
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322389093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�������	
���
���
��������������������������	 ���

0

Supervisory Control and High-level Petri nets

Chiheb Ameur ABID, Sajeh ZAIRI and Belhassen ZOUARI
LIP2 Laboratory - University of Tunis

Tunisia

1. Introduction

The Supervisory Control Theory (SCT) (Ramadge & Wonham, 1989) was developed to provide
a formal methodology for the automatic synthesis of controllers for Discrete Event Systems
(DES). In this theory, a system, called a plant, is assumed to have uncontrollable behaviours
which may violate some desired specifications. Hence, these behaviours have to be controlled
by means of a feedback controller, called a controller (or a supervisor), so that the system
fulfils the specifications. Primarily, the SCT was studied in the context of automaton based
models. More recently, a special interest is given to the Petri net models for the studying of
the control problem (Ghaffari et al., 2003; Giua & DiCesare, 1994; Sreenivas & Sreenivas, 1997),
since they represent a good trade-off between modelling power and analysis capabilities. For
details about the supervisory control problem methods based on Petri nets, one can refer
to (Holloway et al., 1997; Su et al., 2005). In addition, high level nets, especially Coloured Petri
nets (CP-nets) (Jensen & Rozenberg, 1991), provide a great improvement over the ordinary
Petri nets. Notably, the high expressiveness of CP-nets allows to obtain compact models even
for large systems, while keeping the same formal analysis capabilities. However, not many
works have addressed the supervisory control problem by considering a CP-net as a plant
model. In this context, we can cite the method developed in (Makungu et al., 1999). This
method addresses the forbidden state problem for a class of CP-nets where the process to be
controlled is separated from the control logic.
In this chapter, we review our previous works (Abid & Zouari, 2008; Zouari & Ghedira, 2004;
Zouari & Zairi, 2005) for the supervisory control problem of DES modelled by CP-nets. The
control specifications herein considered are expressed in terms of forbidden states, i.e. states
which have to be avoided by the controlled model. In a first approach, we propose to derive
a controller for a plant CP-net model by using the theory of regions. According to the control
specifications, the desired behaviours are extracted from the rechability graph associated with
the plant model. Then, the theory of regions is used in order to design the controller. Thanks
to the expressiveness of CP-nets, as a main advantage, the obtained controller is reduced to
one single place. Secondly, we propose to optimise the first approach in order to deal effi-
ciently with symmetric systems. Indeed, the reachability graph of a symmetric system can be
represented by an optimised version, called symbolic reachability graph (Chiola et al., 1991;
1997), which is quite smaller. Thereby, the use of symbolic graphs allows to alleviate one im-
portant drawback of the latter approach which is the well-known problem of the state space
explosion. Moreover and consequently, the use of a smaller graph allows to reduce the com-
plexity of the synthesis process. Finally, we propose an approach which considers as plant
model a CP-net that is assumed to be structured on a set of generic processes sharing a set

��

www.intechopen.com

������'��	(������)���
�	���

of resources. In addition to the avoiding of the use of the theory of regions, this approach
generates a controller as an active process, modelled by a CP-net, and having the advantage
to be implemented directly on existing tools such as CPN-Tools (Jensen et al., 2007).
The remainder of the paper is organised as follow. The second section introduces the notation
and definitions used in CP-nets. Section 3 provides the basic concepts of the theory of regions.
Section 4 deals with the synthesis of a CP-net controller for the forbidden state problem by
applying the theory of regions. Section 5 optimises the latter approach for symmetric systems
by applying the theory of regions on the basis of symbolic reachability graphs. Section 6 gives
how to design a generic CP-net controller for certain systems without using the theory of
regions. Finally, section 7 summarizes the main conclusions and perspectives of this chapter.

2. Well-Formed Coloured Petri nets (WF-nets)

High level nets (Jensen & Rozenberg, 1991) represent a natural extension of ordinary Petri
net formalism. They enhance both readability and expressivity of Petri nets. As a main
advantage, high level nets allow the generation of compact models even for large systems.
This extension is mainly done by the introduction of ’colour’ structures to identify tokens.
Coloured (or in general High-level) Petri nets are particularly well-adapted for the modelling
of parametric systems which behaviours depend on the basic structure of the model rather
than on the cardinalities of the colour sets. The CP-net model used in this chapter is the
Well-Formed coloured Petri nets (WF-nets) model (Jensen & Rozenberg, 1991). WF-nets
are equivalent in expressiveness to CP-nets, but are syntactically restricted by enforcing a
particular structuring on colour classes and functions.

In this section, we briefly present the different notions related to CP-nets, according to the
syntax defined in the WF-net model.
WF-nets have the same modelling power as CP-nets, although syntactically different. Before
presenting a formal definition of the model, let us present the related basic notions.
A multiset is a set in which given elements may appear several times. Given a set A. Bag(A)
denotes the set of finite multisets on A. A multiset ”a” can be represented as a sum: a =
∑x∈A a(x).x in which a(x) gives the number of occurrences of the element x in the multiset
”a”.
Object classes are finite non-empty sets of objects or basic colours. A class may be viewed as a
set made up of elements of the same type. We can distinguish particular type of classes, called
ordered classes, for which an order relation is defined on its elements.
Colour domains may be defined as a Cartesian product of object classes and is associated with
either a transition or a place. When associated with a transition, it defines the set of all its
firing instances (coloured firings). When associated with a place, it defines the set of all its
possible markings.
Colour functions are a pondered sum of tuples of basic colour functions. Colour functions are
associated with the labels of WF-net arcs. These functions allow to specify the number of
coloured tokens to be consumed and to be produced when firing a given transition. There are
three basic colour functions:

• the identity function, used for the choice of any object in a class, specified by a variable
X,

• the successor function, used to specify the circular successor of an object in an ordered
class, noted ⊕X,

www.intechopen.com

�������	
���
���
��������������������������	 ��*

• the diffusion function, used to specify all the objects of a class Ci, noted AllCi
.

A guard is a Boolean function defined on a colour domain and which role is to restrict it to a
subdomain. When a guard is associated with the colour domain of a transition, it limits its
possible firings. But a guard can also be associated with a colour function labelling an arc in
order to indicate whether this arc is valid with respect to the guard value.
Let [g] be a guard and f be a colour function. The guarded function [g]. f is defined by:
∀c ∈ C(t), [g] f (c) = (if g(c) then f (c) else 0).
We can note that a guard can lead to a cancelation between a place and a transition.

Definition 1. A coloured Petri net is a 6-tuple
N =< P, T, Cl , C, W−.W+, Φ, M0 > where:
P is a finite set of places,
T is a set of transitions verifying P ∩ T = ∅, P ∪ T �= ∅,
Cl = {C1, C2, ..., Ck} is a set of object classes such that ∀i, j ∈ {1, ..., k}, i �= j, Ci ∩ Cj = ∅,
C is the colour function, defined from P ∪ T into a set of colour domains. An element c of C(s) is a
tuple < c1, ..., ck > and is called a colour of s,
W−, W+ are the input and output functions (also called the incidence functions) defined on P×T, such
that W−(p, t) and W+(p, t) are guarded colour functions representing linear applications mapping
Bag(C(t)) onto Bag(C(p)), for all (p, t) ∈ P × T,
Φ is a function which associates a guard with any transition. By default Φ is true for any transition t,
M0 the initial marking is a function defined on P, such that M0(p) ∈ Bag(C(p)), for all p ∈ P.
W = W+ − W− indicates the incidence matrix, and W(p, .) is a line vector of such a matrix.

For reasons of clarity, we assume in this paper that the object classes are not ordered.
The dynamic behaviour of a coloured Petri net is determined by the following firing rule:
A transition t is enabled for a colour c and a marking M, denoted by M[t, c〉, iff ∀p ∈
P, M(p) ≥ W−(p, t)(c).
The marking M′ obtained after the firing of (t, c) is computed as:

∀p ∈ P, M′(p) = M(p)− W−(p, t)(c) + W+(p, t)(c)

The notation M[t, c〉M′ is used to indicate this reachability relation. Using the firing rule, it
is possible to construct a reachability graph R(N), whose nodes are the markings reachable
from the initial marking, and whose arcs represent the reachability relation. Such an arc is
labeled by the transition name and the associated colour involved in the reachability relation
between two given nodes.

��

�����	�

�� ��

��

���

������

��������	
�����
����	
��

Fig. 1. Problem of producer-consumer

www.intechopen.com

������'��	(������)���
�	��+

Throughout this chapter, we consider the well-known producer-consumer problem. As it
is illustrated in Fig. 1, there are two kinds of machines, namely producers and consumers,
sharing a stock. We have n producers and m consumers. A producer can produce an object
and transfers it in the stock, while a consumer operates by using an object which have been
already produced and transferred in the stock by a producer. The WF-net modelling this
problem is illustrated in Fig. 2. For sake of simplicity, we have reduced the behaviour of a
consumer to one state and one action. The consumption of an object, deposited in the stock,
is traduced by the execution of transition t3. When a producer produces an object, it transfers
it in the stock by executing transition t2. When place p3 contains no tokens, it indicates that
the stock is full (producers can not transfer a new object in the stock). When place p4 contains
no tokens, then the stock is empty. C1, C2 and C3 denote the object classes of this net. C1
represents the producers, C2 allows to indicate the state of the stock and C3 represents the
consumers. The set of places of this net is P = {p1, p2, p3, p4}. The colour domains of places
are: C(p1) = C(p2) = C1, C(p3) = C(p4) = C2 and C(p5) = C3. The set of transitions
is T = {t1, t2, t3}. The colour domains of transitions are: C(t1) = C1,C(t2) = C1 × C2 and
C(t3) = C2 × C3.

��

��

�

��

�

�

�

�
�

��

��

��

��

�

�

�

��

�

�

��

�

Fig. 2. Well-formed net of producer-consumer problem

3. Theory of regions

The aim of the theory of regions (Badouel et al., 1995) is to decide wether a given automaton
is isomorphic to the reachability graph of a net, then constructing it. Ghaffari et al. (Ghaffari
et al., 2003) are the first who proposed an adaptation of this theory for the synthesis controller
problem using Petri nets. Their proposed method allows to add control places to an initial
Petri net in order to avoid reaching undesired states. Considering a plant model modelled
by a Petri net, this method starts by constructing its associated reachability graph. After that,
one has to provide markings which must be avoided by the system. These markings corre-
spond to forbidden states. This step enables to identify the dangerous markings as the predeces-

www.intechopen.com

�������	
���
���
��������������������������	 ��,

sors of markings that allow reaching forbidden states by uncontrollable events. An uncontrol-
lable event corresponds to a transition beyond any control procedure. Forbidden and blocking
markings are removed in order to obtain a strongly connected modified reachability graph
that respects liveness property and implements the maximally permissive legal behaviour. A
marking is said blocking if it does not allow to reach a final state. Such a state represents a
proper termination of some task and corresponds to a stable state of the system. From the
obtained graph, the parameters of a pure control place, to be connected to a plant model, are
computed by resolving a linear system of equations. According to the theory of regions, three
classes of equations are defined. The work of Ghaffari et al. is based on the following theorem
which defines how to derive a controller for an ordinary Petri:

Theorem 1. Let N =< P, T, W, M0 > be a bounded Petri net such that P is a set of places, T is a
set of transitions, and M0 is its initial marking. Let R be the reachability graph of N. Let Rc be the
desired legal behaviour of N (Rc is a subgraph of R). The supervisory control problem can be optimally
solved by adding a set of control places Pc to N iff there exists a solution (M0(pc), W(pc, .)), ∀pc ∈ Pc

satisfying the following equations:

1. The reachability equation for every marking in Rc:

M(pc) = M0(pc) + W(pc, .)
−→
Γ M ≥ 0 (1)

where ΓM is a non oriented path of G from M0 to M and
−→
Γ M is its associated vector, called

the vector counting of ΓM.
−→
Γ M is indexed by transitions of T. Each line

−→
Γ M[t] represents the

algebraic sum of occurrences number of t in Γ.

2. The cycle equation of Rc

W(pc, .)−→γ = 0, ∀γ ∈ Sc (2)

where Sc is the set of cycles of G, and −→γ is the vector counting defined similarly as
−→
Γ M.

3. For each pair (M, t) such that t does not fire from M, it exists at least one control place pc which
satisfies the equation of state separation inequation:

M0(pc) + W(pc, .)
−→
Γ M + W(pc, t) < 0 (3)

Equation of type (1), called reachability conditions, indicates that every reachable marking
within the legal behaviour must remain reachable under control. Similarly, the cycle equa-
tions (2) indicate that the cycles must remain reachable under control. Finally, an equation of
type (3), called an event separation condition, specifies for a pair (M, t) that the control must
prevent the transition t from firing in marking M.

4. Synthesis of controllers for CP-nets

In this section, we present a controller synthesis approach for a DES modelled by a CP-net,
where the control specifications are expressed in terms of forbidden markings. According to
the provided control specifications, we determine the admissible behaviours from the reacha-
bility graph of the plant model, which are represented by an appropriate graph, called the
admissibility graph. An admissible behaviour represents a behaviour of the controlled system
under both safety specification and non-blocking requirement. Thanks to the expressiveness
of CP-nets, the controller to be determined is reduced to one single CP-net place. Its parame-
ters are obtained by applying the theory of regions on the basis of the computed admissibility
graph.

www.intechopen.com

������'��	(������)���
�	��-

��

��

��

��� �
�

�

�� �
�

��

�� �
�

��� �
�

��

>< ��
� �
�

>< ��
� ���

>< ���� ���

��

>< ��
� ���

>< ��
� �
�

��

>< ��
� �
�
>< ��
� ���

��

�� �
�

��� �
�

��

��� �
�

�� �
�

���

�� �
�

��� �
�

���

��� �
�

>< ��
� ���

�� �
�

>< ��
� �
�

>< ���� ���

>< ���� ���

>< ���� ���

>< ���� ���
>< ���� ���

>< ���� ���

>< ���� ���

Fig. 3. Reachability graph of the producer-consumer problem

4.1 Computation of the admissibility graph

Let us assume that we have the reachability graph of a plant CP-net model. The control con-
straints considered herein are specified through a finite set of undesired markings. These
markings and blocking ones are qualified as forbidden markings. A forbidden marking must
not be reached by the controlled model. Thus, the key idea for the determination of the ad-
missibility graph is to remove forbidden markings from the initial reachability graph of the
plant model, and also to identify markings which lead inevitably to forbidden ones.
The SCT classifies the transitions into two categories. First category consists of the controllable
transitions which may be disabled when it is necessary. In contrast, the transitions belonging to
the second category, called uncontrollable transitions, are beyond any control procedure. Hence,
we assume that the transition set T of the plant model is partitioned into two disjoint subsets:
the set Tc of controllable transitions, and the set Tu of uncontrollable ones.
The role of a controller is to restrict the behaviour of the plant model by disabling some con-
trollable transitions in order to avoid reaching forbidden states. The disabling of a controllable
transition is performed in a dangerous marking from which the firing of the transition leads to
a forbidden marking. So that, we have to identify the set Ω of state-transitions to be disabled.
Every element of Ω is a couple (M, (t, c)) where M is a dangerous marking, and t is a control-
lable transition such that the firing of t with colour c from M yields to a forbidden marking.
As we have previously mentioned, the admissibility graph is computed from the reachability
graph of the plant model by removing forbidden nodes. In addition, nodes becoming un-
reachable from the initial marking and the non coreachable markings must be removed from
the admissibility graph. The identification of dangerous and forbidden nodes is performed
according to the following rules:

www.intechopen.com

�������	
���
���
��������������������������	 ��.

• a marking is qualified as dangerous if it has at least one output arc where its destination
is a forbidden marking,

• a marking is qualified as forbidden when it has no output arcs and it is not a final
marking, or it is a dangerous marking and it has at least one output arc labelled by an
uncontrollable transition,

• every forbidden marking must be removed with its input and output arcs.

The computation of the admissibility graph Rc and the set Ω is given by Algorithm 1. It is
worth noting that it is an enhanced version of the algorithm proposed in (Zouari & Ghedira,
2004). The algorithm considers the reachability graph R of the plant model, the set FM of
specified forbidden markings, the set MS of final markings and the set Tu of uncontrollable
transitions. In each iteration of the main loop, we identify forbidden markings. These mark-
ings and their input/output arcs are then removed from the graph. After that, we qualify as
forbidden the markings which are not reachable from the initial marking. Further, non core-
achable nodes are qualified as forbidden. The loop terminates when all forbidden markings
are processed.

input : R a reachability graph
FM is the set of initially specified forbidden markings
MS is the set of final markings
Tu is the set of uncontrollable transitions

output: Rc the admissibility graph ; Ω the set of state-transitions

DM ← ∅; TE ← ∅; Ω ← ∅; Rc ← R
repeat

Take a non coloured element f from FM
Colour f in FM
for every input arc (x, (t, c), f) of f do

if t ∈ Tu then
FM ← FM ∪ {x}

else
DM ← DM ∪ {x} ; TE ← TE ∪ {(x, (t, c))}

Remove f , the input and output arcs of f from Rc

for every node M of Rc do
if M is not reachable from M0 or M is not coreachable or (M has no output arcs and
M �∈ MS) then FM ← FM ∪ {M}

if M0 ∈ FM then exit //there is no solution
until all elements of FM are coloured ;
DM = DM \ FM
for every element y of DM do

for any element (x, (t, c)) of TE do
if y == x then Ω ← Ω ∪ {(x, (t, c))}

Algorithm 1: Computing the admissibility graph

Let us apply this algorithm to our problem of producer-consumer such that C1 = {pr1, pr2},
C2 = {o, o} and C3 = {co}. The reachability graph of this problem is given by Fig. 3.
Let M = (p1, p2, p3, p4, p5) be the structure of the marking vector. Assuming that M8 =
(pr1, pr2, 0, o, co) and M9 = (pr2, pr1, 0, o, co) are the specified forbidden markings. Apply-
ing Algorithm 1, we obtain as results the admissibility graph described in Fig. 4 and the set

www.intechopen.com

������'��	(������)���
�	���

��

��

��

��� �
�

�

�� �
�

��

�� �
�

��� �
�

��

>< ��
� �
�

>< ��
� ���

>< ���� ���

��

>< ��
� ���

>< ��
� �
�

��

>< ��
� �
�
>< ��
� ���

�� �
�

��� �
�

���
��� �
�

�� �
�

>< ���� ���

>< ���� ���

>< ���� ���

>< ���� ���

Fig. 4. Admissibility graph of the producer-consumer problem

of state-transitions Ω = {(M6, (t1, pr1)), (M6, (t1, pr2)), (M11, (t2,< pr1, o >)), (M11, (t2,<
pr2, o >))}.

4.2 Synthesis of the controller

The controller synthesis consists in solving numerous systems similar to those of type (1), (2)
and (3) formulated from the admissibility graph. The solutions of obtained systems allow
to determine the necessary parameters of the controller which is expressed in term of CP-
nets. Thanks to the expressiveness power of CP-nets, the controller is reduced to one single
place. Therefore, the necessary parameters allowing to build the controller (a CP-net place) pc

and achieving its connection to the plant model are its colour domain Cpc, its initial marking
M0(pc) and its incidence vector W(pc, .).
First, we propose to reformulate the equations/inequations of type (1), (2) and (3) in order
to deal with CP-nets instead of ordinary Petri nets. Finally, we give the algorithm allowing
the synthesis of a controller for a plant CP-net model.

Let us consider the admissibility graph Rc of a plant CP-net model, and the set Ω of state-
transitions, and pc be the controller CP-net place to determine. We denote its colour domain
by Cpc. Each object of Cpc is related to one or several elements of Ω. As it is stated by the
theory of regions, the controller place pc must satisfy the reachability condition. This condition
guarantees that every marking in the admissible behaviours remains reachable under control.
Let M be a marking of the admissibility graph Rc. The reachability condition related to M is:

∀v ∈ Cpc, M(pc)(v) = M0(pc)(v) + W(pc, .)(v)
−→
Γ M ≥ 0 (4)

where
−→
Γ M is the vector counting of any non oriented path ΓM in Rc from M0 to M.

For instance, we consider the marking M7 of the admissible graph in Fig. 4.
For every v ∈ Cpc, the related reachability condition to M7 is: M7(pc)(v) =

www.intechopen.com

�������	
���
���
��������������������������	 ��/

M0(pc)(v) + W(pc, t1)(pr1)(v) + W(pc, t2)(< pr1, o >)(v).

Cycle equations ensure that the cycles of Rc must remain reachable under control. Hence, the
place pc has to satisfy the following equation:

∀v ∈ Cpc, ∀γ ∈ Sc, W(pc, .)(v)−→γ = 0 (5)

where Sc denotes the set of cycles of Rc and −→γ is the vector counting of the cycle γ.
In the admissibility graph of Fig. 4, the cycle equation related to the oriented cycle
(M0, M1, M7) is expressed by the equation ∀v ∈ Cpc, W(pc, t1)(pr1)(v) + W(pc, t2)(<
pr1, o >)(v) + W(pc, t3)(< o, co >)(v) = 0.

Finally, a event separation equation associated with an element (M, (t, c)) of Ω allows the
controller pc to prevent the firing of t in M with colour c:

∀v ∈ Cpc, M0(pc)(v) + W(pc, .)(v)
−→
Γ M + W(pc, t)(c)(v) < 0 (6)

As an example, the disabling of the event separation event (M6, t1, pr1) is ensured through
the inequation ∀v ∈ Ccp, M0(pc)(v) + W(pc, t1)(pr1)(v) + W(pc, t1)(pr2)(v) + W(pc, t2)(<
pr2, o >)(v) + W(pc, t2)(< pr1, o >)(v) + W(pc, t1)(pr1)(v) < 0.

Our proposed Algorithm 2 builds, in an incremental manner, the controller components. In
each iteration of the algorithm, it solves one system where a new object of Cpc is introduced
as an unknown factor, and a new element of Ω is considered in (6).
Then, we have to fold the partial solution W(pc, ti)(c)(vj) in order to determine W(pc, .)(vj).

Indeed, the colour domain C(ti) is partitioned into ki sets Es
i (s = 1..ki) such that: c′, c′′ ∈ Es

i , iff
W(pc, ti)(c

′)(vj) = W(pc, ti)(c
′′)(vj) = αs

i . Hence, for every transition ti, the colour functions
associated with the same set Es

i are grouped. Thus, the folding is achieved as follows:

W(pc, ti)(vj) =
ki

∑
s=1

[
∨

c′∈Es
i

[
∧

X∈var(ti)

(X = X(c′))].αs
i] (7)

www.intechopen.com

������'��	(������)���
�	�/0

input : Rc is the admissibility graph
Ω the set of event separation instances

output: M0(pc) and W(pc, .)

j ← 0
Compute the basis cycles of Rc

Generate the reachability conditions (4)
Compute the independent cycle equations (5)
repeat

j ← j + 1
Let vj be new object Let (M, (t, c)) ∈ Ω

Ω = Ω \ {(M, (t, c))}
Generate the event separation condition (6) for (M, (t, c))
Solve the system made up of (4), (5) and (6) after replacing v by vj.

if there is no solution then
the algorithm terminates as the legal behaviour can not be enforced

else
Remove from Ω the elements having the same solution
for every transition ti ∈ T do Fold the solution

until Ω = ∅ ;
Algorithm 2: Synthesis of the controller

Applying Algorithm 2 on the basis of admissibility graph of Fig. 4 and the set Ω =
{(M6, (t1, pr1)), (M6, (t1, pr2)), (M11, (t2,< pr1, o >)), (M11, (t2,< pr2, o >))} of state-
transitions, we obtain the controller place pc having as colour domain the set Cpc = {v1}.
The controlled model is illustrated by Fig. 5. As an example showing the operation of folding,
we consider the partial solutions W(pc, t1)(v1)(pr1) and W(pc, t1)(v1)(pr1). Indeed, we have
W(pc, t1)(v1)(pr1) = W(pc, t1)(v1)(pr2) = 1. Consequently, the folding of these two partial
solutions according to (7) gives W(pc, t1)(v1) = 1[X = pr1 ∨ X = pr2].

��

��

�

��

�

�

�

�
�

��

��

��

��

�
�

�

�

��

�

�

{ }

{ }

{ }

{ }�

��

�

�
�

�� =

=

=

=

�

���

��

���
��� �
��
�� =∨=

�
��� �
��
�� =∨=

��� ��� =

Fig. 5. Controlled model

www.intechopen.com

�������	
���
���
��������������������������	 �/�

5. Optimised controller synthesis for symmetric systems

In practice, reachability graphs obtained from CP-nets are often huge, thereby it becomes
sometimes impossible to perform the synthesis process. As an attractive solution to allevi-
ate this issue is the use of Symbolic reachability graphs (SRGs) instead of ordinary reachabil-
ity graphs. Indeed, an SRG allows the construction of a reduced representation of the ordi-
nary state space without unfolding of colour sets. Experiments (Daws & Tripakis, 1998) have
proven that the size of the symbolic reachability graph is quite small in practice. In addi-
tion, the building of an SRG is performed automatically from the structure of a WF-net by
exploiting its behaviour symmetries.
Following the same steps of the approach described in the previous section, we propose to
optimise the controller synthesis for symmetric DES. The optimisation is achieved mainly by
applying the theory of regions on the basis of symbolic reachability graphs instead of ordinary
reachability graphs. Given a CP-net as a plant model, we build its SRG. Then, a treatment
is required in order to produce a unique representation for the arcs of the SRG. From the
obtained SRG, we determine the graph modelling the desired behaviours according to the
control specifications. Finally, the theory of regions is applied on the basis of the latter graph
in order to derive the controller, which is represented by a single place expressed in terms of
CP-nets.

5.1 Symbolic reachability graphs

The symbolic reachability graph of WF-net is based on the idea of symmetry of objects of the
basic colour classes. Intuitively, a behaviour symmetry is the fact to do not distinguish the
identities of colours that potentially have the same evolving.
For instance, if we consider the CP-net modelling the dining philosophers problem (Chiola
et al., 1997), it is not necessary to distinguish the identities of philosophers. Indeed, for any
philosopher, the associated structural behaviour may be expressed in terms of synchronisation
with its right and left neighbours. In this case, philosophers have symmetrical behaviours. In
many other classical problems, behaviour symmetries may be obtained from colours repre-
senting processes (clients, servers,...) or resources.
A symbolic marking (SM), a node of a SRG, is a marking, the colours of which are gathered
into equivalence classes, forgetting the identity of colours but keeping the cardinality of each
represented equivalence class. The SMs are constructed using symmetries that are computed
without building the ordinary reachability graph.
In well-formed nets, due the restricted operators defined on object classes, it has been proved
that symmetrical colours in a given marking cause the same behaviour. The colours which
have structurally similar behaviour, i.e. that can be exchanged at any point in the evolution
of the system with no impact on the sequences of firable transitions, are grouped into static
subclasses, which are not modified during the construction.
Let us consider that any Ci class of objects is partitioned into ni static subclasses:

∀i ∈ {1, ..., n}, Ci =
ni⋃

q=1

Di,q

For instance, in our considered problem of producer-consumer, all producers behave symmet-
rically, thus C1 corresponds to one static subclass denoted by D1,1. Similarly, C2 corresponds
to one static class denoted by D2,1, and C3 corresponds to a static subclass denoted by D3,1.

www.intechopen.com

������'��	(������)���
�	�/�

In contrast, a dynamic subclass is a subset of a static subclass. It groups colours having the same
distribution throughout the places of the WF-net. A dynamic subclass is characterised by its
cardinality and by the static subclass to which it belongs. Although the number and cardi-
nality of these dynamic subclasses evolve during the SRG construction, dynamic subclasses
always constitute a partition of static subclasses (the producers that are working and those
that are waiting for instance). Thus dynamic subclasses concisely represent the permutations
that are permitted on an SM without modifying future sequences of firable transitions.
Now, we give the formal definition of an SM. Intuitively, an SM is expressed by a product of
dynamic subclasses.

Definition 2. Let I = {1, .., n} be the set of class indexes. A symbolic marking M is a 4-tuple
R =< m, card, d, marq > satisfying:

• m : I −→ N, such that m(i) (denoted also mi) is the number of dynamic subclasses of Ci in M.

The set of dynamic subclasses of Ci in M is Ĉi = {Z
j
i |0 < j ≤ mi},

• card : (
⋃

i∈I Ĉi) −→ N,

• d : (
⋃

i∈I Ĉi) −→ N such that:

1. d(Z
j
i) is the index q of a static subclass Di,q,

2. ∀i ∈ I, ∀j, k s.t. 0 < i ≤ n ∧ 0 < j < k ≤ mi, d(Z
j
i) ≤ d(Zk

i)

• ∀p ∈ P, marq(p) : ⊗i∈I(Ĉi)
ei −→ N where ei represents the number of occurrences of Ci in

C(p), and ⊗ denotes the Cartesian product.

Moreover, R must satisfy: ∀M ∈ M, ∀i ∈ I, ∃ψi : Ci −→ Ĉi such that:

1. |ψ−1
i (Z

j
i)| = card(Z

j
i)

2. ∀i ∈ I, ∃Di,q such that ψ−1
i (Z

j
i) ⊆ Di,q and q = d(Z

j
i)

3. ∀p ∈ P, ∀c ∈ C(p), M(p,⊗i∈I ⊗
ei

j=1 c
j
i) = M(p)(⊗i∈I ⊗

ei

j=1 ψi(c
j
i))

In order to illustrate an example of an SM, we consider the SRG of the producer-consumer
given in Fig. 6. Let us consider the initial SM M0 = (Z1

1 , 0, Z1
2 , 0, Z1

3) of this SRG. This SM is

expressed by the dynamic subclass Z1
1 in place p1, the dynamic subclass Z1

2 in place p3 and Z1
3

in place p5. Since the cardinality of Z1
1 is |Z1

1 | = 2, and d(Z1
1) = 1 (Z1

1 is a subset of D1,1), then

Z1
1 represents all the elements of D1,1, namely the two tokens pr1 and pr2. Following the same

reasoning for Z1
2 , we conclude that it represents all the elements of the second static subclass

D2,1. Also, Z1
3 represents the elements of D3,1.

In order to build directly a new SM from a current one, the classical notion of a transition
instance is replaced by the notion of symbolic instance. It corresponds to a splitting of the
dynamic subclasses of the current SM in order to isolate quantities of colours that can be used
for the symbolic firing. Indeed, in a symbolic firing, instance dynamic subclasses are assigned
to the transition parameters instead of objects. When an instance dynamic subclass is assigned
to a parameter, it means that any object in the subclass can be assigned to the parameter.
Let I = {1, ..., n} be the set of class indexes. Let t be a transition, the colour domain of which
is C(t) =

⊗n
i=1

⊗ei

j=1 Ci. Let M be a symbolic marking and R a symbolic representation of

M.
We say that (

⊗n
i=1

⊗ei

j=1 Z
λi(j),µi(j)
i) is a symbolic instance for t wrt. R, if and only if:

λ = {λi : {1, ..., ei} → N
∗} and µ = {µi : {1, ..., ei} → N

∗} such that ∀i ∈ I, ∀x ∈ {1, ..., ei},

www.intechopen.com

�������	
���
���
��������������������������	 �/*

���

��� ��

><
���

� ��
 ���

><
�

� ��
 ���

�

��� ��

><
���

���

� ��
 ���

><
�

�

���

 ��� ���

�
�

�� �	��	
�

� �	��	
�

�� �	

�
�

�� ���
�

� ��
	�	�
�

�� ���	

0
M �

�

�� �

�� �	
�

� �	��
�

�� �	

�
�

�� ���

�� ���
�

�� ���	�	�
�

� ��
		

1
M

���	
�

�� �
�

� ���
�

�� �	

�
�

�� ���
�

� ��
	�	�
�

�� ���	
�

�

�� ���	
�

� �

� �
�

�� �	

�
�

�� ��
	��	
�

� ���	

� ��	�
�

�� ���	

3
M

�
�

�� �

�� �
�

� �

� �
�

�� �	

�
�

�� ���

�� ���
�

� ���

� ���
�

�� �

4
M

�
�

�� �	��	��
�

� �
�

�� �	

�
�

�� ���
�

� ��
	�	�
�

�� ���	

5
M

�
�

�� �

�� �	��	
�

� �
�

�� �	

�
�

�� ���

�� ���
�

�� ���	�	�
�

� ��
	

6
M

���

��� ��

���	
�

�� �	��	
�

� �
�

�� �	

�
�

�� ���
�

� ��
	�	�
�

�� ���	

7
M

�

��� ��

���	
�

�� �
�

� �

� �
�

�� �	

�
�

�� ��
	�	�
�

� ���

� ��	�
�

�� ���

8
M

><
�

�

���

 ��� ���

><
�

���

� ��
 ���

2
M

><
�

�

���

 ��� ���

><
�

�

 ��� ���

�

��� ��

���

��� ��

><
�

�

 ��� ���

><
�

�

 ��� ���

Fig. 6. Symbolic reachability graph of the producer-consumer problem

• λi(x) ≤ R.m(i) ,

• µ(i) ≤ R.card(Z
λi(x)
i)

• ∀k ∈ N
∗ s.t. k < µi(x), ∃x′ < x s.t. λi(x′) = λi(x) ∧ µi(x′) = k

If ei = 0, we do not define λi and µi.

A symbolic instance for a transition is a product of dynamic subclasses. A dynamic subclass
may occur several times: if some µi values are equal, with respect to the same dynamic sub-
classes, then the same object is referred. In practice, one can note that λi and µi are specified
only if necessary.
As an example for a symbolic firing, we consider the SRG of fig 6. In SM M0, two producers
are in place p1, namely pr1 and pr2. Since X may be bound to any producer, then two coloured
firings are possibles: the firing of transition t1 with colour pr1 or with colour pr2. All elements

within a dynamic subclass Z
j
i are fully equivalent, then there is only one way to bind a variable

to any Z
j
i , whatever its cardinality. Hence, a single symbolic binding is possible from the SM

M0, X is bound to (a value in) Z1
1 . These possible firings are represented by one symbolic

firing inducing an arc labelled with (t1, Z1,1
1) such that Z1,1

1 represents any object of Z1
1 . The

new induced SM by the firing of t1 in M0 is M1 = p1(Z1
1) + p2(Z2

1) + p3(Z1
2) + p5(Z1

3) such

that |Z1
1 | = |Z2

1 | = |Z1
3 | = 1 and |Z1

2 | = 2. Z1
1 represents an object of D1,1, while Z2

1 represents

another object of the same static subclass. Z1
2 represents the two objects of D2,1.

www.intechopen.com

������'��	(������)���
�	�/+

	�

�

�

� �� + �
�

�� ���

� �

�� ���
�

� ���

1
M

���
�

�� �

�

�

� �� + �	

� �

�� ���
�

� ���

2
M

�

�

�� ��� +

� �

�� ���

�

�� ���

� �

�� �����

� �

�� ��

3
M

����� �

�� �

� �

�� ��

4
M

�

����

	�

�

�

� �� + �
�

�� ���

� �

�� ���
�

� ���

1
M

���
�

�� �

�

�

� �� + �	

� �

�� ���
�

� ���

2
M

�

����

� �

�� ��

� �

�� �����

� �

�� ��

3
M

����� �

�� �

� �

�� ��

4
M

�

����

� �

�� ��

��� ���

Fig. 7. Canonisation of SRG arcs

5.2 Canonisation of arcs

The parameters of the controller are determined by resolving linear system equations formu-
lated from the admissibility graph. Most terms of the formulated equations are determined
from the arcs of the admissibility graph. When dealing with SRGs, the main issue is that the
same symbolic firing instances can be encoded differently in the graph.
A symbolic firing of a transition t in an SM M indicates the removed objects from the input
places of t in the corresponding arc of the SRG. The removed objects are represented by a
product of dynamic subclasses. These dynamic subclasses correspond to partial instances of
dynamic subclasses of M. Therefore, the same objects may not have the same representation
in arcs. As a consequence, the comparison of two symbolic firings related to the same tran-
sition becomes more complex, since it requires the computation of represented objects by the
dynamic subclasses labelling the arcs, and then one has to check whether the sets of objects
are the same, or not. In order to simplify this operation of comparison, we propose to define
a canonical representation of dynamic subclasses labelling arcs induced by symbolic firings.
By this way, we guarantee an unique representation for the labels of arcs. This unique repre-
sentation allows to compare two arcs, induced by the symbolic firing of the same transition,
by an equality test between the dynamic subclasses labelling the arcs. Such comparison is
performed according to the following three criterions:

• they have the same labels,

• they belong to the same static subclass,

• they have the same cardinalities.

Similarly to the canonisation of SMs, we exploit two properties on dynamic subclasses, called
minimality and ordering in order to canonise the representations of arcs.
Given an arc labelled with (t, ĉ). ĉ is a tuple indexed by the input places of t, where each
component is a product of dynamic subclasses specifying the objects moved from the input
places of t. The same algorithms used for the canonisation of SMs can be applied for arcs.
Here, we will not present in detail these algorithms, since they can be found in (Chiola et al.,
1991). We just note that this computation is organized in two steps:

www.intechopen.com

�������	
���
���
��������������������������	 �/,

1ct1, �

2
M

1
M

0
M

3
M

M

8
M

5
M

6
M

7
M

1ct1, �

3ct3, �

1ct1, �1ct1, �

1ct1, �

1ct1, �

2ct2, �

2ct2, �

2ct2, �

2ct2, �

3ct3, �

3ct3, �

3ct3, �

3ct3, �

3ct3, �

������� �

�

�

�

�

� === ����1c

==

==

>=<

�����

��

���

�

�

�

�

�

�

�

�

�

����

��

��2c

==

==

>=<

�����

��

���

�

�

�

�

�

�

�

�

�

����

��

��3c

Fig. 8. SRG of consumer-producer problem with canonised arcs

• the computation of a minimal representation. In this step, we compute the smallest
number of the dynamic subclasses. Thus, two dynamic subclasses having the same
distribution in ĉ are grouped into one dynamic subclass.

• the search of an ordered representation. It consists of readjusting the dynamic sub-
classes indexes according to an ordering criterion. The ordering criterion has to be
defined in a such way that it will set a unique indexing scheme for dynamic subclasses,
i.e. it has to be a total order. Here, we choose the lexicographic order on the input places
associated with the considered transition.

Figure 7(a) gives a subgraph of an SRG illustrating the issue related to representation of arcs.
Here, the WF-net of the SRG consists of three places p1, p2 and p3. Its object class contains
two objects. Although the two symbolic firings of t in SMs M1 and M3 are identical, they
are represented differently. Indeed, a symbolic firing of transition t is performed by removing
two objects from its input place p1 and transferring them into place p3. In marking M1 the
two objects in place p1 are represented by the sum Z1

1 + Z2
1 . Consequently, the firing of t in

M1 induces an arc labelled with (t, Z1
1 + Z2

1). In marking M3 the two objects in place p1 are

represented by one dynamic subclass Z1
1 such that |Z1

1 | = 2. Firing of t in M3 induces an arc

labelled with (t, Z1
1). Performing the canonisation of arcs, we obtain the same label for the

two arcs as it is illustrated by Fig. 7(b). Now let us consider the SRG of Fig. 6. Canonising the
arcs of this graph gives the graph shown in Fig. 8. The latter graph will be used in order to
determine the controlled behaviour respecting the control specification.

5.3 Synthesis of controller based on SRGs

Given an SRG with canonised arcs of a plant model, the determination of a controller is
ensured through three steps. First, one has to provide the control specifications. According to
these specifications, we build, in a second step, a symbolic graph implementing the desired
behaviour from the SRG. Finally, in third step, we apply the theory of regions on the basis of
the latter graph in order to determine the controller which is represented by one CP-net place.

www.intechopen.com

������'��	(������)���
�	�/-

1ct1, �

2
M

1
M

0
M

3
M

M

1ct1, �

1ct1, � 2ct2, �

2ct2, �

3ct3, �

3ct3, �

������� �

�

�

�

�

� === ����1c

==

==

>=<

�����

��

���

�

�

�

�

�

�

�

�

�

����

��

��2c

==

==

>=<

�����

��

���

�

�

�

�

�

�

�

�

�

����

��

��3c

Fig. 9. Admissibility symbolic graph

Step 1 - Control specifications
In a forbidden state problem, the control specifications are defined by providing a set of unde-
sirable (forbidden) states. The provided states will be used to extract the desired behaviours
from the SRG of the plant model. Therefore, the undesired states have to be expressed in
terms of SMs corresponding to nodes of the considered SRG. Such specifications fit well with
the nature of symmetric systems made up of several components behaving similarly.
We consider the SRG of Fig. 6. As control specifications, we assume that one aims to restrict
the stock capacity to one object. Such specifications can be symbolically expressed by
providing the undesirable SMs M5, M6 and M7.

Step 2 - Computing the desired behaviours
Here, the desired behaviours are implemented by a subgraph of the SRG, called the admis-
sibility symbolic graph. Algorithm 1 can be easily adapted to SRGs in order to compute the
admissibility symbolic graph from an SRG and the set ΩSM of SM-transitions. In a SRG,
the set ΩSM is used instead of the set Ω of state-transitions. Each element of ΩSM is couple
(M, (t, ĉ)) where M is a dangereous SM in which the symbolic firing of transition (t, ĉ) must
be forbidden, i.e. t must be prevented from firing in M with every colour c ∈ ĉ. The main
change to be made for Algorithm 1 is to deal with SMs (resp. symbolic instances) instead of
ordinary markings (resp. coloured firings).
For example, let us consider the SRG of Fig. 6 and the control specifications correspond-
ing to the restriction of the stock capacity to one object. Computing the admissibility
symbolic graph, we obtain the graph illustrated by Fig. 9 and the set of SM-transitions
ΩSM = {(M4, (t1, ĉ1)), (M8, (t2, ĉ2))}.

Step 3 - Construction of the controller
In this final step, we construct the controller by applying the theory of regions on the basis of
the admissibility symbolic graph. Using CP-nets allows to represent the obtained controller
by one CP-net place pc which will be connected to the plant model. For this, we have to deter-
mined its colour domain Cpc, its initial marking M0(pc) and its incidence vector Wc(pc, .). Us-
ing a symbolic graph requires the reformulation of the three classes of equations/inequations
(4), (5) and (6) according to the structure of the symbolic graphs. Indeed, in an ordinary
reachability graph, these equations are deduced from the basic relation between two reach-
able markings.

www.intechopen.com

�������	
���
���
��������������������������	 �/.

Let v ∈ Cpc. Let M,M′ be two reachable markings. Let t be a transition enabled in M for
c ∈ C(t), such that M[t, c〉M′, then:
∀v ∈ C(pc),

M′
c(pc)(v) = Mc(pc)(v) + Wc(pc, t)(c)(v) (8)

where M′
c(pc)(v) is the number of v in place pc at the marking M′, Mc(pc)(v) is the number

of v in place pc in M and Wc(pc, t)(c)(v) is the incidence value associated with place pc and
transition t for the colour (c)(v).
Further, we have Wc(pc, t)(c)(v)=Wc(pc, t)(c′)(v), ∀c′ ∈ C(t); ĉ′ = ĉ.
Thus, there exists two symbolic markings M and M′ such that M ∈ M, M′ ∈ M′ and
M[[t, ĉ〉〉M′. Thus, the equation (8) can be written as follows:

M′
c(pc)(v) = Mc(pc)(v) + Wc(pc, t)(ĉ)(v) (9)

Therefore, the three classes of equations depicted by the theory of regions can be reformulated
for an SRG as follows:

• The reachability conditions (4) indicate that every reachable SM must remain reachable
under control. ∀M ∈ Rc,

M(pc)(v) = M0(pc)(v) + W(pc, .)(v)
−→
Γ M ≥ 0 (10)

where M is an ordinary marking represented by M, M(pc)(v) is the occurrence of a
given object v in the marking of pc, W(pc, .)(v) is the incidence vector relatively to the

object v, ΓM is any non oriented path in Rc from M0 to M, and
−→
Γ M is its associated

vector.
−→
Γ M is indexed by transitions of T and is called the vector counting of ΓM. Each

line of
−→
Γ M represents the sum of occurrence number of (ti, ĉ) such that c ∈ C(ti) and

(ti, ĉ) labels an arc in the considered path. Formally:

−→
Γ M =

⎛
⎝

Γ1
M

:
Γm
M

⎞
⎠

where Γi
M = ∑(ti ,ĉ)∈Γ αi(ĉ).ĉ ∀i ∈ {1, ..., m} where αi(ĉ) is the occurrence number of

(ti, ĉ) in the path ΓM and which is determined from Rc.

• the cycle equations (5) indicate that the cycles of the admissibility graph Rc must remain
reachable under control. In other words, the place pc should satisfy (for every object v
of Cpc):

W(pc, .)−→γ = 0, ∀γ ∈ Sc (11)

where Sc is the set of cycles of the admissibility graph Rc. −→γ is a vector counting of a
cycle γ defined similarly as ΓM. It is worth to note that according to well known results
of graph theory, the cycle equations can be reduced to independent cycle equations of
basis cycles (Schrijver, 1986).

• an event separation condition (6) indicates that the control must prevent from firing a
state transition of Ω. In other words, the place pc and an occurrence object v of Cpc,
must solve at least one event separation instance (M, (t, ĉ)) from Ω:

M0(pc)(v) + W(pc, .)(v)
−→
Γ M + W(pc, t)(v)(ĉ) < 0 (12)

www.intechopen.com

������'��	(������)���
�	�/�

In order to derive a controller, Algorithm 2 can be applied such that we replace respectively
the admissibility graph and set of state-transitions by the admissibility symbolic grah and
the SM-transitions. In addition, here the folding is performed differently, since each partial
solution, obtained for a new object vj in an iteration, consists of Mpc(vj) and ∀ti ∈ T, ∀ĉ ∈

Ĉ(ti); W(pc, ti)(ĉ)(vj) . The aim is to determine for every transition ti the incidence vector
W(pc, ti)(vj). Hence, we propose to achieve the folding of a partial solution through the fol-
lowing two steps for every transition ti:

• We determine for every colour c represented by ĉ ∈ Ĉ(ti) the colour function
W(pc, ti)(c)(vj) which is equal to W(pc, ti)(ĉ)(vj),

• We partition the colour domain C(ti), of a transition ti, into ki sets Es
i , (s = 1..ki) such

that c, c′ ∈ Es
i , iff W(pc, ti)(c)(vj) = W(pc, ti)(c

′)(vj) = αs
i . Then, the incidence function

for the transition ti is

W(pc, ti)(vj) ←
ki

∑
s=1

⎡
⎣ ∨

c′∈Es
i

⎡
⎣ ∧

X∈var(ti)

(X = X(c′))

⎤

⎤
 αs

i

where var(ti) is the set of variables appearing on arcs that have ti as source or destina-
tion.

Let us consider the admissibility graph shown in Fig. 9 and the set ΩSM =
{(M4, (t1, ĉ1)), (M8, (t2, ĉ2))}. The obtained controller consists of one place pc as it is shown
in Fig. 10. One can easily check that the symbolic graph of the controlled model is exactly the
admissibility symbolic graph of the plant model.

��

��

�

��

�

�

�

�
�

��

��

��

��

� �

� �

��

� �

{ }

{ }

{ }

{ }�

��

��

���

�

��

�
�

�� =

=

=

=

��

��
��

���

Fig. 10. Controlled model

6. Active controller

Considering as a plant model a CP-net that is assumed to be structured on a set of generic
processes sharing a set of resources, i.e. a resource allocation system, we present the “Active
Controller” approach allowing to simplify the design of a generic CP-net controller for a such

www.intechopen.com

�������	
���
���
��������������������������	 �//

system. In previous sections, we have used the theory of regions in order to derive a controller
for a DES modelled by a CP-net. The use of the theory of regions requires the resolution of
numerous systems allowing the determination of the necessary parameters of the controller.
The `̀ Active Controller´́ approach was introduced to avoid solving such systems. The key
idea of this approach is that the controller must be able to handle enough information to
detect reaching a dangerous state, and from which, it removes appropriate authorisations in
order to disable the firing of some transitions.
The major difference, from previous approaches, lies in the synthesis of the controller. In the
`̀ Active Controller´́ approach, the controller is characterised by a CP-net subnet (with a fixed
structure (4 places, 2 transitions)) representing its behaviour. The variable part (basic colour
sets, initial marking and some arc expressions connecting the controller CP-net to the original
CP-net) of this controller CP-net depends on the specificity of the studied system and it is
generated from the control specification. More precisely, it is defined based on the set Ω of
state-transitions. So, the same model can be used in several applications. Thus, the controller
synthesis may be considered as parametrable.
The active controller acts as priority process having two states. It is either in a `̀ Monitor´́ state
in which it observes the evolution of the original network, or in an `̀ Alert´́ state from which
it inhibits the firing of some transitions. The controller permanently maintain, in a dedicated
place, the current marking of the original system. The controller enters the `̀ Alarm´́ state, if it
detects, based on an appropriate marking of an additional place, that the original system has
reached a dangerous state. When entering the `̀ Alarm´́ state, the controller removes specific
marking from an appropriate additional place to disable the firing of the forbidden transitions
associated with this global state. The controller lets the original system to evolve towards an
admissible state. Once the overall current state is changed, the controller leaves the `̀ Alarm´́
state.
The functioning of the controller is based on the higher priority associated with its transitions.
Such a priority enables it to preempt the transitions of the original system.
The `̀ Active Controller´́ approach is based on two steps:

• the admissibility computation: This computation is done as explained in section 4.1.

• the construction of the controller: this step allows the generation of the controller CP-
net and its connection to the plant CP-net model.

Fig. 11 describes the inputs and the outputs of each step. The following section introduces the
controller construction method. The determination of the admissible behaviour has already
been presented in section 4.1.

6.1 Controller construction method

At the beginning of this step, we assume that we have already generated the set Ω of state-
transitions by Algorithm 1. Based on this information, we generate the controller, modelled
by a CP-net, and we define its connection to the plant CP-net model. The synthesis of a such
controller may be automatised. It is worth noting that the generated CP-net is autonomous
and does not require external devices to ensure the control.
At this level, we handle two kinds of specifications:

• the control specification. More precisely:

– the set of dangerous markings (denoted DM),

www.intechopen.com

������'��	(������)���
�	*00

Fig. 11. `̀ Active Controller´́ steps

– the set of forbidden state-transitions associated with each dangerous marking d ∈
DM (denoted FT(d)). FT(d) may be viewed as an application from DM to the set
of subsets of T.

• the uncontrolled system specification represented by a CP-net N such that: N =<

P, T, Cl , C, W−, W+, Φ, M0 >.

The output of this step is a new CP-net such that its functioning automatically satisfies the
control specifications. As previously explained, the key idea of the `̀ Active Controller´́ is
that the controller must handle enough information to detect the reaching of a dangerous
state. Further, in a dangerous marking, we remove appropriate authorisations by disabling
the firing of some coloured transitions, called forbidden coloured transitions. This method relies
on the following points:

• The information related to dangerous states and their associated forbidden transitions
are defined by the initial marking of a specific place. This marking is computed on the
basis of the set Ω.

• The current state (marking) of the plant model is handled in a special added place. This
information is modelled by a composed token (tuple of colours) in accordance with the
CP-nets semantics.

• An authorisation is associated with each coloured forbidden transition to enable its
firing. All authorisations are managed in a third added place.

• The generated controller CP-net has two supplementary transitions. The first one is
fired when a dangerous state is detected, while the second is fired when the dangerous
state is quitted. These two controller transitions must be immediately fired when en-
abled to remove or replace the appropriate authorisations. Thus, they must have the
highest priority over all the other transitions.

• The necessary additional CP-net components (colour functions, synchronisation arcs,
markings, etc.) must be also defined to ensure the desired management of the controller.

In the following, we formally detail the generation of the controlled CP-net model.
The model representing the system under control is a CP-net N∗ obtained from N so that
N∗ =< P∗, T∗, Cl

∗, C∗, W∗−, W∗+, Φ∗, M∗
0 > where:

P∗ = P ∪ {CM, DaM, AT, AS}, with:

www.intechopen.com

�������	
���
���
��������������������������	 *0�

CM representing the Current Marking,
DaM representing the Dangerous Markings,
AT representing the Authorisations for forbidden Transitions, and
AS representing the Alert State of the controller.

T∗ = T ∪ {A-In, A-Out}, with:

A-In representing entering the alert state,
A-Out representing quitting the alert state,
A-In and A-Out have the highest priority.

Cl
∗ = Cl ∪ {Cnum, CFT}, with:

Cnum = {0, 1, 2, , MaxInt} is a class representing a set of finite positive
integers. Its elements will model the occurrence of some given tokens.
We assume MaxInt large enough to be greater than the bound of the
maximum occurrences of any token in a reachable marking. As, we deal
with bounded CP-nets, this property holds,

CFT is a class representing all coloured forbidden transitions. The differ-
ent element of this class will be defined based on the application FT.

Each of the added controller place is characterised by a specific colour and by an initial mark-
ing. Those parameters are generated as follows:

Place CM has a complex colour domain that is a Cartesian product of
Cnum performed on the basis of the number of process classes, the num-
ber of places per process and the resource class. The role of CM is to
handle information about the current state of the controlled system.
The token marking of CM is a long tuple made up of counters where
each one holds the information about the occurrence of tokens in a given
place (according to the lexical order) among process places and the oc-
currence of tokens in the resource place. The colour domain of CM will
be defined as follows:

www.intechopen.com

������'��	(������)���
�	*0�

C∗(CM)=
|CR |⊗
i=1

Cnum

|CP |⊗
j=1

|NbP(Pj)|⊗
k=1

Cnum

Where:
* CR represents the resource class,
* CP represents the different types of processes,
* NbP(Pj) defines the number of places associated with the process type
Pj. CM is always mono-marked and its initial marking M∗

0 (CM) is per-

formed on the basis of the initial marking of the CP-net associated with
the studied plant. M∗

0 (CM) may be algorithmically determined.

The colour domain of the place DaM is:
C∗(DaM) = C∗(CM) × CFT

The initial marking of DaM is not updated, since this place is only read
accessed. The number of tokens in DaM is equal to ∑

d∈DM
|FT(d)|

The colour domain and the initial marking of the place AT are: C∗(AT)=
CFT , and M∗

0 (AT) = CFT . Indeed, initially, all forbidden transitions are
authorised.

The colour domain of the place AS is: C∗(AS)= C∗(CM). Initially this
place is empty M∗

0 (AS) = ∅.

Finally, the colour functions of the arcs connecting the controller places to a subset of T and to
the transitions A-In and A-Out must be defined.

As the role of CM is to hold the current marking of N, it is connected to
every transition of T using an input arc (reading marking) and an output
arc (updating marking).
∀t ∈ T, W∗−(CM,t)=< X1,1, ..., Xk,xk, Y1, ..., Yu >=< X >

where Xi,j is a variable defined on Cnum computing the number of tokens
in the place i of the process type j and Yu is a variable defined on Cnum

reading the occurrence of colour u in the resource places;
∀t ∈ T, W∗+(CM,t)= < X′

1,1, ..., X′
k,xk, Y′

1, ..., Y′
u >=< X′

>

where X′
i,j and Y′

u are variables defined on Cnum and determined as
follows :

X′
i,j=Xi,j − χ, with χ= W+(pij, t)− W−(pij, t),

and
Y′

u= Y′
u − ξ, where ξ is computed as follows:

W−(r, t)= ∑
i

αi.ri

⇒ ξ= α′u − αu

W+(r, t)= ∑
i

α′ i.ri

www.intechopen.com

�������	
���
���
��������������������������	 *0*

���� �

�������	

���� �

�������	

�������	

���

������

��� ��

���

���

�

���

���

���
�

Fig. 12. The `̀ Active Controller´́ subnet

The place AT is connected to every forbidden transition by one in-
put/output arc in order to check the presence of the associated firing
authorisation:

∀t ∈ CFT , W∗+(AT, t)= W∗−(AT, t)= < Xt > ,
where Xt is defined on CFT and represent the identity of the coloured
forbidden transition.

The colour functions of the arcs connecting the controller places to the
transition A-In and A-Out are defined as follows:

W∗−(DaM, A-In)=W∗+(DaM, A-In)=< D, FT-D >;
W∗−(CM, A-In)=W∗+(CM, A-In)=< D >;
W∗−(AT, A-In)=< FT-D >; W∗+(AS, A-In)=< D, FT-D >;
W∗+(AS, A-Out)=< D, FT-D >; W∗−(CM, A-Out) =< C >;

W∗+(AT, A-Out)=< FT-D >;

D and C ∈ C(CM) (i.e. they are a tuple of variables) , FT-D ∈ CFT

Transition A-Out is associated with the predicate: [C �= D]

Fig. 12 represents the CP-net modelling the controller behaviour. It is worth to note that the
controller CP-net is connected to the plant CP-net model through the places AT and CM as it
was previously defined.
In the next section, we apply the generation of the controller to our problem of producer-
consumer.

6.2 Example

We consider the previously introduced producer-consumer problem modelled by the WF-net
of Fig. 2. We assume that C1 = {2pr}, C2 = {o1, o2} and C3 = {co}. The reachability graph
of this problem is given by Fig. 13.

www.intechopen.com

������'��	(������)���
�	*0+

��
���

��
���

��
���

�
���

�
���

�
���

�
���

�
���

���

!
���

�
���

�
���

���"#�$��

��"#

���$��%$�

���$��%$�

���"#�$��

��"#

���$��%$����$��%$�

���"#�$��

��"#

���"#�$��

���$��%$�

��"#

���$��%$�

���"#�$�����"#�$��

��"#

���$��%$�

���$��%$�

��"#

���$��%$�

���"#�$��

���$��%$����$��%$�

��"#

��"#

���"#�$��

���$��%$�

�� ��� ��

��

���

�! �� ��

� ��

����

Fig. 13. The reachability graph

Assuming that the stock must contain at most one object, such a specification induces that
M8, M10 and M11 are the forbidden markings. Applying Algorithm 1, we obtain the admis-
sibility graph described in Fig. 14 and the set of state-transitions Ω = {(M5, (t2,< pr, o1 >

)), (M6, (t2,< pr, o2 >)),
(M7, (t2,< pr, o1 >)), (M9, (t2,< pr, o2 >))}
Let us illustrate the different variable elements of the Active Controller associated with the
considered producer-consumer system.

C∗(CM)= Cnum × Cnum × Cnum × Cnum × Cnum

The first and the second elements respectively define the number of producers in places p1 and
p2. The third element computes the number of consumers in place p5. The fourth (respectively
the fifth element) handles the number of objects of type o1 (respectively o2) in place p4.

CFT={t2PrO1, t2PrO2}
t2PrO1 (respectively t2PrO2) represents the authorisation to fire transition t2 with colour <

pr, o1 > (respectively < pr, o2 >).

M∗
0 (CM)=<2,0,1,0,0>

M∗
0 (DaM)=<<1,1,1,0,1>,t2PrO1 > + <<1,1,1,1,0>,t2PrO2 > + <<0,2,1,0,1>,t2PrO1 >

www.intechopen.com

�������	
���
���
��������������������������	 *0,

�
���

�
���

�
���

�
���

���

!
���

�
���

�
���

���"#�$��

��"#

���$��%$�

���$��%$�

��"#

���"#�$��

��"#

��"#

���$��%$�

���"#�$��

���$��%$����$��%$�

��"#

��"#

���"#�$��

���$��%$�

��

�!

��� ��

�� ��

��
���
��

��

Fig. 14. The admissibility graph

+ <<0,2,1,1,0>,t2PrO2 >

M∗
0 (AT)= t2PrO1 + t2PrO2

∀t ∈ T, W∗−(CM,t)=< X1,1, X1,2, X2,1, Y1, Y2 >

W∗+(CM,t1{pr})=< X1,1 − 1, X1,2 + 1, X2,1, Y1, Y2 >

W∗+(CM,t2{< pr, o1 >})=< X1,1 + 1, X1,2 − 1, X2,1, Y1 + 1, Y2 >

W∗+(CM,t2{< pr, o2 >})=< X1,1 + 1, X1,2 − 1, X2,1, Y1, Y2 + 1 >

W∗+(CM,t3{< o1, co >})=< X1,1, X1,2, X2,1, Y1 − 1, Y2 >

W∗+(CM,t3{< o2, co >})=< X1,1, X1,2, X2,1, Y1, Y2 − 1 >

7. Conclusion

In this chapter, we have dealt with the control of DES, modelled by CP-nets, for the problem
of forbidden states. The use of CP-nets allows compact models even for large and complex
systems. The first approach, based on the theory of regions, can be addressed to any kind
of DES modelled by CP-nets. Considering a CP-net as plant model, in a first step of this ap-
proach, the graph implementing the desired behaviours is determined from the reachability
graph of the considered DES according to the control specifications. Then, the theory of re-
gions is applied in order to design the controller. Thanks to the expressiveness of CP-nets, the
obtained controller is represented by one single place. In a second approach, we propose to
cope with the combinatorial explosion of state space for symmetric systems. Indeed, the state
space of a symmetric system can be represented by a condensed version, the symbolic reach-
ability graph, which is quite smaller. Following similar steps as the first approach, the second
approach allows to deal efficiently with symmetric systems. Indeed, the theory of region is
applied on the basis of a symbolic reachability graph instead of the ordinary one. Finally,
third approach avoids the use of the theory of regions which requires the resolution of numer-
ous linear systems in order to determine the controller. Indeed, the generated controller is an

www.intechopen.com

������'��	(������)���
�	*0-

active process, modelled by a generic CP-net, that permanently observes the plant model to
detect the reaching of dangerous states, and then it removes appropriate authorisations.

8. References

Abid, C. & Zouari, B. (2008). Synthesis of controllers using symbolic reachability graphs, Pro-
ceedings of 9th International Workshop of Discrete Event Systems (WODES’08), Goteborg,
pp. 314–321.

Badouel, E., Bernardinello, L. & Darondeau, P. (1995). Polynomial algorithms for the synthe-
sis of bounded nets, Proceedings of the 6th International Joint Conference CAAP/FASE
on Theory and Practice of Software Development, Vol. 915, Lecture Notes In Computer
Science, Aarhus, pp. 364–378.

Chiola, G., Dutheillet, C., Franceschinis, G. & Haddad, S. (1991). On well-formed coloured
nets and their symbolic reachability graph, in K. Jensen & G. Rozenberg (eds), High-
Level Petri Nets – Theory and Application, Springer, pp. 373–396.

Chiola, G., Dutheillet, C., Franceschinis, G. & Haddad, S. (1997). A symbolic reachability
graph for coloured Petri nets, Theoretical Computer Science 176(1-2): 39–65.

Daws, C. & Tripakis, S. (1998). Model checking of real-time reachability properties using
abstractions, TACAS, pp. 313–329.

Ghaffari, A., Rezg, N. & Xie, X. (2003). Design of live and maximally permissive petri net
controller using the theory of regions, Proceedings of IEEE Transactions on Robotics and
Automation, Vol. 19, Aarhus, pp. 137–142.

Giua, A. & DiCesare, F. (1994). Petri net structural analysis for supervisory control, IEEE
Transactions on Robotics and Automation 10(2): 185–195.

Holloway, L. E., Krogh, B. H. & Giua, A. (1997). A survey of petri net methods for controlled
discrete eventsystems, Discrete Event Dynamic Systems 7(2): 151–190.

Jensen, K., Kristensen, L. M. & Wells, L. (2007). Coloured petri nets and cpn tools for modelling
and validation of concurrent systems, Int. J. Softw. Tools Technol. Transf. 9(3): 213–254.

Jensen, K. & Rozenberg, G. (1991). High-Level Petri Nets: Theory and Application, Springer
Verlag.

Makungu, M., Barbeau, M. & St-Denis, R. (1999). Synthesis of controllers of process mod-
eled as coloured petri nets, Journal Discrete Event Dynamic Systems Theory Applications
Kluwer Academic Publishers Vol. 9(No. 2): 147–169.

Ramadge, P. & Wonham, W. (1989). The control of discrete event systems, Proceedings of IEEE,
Special Issue on Discrete Event Dynamic Systems, pp. 81–98.

Schrijver, A. (1986). Theory of Linear and Integer Programming, John Wiley and Sons, NY.
Sreenivas, S. & Sreenivas, R. S. (1997). On the existence of supervisory policies that enforce

liveness in discrete event dynamic systems modeled by controlled petri nets, IEEE
Transactions on Automatic Control 42: 94–5.

Su, H. Y., Wu, W. M. & Chu, J. (2005). Liveness problem of petri nets. supervisory control
theory for discrete event systems, ACTA AUTOMATICA SINICA 31(1): 143–150.

Zouari, B. & Ghedira, K. (2004). Synthesis of controllers using coloured petri nets and theory of
regions, Proceedings of IFAC Workshop on Discrete Event Systems (WODES’04), Reims,
pp. 231–236.

Zouari, B. & Zairi, S. (2005). Synthesis of active controller for resources allocation systems,
Proceedings of Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools (CPN’05), pp. 79–98.

www.intechopen.com

Petri Nets Applications

Edited by Pawel Pawlewski

ISBN 978-953-307-047-6

Hard cover, 752 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Petri Nets are graphical and mathematical tool used in many different science domains. Their characteristic

features are the intuitive graphical modeling language and advanced formal analysis method. The

concurrence of performed actions is the natural phenomenon due to which Petri Nets are perceived as

mathematical tool for modeling concurrent systems. The nets whose model was extended with the time model

can be applied in modeling real-time systems. Petri Nets were introduced in the doctoral dissertation by K.A.

Petri, titled “„Kommunikation mit Automaten” and published in 1962 by University of Bonn. During more than

40 years of development of this theory, many different classes were formed and the scope of applications was

extended. Depending on particular needs, the net definition was changed and adjusted to the considered

problem. The unusual “flexibility” of this theory makes it possible to introduce all these modifications. Owing to

varied currently known net classes, it is relatively easy to find a proper class for the specific application. The

present monograph shows the whole spectrum of Petri Nets applications, from classic applications (to which

the theory is specially dedicated) like computer science and control systems, through fault diagnosis,

manufacturing, power systems, traffic systems, transport and down to Web applications. At the same time, the

publication describes the diversity of investigations performed with use of Petri Nets in science centers all over

the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Chiheb Ameur Abid, Sajeh Zairi and Belhassen Zouari (2010). Supervisory Control and High-level Petri nets,

Petri Nets Applications, Pawel Pawlewski (Ed.), ISBN: 978-953-307-047-6, InTech, Available from:

http://www.intechopen.com/books/petri-nets-applications/supervisory-control-and-high-level-petri-nets

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed under

the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0

License, which permits use, distribution and reproduction for non-commercial

purposes, provided the original is properly cited and derivative works building

on this content are distributed under the same license.

