,(A,, By, C,) be two SISO LS where A; € R™™ and A, € R™*™,
Then the linear systems X; (A4, By, C;) and X, (A4,, B,, C,) are distinguishable from each other
if and only if the only solution to the equation for all t>0
Celt [xo + fot e‘ATEu(T)dT] =0 (3.2)
is xo = 0 and u(t) = 0.
Proof. If the linear systems X;(A4;, By, C;) and Z,(4,, B,, C,) are indistinguishable from each
other then there exists an input u(t) such that the same output y(t) is produced by both

systems when u(t) is applied, i.e. for two different initial conditions xj, x¢ it holds that for
all t=0:

y(t) = C,ett [x(% + fot e‘AlfBlu(r)dr] (3.3)
and
y(t) = Cref2t [xg + fot e‘AZTBZu(r)dT] (3.4)
then combining equations (3.3) and (3.4):
C,ett [x% - fot e‘AlfBlu(T)dr] = C,e42t [xg + fot e‘AZTBZu(T)dT] (3.5)
this equation can be written as
CieMtx} — Cretxl = fot [~Cre= (DB, + C,e =D B, Ju(z)dx. (3.6)

Now, since (3.6) is equivalent to:
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et 0 x| _
[ G [0 eAZt] [xg B

N G [SAl(t ? SAZ(t_T)] [gﬂ u(r)dr
Equation (3.7) can be written in terms of the matrices (3.1), with xo = [x§ xZ]", then
Celt [xo + fot e“‘ﬁéu(r)dr] =0. (3.8)
Since X;(4,, By, C;) is indistinguishable from X, (A4,, B, C;), thus there exist solutions x, # 0
and u(t) # 0 to Equation (3.8). The converse is also true, then X, (44, By, C;) and Z,(4,, B,, C;)

are indistinguishable from each other if and only if the only solution to Equation (3.8) is
xo=0and u(t) =0.m

(3.7)

Theorem 3.7 Let 5;(4;, B;, (), Z; (A]-,Bj, Cj) be two SISO linear systems, where the matrices
A; € RV™ and A; € R™™. Then the linear systems X;(4y,By,Cy), 2,(A3 By, C;) are
distinguishable from each other if and only if the extended LS X; ; (4; i»Bij, Ci, j) has no
system zeros.

i

The proof follows from Lemma 3.6 m

3.3 Distinguisher Design

The distinguisher proposed in this work is presented in Figure 3. It is capable of compute
which LS is evolving from a set of possible evolving and distinguishable from each other set
of LS. This figure shows that the diagnoser is composed of an observer, a set of simulation
models of all possible evolving LS and a decision block.

Currently
Evolving

System

?lméib?'m

E I*-[‘Irlg,.n-. ‘fr" ;n-.'fl-'l
| D;] £ —@

[E @ Decision
Observers Models | " Block |

Currently

Evolving
System

Fig. 3. Distinguishability architecture.

The distinguisher works as follows. The input and output of the current evolving LS are
introduced to all Luenberger observers of the set of possible evolving LS. Notice that one of
the Luenberger observers is the observer of the current evolving LS, thus at least this
observer will compute the current LS state. The state estimated by each observer 0; is given
as initial condition to the corresponding LS model X; and a simulation starts. Since all the LS
are distinguishable from each others, then the output of just one system will be equal to the
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current LS output. Thus the decision block isolates the model corresponding to the current
LS evolving.

3.3 Event Detectability

Definition 3.8 An IPN given by (Q, M,) is event-detectable if any transition firing can be
uniquely determined by the knowledge of the input given to (Q, M,) and output signals that
it produces.

The following Lemma provides a structural characterization of the IPN exhibiting event-
detectability.

Lemma 3.9 A live IPN given by (Q, M) is event-detectable if
1. Vt;, t; € T such that A(t;) = A(t]-) or A(t;) = ¢ it holds that ¢C(e, t;) # @C(e, j)

and
2. Vt; € T it holds that ¢C(e, t;) # 0.

The proof is presented in (Rivera et al., 2005). m

Lemma 3.10 A transition t, € T in the IPN N of the SLS is event-detectable if:

( @C(e, ty) # 0or
(p) @ (px)
1. A is distinguishable from
o(p;) o (p}")
\ where p,. € "t and p,! € tf
and
( Vt; € T such that ¢C (e, t;,) = @C(s, t;) fulfills that
() P (pi)
2. A is distinguishable from
@ (p;) ®(p;")
\ where p,. € tg and p, € t*

Proof: In order to uniquely determine the firing of any transition, their firing must be
detected (part 1), i.e. if @C(e,ty) # 0 then the firing of t; is detected using the discrete
inputs-outputs information change y, — yx—1 = @C (e, tx) # 0, otherwise if the

() D (pi)
B is distinguishable from 3
o(p;) o(p;")

then by using continuous information it can be determined the firing of t; .

The change that every firing produces in the output is unique (part 2). Since two transitions
producing the same discrete input-output information, @C(e,tx) = @C(e,t;) belongs to the
same P-Component (because the places of P-components can have the same output symbol),
then the property of distinguishability between the LS associated with tg and the LS
associated with t* can be tested.
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Since part 2 states that both systems are distinguishable from each other, then it can be
determined if the places of tg or the places of t* are marked and consequently conclude
which transition has been fired.

3.4 Diagnosability characterization

Detecting and isolating a fault in LS and IPN has been widely addressed in the literature.
The results are identical in both cases for additive faults. A residue generator can be built in
such a way that the subspace generated by the input can be twisted and placed into the
kernel of the output map while the fault resides out of the kernel of the output map. These
residue generators (Massoumnia et al., 1989; Hadjicostis et al., 1999; Ramirez et al. 2007)
must be built and can be used to detect faults when it is possible. However, there could be
cases when the faults cannot be isolated by the residue generators, but still can be isolated,
as the following theorem states.

Theorem 3.11 Let {F, N} be a SLS and {F’, N'} be its Complete SLS where every fault f; all T-
Components of the IPN in the SLS share transitions with the P-component containing the
risk place p; € .tfi' If the pre risk t,;, post risk t;, and faulty tf, transitions of every fault f;
tulfill that:

1. Vt; € TisDy(t;,t)) < e,

2. tyj and t; are event detectable or s, is event detectable

then the SLS is diagnosable.

Proof. Since Vt; € T is Dy(t;, ;) < oo, then the firing of ¢; appears in all finite transition firing
sequences. In order to fire t;, the risk place p; must be marked. At this marking the fault f;
(represented by the firing of ¢f,) could occur.

Notice that the moment when place p; is marked is detected since t,; is event detectable.
Eventually either, the transition t; will be fired and detected (since DH(ti, tj) < oo and t; is
event detectable) and there is no fault in the SLS, or the IPN will be blocked. Since A(t;) # ¢
then the symbol A(t;) could be given to the IPN, if the firing of t; is detected, then there is no
fault in the SLS, otherwise, the SLS is in a fault state, moreover, the fault f; occurred into the
SLS.

4. Diagnoser design

The scheme used to detect and isolate faults when the system is working on-line is
presented in Figure 4. Its funcionality is as follows, when the inputs manipulable and not
manipulable are applied to the system, the event-detectability implies that generate an
output change in the IPN model which contains the normal and faulty behavior, the
diagnoser model is binary too and only contains the event detectability normal behavior.
The transition t; € "py, where py is a risk place in the SLS, is event detectable. When no
fault is presented in the SLS the error between the IPN model and the diagnoser model will
be zero. Now, if a fault occurs and the IPN is event-detectable then the error between the
diagnoser and the Complete SLS will be different from zero. If a transition is confused and it
is necessary to verify which LS is evolving, i.e. which place is marked, then the
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distinguishable diagnoser is used. The later diagnoser gives the requiered event
detectability; when the difference is not zero, it implies that a fault occurs in the Complete
SLS.

inuous/Discrete

Inputs "
" Complete SLS model

Continuous  No g
Yesr Event-detectability . . @
[ Distinguishable ] i
: | Decision |
Discrete Block
Diagnoser model ]7

Fig. 4. Diagnoser scheme

5. lllustrative example

Example 5.1 Consider the SLS of Example 2.11 where the normal and faulty behavior is
depicted. Notice that the IPN is not input-output diagnosable using only the discrete
information because when the system turns on and A appears, it is not possible to know
which one is and in consequence if a fault occurs. The relative distance between the post-risk
transition and the others in the IPN is finite. The IPN system has two places with the same
symbol A. As both LS associated to ®(P;) and ®(Pg) are distinguishable, if in the IPN A is
detected, the distinguishable design immediately starts its operation and the currently
evolving system will be detected. If the place p, is marked cannot occurs a fault. If the risk
place p3 is marked and as the relative distance is finite, t; must be fired, when no change in
the IPN is detected implies that the fault ®(P;,) occurs in the system.

To diagnose the fault ®(P;;) the IPN gives enough information to know that the system
arrives to a risk place, as the LS marked with the same symbol C in the IPN are
distinguishable, this means that ®(Pg) is distinguishable from ®(P;,), i. e. the extended
system:

-1 3 0 0 1
- |0 =2 0 0]. 5_1I1 = _ _ _
A= 0 0 -3 _1,B— ) andC=[2 -9 -3 1]
0 0 3 =7 1

is observable, controllable and does not have transmission zeros. It is easy to see if a fault
occurs using the distinguishable design.

6. Conclusions

This chapter addresses the diagnosability problem in SLS represented by a family of linear
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systems and an interpreted Petri net. It shows that although the results of diagnosability in
IPN and LS can be used, the class of SLS that can be analyzed include those where neither
the SLS nor the IPN are diagnosable.

The main idea behind of diagnosability is that the occurrence of a fault can be detected in
the output because if the use of residue generator, distinguishability or the expected normal
behavior is not carried out. These three ideas are introduced into the IPN as the solely
concept of event detectability, thus when faulty, pre and post risk transitions are event
detectable and the relative distance of post risk transition and other transitions is finite then
the SLS is diagnosable.

The advantages of the proposed method are that the diagnosability characterization is
structural and polynomial, the diagnoser converges to the fault in finite time and the SLS
model captures the fact that several systems can work coupled or uncoupled, depending on
the operation circumstances.
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