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1. Introduction

During the past decade, architectural design has emerged as an important subfield of
software engineering. This is because a good architecture can help ensure that a system will
satisfy user requirements. Consequently, a new discipline emerged, which concerns formal
notations for representing and analyzing architectural designs using Architecture
Description Language (ADL) [25]. These notations provide both a conceptual framework
and a concrete syntax for characterizing software architectures [25]. Combine with software
architecture models that are not considered as ADLs, we call them software architecture
specifications.

Software architecture specifications (i.e. software architecture model, software architecture
description languages (ADLs) (such as Rapide [24], Wright [1] and XM-ADL [23]), etc.)
allow software designers to focus on high level aspects of an application by abstraction of
the details of the subsystems and components. It is precise and accurate to use formal
methods to describe the abstraction that makes software architecture specifications are
suitable for verification using model checking techniques. Software specifications are, in a
way, domain-specific languages for aspects such as coordination and distribution. Software
Architecture Model (SAM) is a formal approach based on two formal languages - Petri nets
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96 Petri Nets: Applications

and temporal logic for distributed concurrent software systems. Further, SAM has been
used to interpret semantics of Unified Modeling Language (UML) diagrams [9, 10].

The theory of rewriting logic (RWL) has proved to be a unifying formal framework to
describe concurrency formalisms [26, 27]. It is useful to specify concurrent behavior of
various types of systems. In the verification aspect, the issue of using rewriting logic in the
model checking group is how to convert a logic notations based on Boolean results to a state
based labeled transition system. As a high performance and reflective language, the Maude
specification [6] was developed to support rewriting logic based model checking on
concurrent systems. Maude is a high performance declarative programming language that is
based on rewriting and equational theory. Equational theory is used to describe the
properties and rewriting logic is used to describe the state transition of systems.

Major concurrency formalisms have been successfully translated in rewrite theories [27]. In
addition, rewriting logic has been used by several authors in the verification of architectural
notations such as architectural description languages and object-oriented design formalisms.
However, there are few works in the formal description of software architecture
specifications using rewriting logic.

Current research on software architectures has a focus on how to express and verify
functional and nonfunctional aspects statically and dynamically. It is highly desirable to
precisely describe the semantics of software architecture specification. Some ADLs do not
provide formal semantics [28] while many do [1, 24]. One category provides benefits for
easy to understand and use, but hardly to be reasoned and analyzed in the architecture level.
The other category, in contrast, has benefits of precise reasoning and verification. Analysis
software architecture specification using rewriting logic aims at formally reasoning
distributed concurrent systems at the architecture level.

This helps to reduce errors that are introduced to implementation during development
process [17, 18].

Recent work has been done [13, 9, 12, 8] to verify the system model in both the design and
implementation level with an integrated framework, which combines the formal verification
(model checking) with implementation verification technique (runtime checking). However,
there is no work on the logic based semantics analysis of software architecture specification
- SAM. This chapter is to present a systematic translation algorithm as well as a validation
approach towards rewriting logic semantics of software architecture model.

Related Works. Several related works are investigated in the software architecture
specification and rewriting logic semantics. The paper in [7] presents a framework for
describing global optimizations by rewrite rules with Computation Tree Logic (CTL)
formulae as side conditions, which allows the generation of correct optimizations, but
cannot be used for verification of (possibly incorrect) optimizations. The correctness is
established in an imperative language without procedures. The work in [15] proposes a
method for deploying optimizing code generation while correct translation between input
program and code. They focus on code selection and instruction scheduling for SIMD
machines.

Xie et al. [31] presented an approach to transforming software specification syntax to the
model checking programming language. In [31], static analysis is used to validate the syntax,
semantics and property translations, on which software testing strategy is adopted to
validate the translation. Preserving equivalence conditions was not checked in that work.
The work in [22] describes a translation from textual transition system to Petri nets. Using
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Towards Rewriting Semantics of Software Architecture Specification 97

bisimulation, they validated the translation by proof of the translated model are equivalent
with the source model based on the step by step comparison. Although it is a stepwise proof
between translated model and the source model, the soundness and completeness cannot be
established because it is based on the semi-formal explanation for the comparison by the
natural language.

Several works have been done for the analysis of SAM specification either using theorem
proving [21] or model checking technique [20]. All these methods are based on the either
partial order reduction [20] or encoded symbolic states [21]. This chapter presents for the
first time an approach to convert Software Architecture Model (SAM) [30] to rewriting logic
based semantics. This work has an interesting property of actually executing the SAM
semantics to do the simulations, that is, rewriting a topology, and the verification, since the
transformation from SAM to rewriting logic makes rewriting logic an alternative executable
semantics of SAM.

The remainder of this paper is organized as follows. In Section 2, we review SAM with
predicate transition nets for high-level design and rewriting logic with the tool support -
Maude’s syntax. A translation algorithm is presented in Section 3. Then coffee machine case
study was presented in Section 4. After that, a validation approach is demonstrated in
Section 5. Finally, we draw conclusions and describe future work in Section 6.

2. Preliminaries

2.1 SAM - Software Architecture Model

SAM (Software Architecture Model) [30] is hierarchically defined as follows. A set of
compositions C = {C1,C2, ...,Ck} represents different design levels or subsystems. A set of
component Cmiand connectors Cniare specified within each composition Ci as well as a set
of composition constraints Csi, e.g. Ci = {Cmi ,Cni ,Csi }. In addition, each component or
connector is composed of two elements, a behavioral model and a property specification, e.g.
Cij = (Sij, Bij). Each behavioral model is described by a Petri net, while a property
specification by a temporal logical formula. The atomic proposition used in the first order
temporal logic formula is the ports of each component or connector. Thus each behavioral
model can be connected with its property specification. A component Cmior a connector Cni
can be refined to a low level composition C/ by a mapping relation 4, e.g. /(Cmi) or h(Cmi) =
Cl. SAM is suitable to describe large scale systems’ description. However, there is no high
level behavior definition of components and connectors. In our work, we only consider the
flattened version of SAM specification in which each component/connector cannot be
further refined.

2.1.1 Predicate Transition Nets Predicate
Transition (PrT) net [14] is a high level Petri net. A Predicate/Transition net is a 9-tuple(P, 7,
F, 2, Eq, 9, L,G, M0), where:

1. P is a finite set of places, T is a finite set of transitions (P N T=®, P U T# ®), and F is a
set of arcs or flow relations between each pair of P and T, e.g. F < (P x T) U (T x P). The
tuple (P, T, F) forms a basic Petri net structure.

2. X =<S8t0p > consists of some sorts (S¢) of constants together with set of operations (Op)
and relations on the sorts.

3. Egq defines the meanings and properties of operations in OP.
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98 Petri Nets: Applications

4. @ : P — Stisarelation associated each place p in P with a subset of sorts.

5. L is a labelling function on places, transitions, arcs, and variables. Given a place p € P or a
transition ¢ € T, L(p) returns the name of place p, L(f) returns the name of transition 7. Given
an arc f € F, the labelling function of /', L( /'), is a set of labels associated with the arc f,
which are tuples of constants (CONs) and variables (X), which is best described by L( f,
Termsy.,X). We use Terms),X represents the expressions on the label of arc /. We use
L(Termssy x) represents L( f, Termss x) when there is no confusion in context. If f< F, L(f) =
D.

6. R is a mapping from transitions to a set of inscription formulae. The inscription on
transition ¢ € T, R(?), is a logical formula built from variables and the constants, operations,
and relations in structure @, variables occurring free in a formula have to occur at an
adjacent input arc of the transition.

7. Mo is the initial or current marking with respect to sort, which assigns a multi-set of tokens
to each place p in P with the same sort, M0 : P — MCON5.

The dynamic semantics of PrT nets are defined by the transition firings. Dynamic semantics
of PrT nets are described as follows [19]:

1. A marking M of a PrT net N is a mapping function defined from set of places P to constants
MCONS.

2. The enabling condition of a transition # € 7 under a marking M with a substitution o = {x;
«cilxi € X, ci € MCONs} is defined as follows:

VpeP. (L(f):a)c Mp) AR(): o.
3. If a transition # € 7 under a marking M with a substitution o is enabled, a marking MO is
obtained after the transition 7 is fired, then the firing condition of a transition 7 is defined as:

Vp e P. MO(p) = M(p) - L(p, 1) : 00 U L(t, p) : a.

The enabling and firing condition can also be defined by preset and postset of transition. A
preset of a transition 7, denoted by pre(f) or e, is the set of all places that have outgoing
relation from these places to the transition .

If a transition is enabled, required tokens specified by the label expression of input arcs of
the transition must be available in the preset of the transition. If a transition is fired, those
required tokens are consumed and produce some tokens that satisfy the label expression of
output arcs of the transition. Both consumed tokens and produced tokens must have the
same sort of the preset of the transition and postset of the transition respectively. Let L( f,
Termsy.,X) be label expression that associates with arc = (p, ) € F v f= (¢, p) € F. For any
place p € P, we can define the two functions for the consumed tokens (consuming-token-p(L((p,
?), TermsY.,X))) and produced tokens (producing-token-q(L( f, Terms%.,X))) for a transition ¢ as
follows.

Yp € Pconsuming — token — p(L((p,t), Termssx)) : p — L((p,t), Termsgx) : @ where L(f, Termsyx) : @ €
w(p), (p,t) € F,and M'(p) = M(p) — consuming — token — p(L((p,1), Termszx)),

Yq € P.producing — token — g(L(f,Termssx)) : p = L((p,1). Termss x) : @ where L(f, Termssy) : @ € @(p),
(p.tye F,and M'(p) = M(p) U producing - token - g(L((p.1). Termsz x).

From above functions, we can see that for any transition ¢, the tokens consumed in the preset
of the transition 7 can be described by a substitution of label expression in the function
consuming- token-p(L( f, TermsX..X)), if the substitution of label expression in the token set of
preset of transition #; while the tokens produced in the postset of the transition ¢ can be
described by a substitution of label expression in the function producing-token-q(L( 1)), if the
substitution of label expression satisfy the sort of postset of the transition 7. The token set of
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Towards Rewriting Semantics of Software Architecture Specification 99

preset and postset of transition ¢ can be described by the substitution of sorts of preset and
postset, i.e., pre(t)(p(p) : a) and post(f)(¢(p) : o). Therefore, we have enabling and firing
conditions as follows:

Consuming-token-p(L( f, TermsY.X)) € pre(t)(¢(p) : o), and
Producing-token-q(L( f, Terms%.,X)) € post(f)(o(p) : o).

We can define the interleaving semantics using the sequence of markings with the
occurrence of corresponding transitions for each set of substitutions.

A sequence o = MO[t0=00 >Ml[tl=al > ... [tn-1/an-1 >Mn with n > 0 is called a finite
interleaving execution starting with Mo iff Vi € Nat and 0 <i <»n and Mi-1 —ti-1/ai-1 Mi, where
Mi: P — (S1), ai denotes a substitution for the variables in a guard condition of a transition
ti, St denotes set of sorts.

2.1.2 Temporal Logic
Temporal logic defines four future-time (past-time) operators in addition to the
propositional logic operators. They are:

e  Always in the future (past), symbolized as a box o (&).

e  Sometime in the future (past), symbolized as a diamond < ().
e  Until for the future (Since for the past), U (S).

e  Next (Previous) for the future (past) , O(®).

An example of a temporal logic formula o(p — <¢¢) indicates that predicate p implies
eventually ¢ always happen.

2.2. Rewriting Logic
Rewriting logic [26] is a logic for concurrency. A rewrite theory R is a tuple (2, E, L, R),
where (2, E) is an equational logic, L is set of labels, and R is a set of rewrite rules. A rewrite
P : M — N means that the term M rewrites to the term N modulo ER, and this rewrite is
witnessed by the proof term P. Apart from general (concurrent) rewrites P : M — N that are
generated from identity and atomic rewrites by parallel and sequential composition,
rewriting logic classifies its most basic rewrites as follows: a one-step (concurrent) rewrite is
generated by parallel composition from identity and atomic rewrites and contains at least
one atomic rewrite, and a one-step sequential rewrite is a one-step rewrite containing
exactly one atomic rewrite.
We often write .

[:[s] = [t]if [W] — [V] for [ : [s] — [t]if [u1] — [vi] A o A [ug] — [vi]
For the unconditional rewrite, if clause is weaved and the form would be 1 : [s] — [t]. Where
s and t are terms that may contain variables. A rule describes a local concurrent transition in
a system, i.e., anywhere where a substitution instant o(s) of the lefthand side s is found, a
local transition of that state fragment to the new local state a.(7) can take place.
Rewriting logic therefore extends equational logic with rewrite rules, allowing one to derive
both equations and rewrites. Deduction remains the same for equations, but the symmetry
rule is dropped for rewrite rules. Rewriting logic is a framework for true concurrency [27]:
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the locality of rules allows multiple rules to apply at the same time provided they don’t
modify the shared part.

The operational semantics of rewrite specification extends the operational semantics of
membership equational specification by applying computational equations ER and rewrite
rules RR modulo the structural equations ER. The process net for the behavior model - Petri
nets - can be matched into the rewrite theory R. For instance, signatures and rewrite rules
can be mapped into the net specification and places, and transitions with guard conditions
and their pre- and post-sets. Instead of using operational semantics, the work [26]
demonstrated the isomorphism between category Petri nets and category Rewrite theory.
Rewriting logic and membership logics are supported by Maude [3]. In Maude [2] the basic
units are functional modules and system modules. A functional module is an equational
style functional program with user-definable syntax in which a number of sorts, their
elements, and functions on those sorts are defined. A system module is a declarative style
concurrent program with user-definable syntax.

A functional module is declared in Maude using the keywords

fmod <ModuleName> is
<DeclarationsAndStatements>
endfm

The <DeclarationsAndStatements> includes signatures (e.g. sorts, subsorts, kinds etc.),
operations, and equations. In Maude, functional modules are equational theories in
membership equational logic satisfying some additional requirements. Computation in a
functional module is accomplished by using the equations as rewrite rules until a canonical
form is found. This is the reason why the equations must satisfy the additional requirements
of being Church-Rosser, terminating, and sort decreasing.

A system module is declared in Maude using the keywords

mod <ModuleName> is
<DeclarationsAndStatements>
endm

The <DeclarationsAndStatements> includes sorts and subsorts, operation, equation, rules,
etc.. declaration.
Conditional rules has the form of

crl [label] : <left term> => <right term> if <condition or set of conditions> .
While unconditional rules has the form of
rl [label] : <left term> => <right term> .

The system modules specify the initial model T of a rewrite theory R in the membership
equational logic variant of rewriting logic. These initial models capture nicely the intuitive
idea of “rewrite systems” in the sense that they are transition systems whose states are
equivalence classes [¢] of ground terms modulo the equations E in R, and whose transitions
are proofs a : [f] — [#0] in rewriting logic, that is concurrent rewriting computations in the
system described by the rules in R.
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3. Translation from SAM Specification to Rewriting Logic

*** This 1s the algorithm to translate the SAM model to Maude program
1. *#x M-SIGNATURE
2. for all B e Cp, where k € Nar
3. forall Pe B.Ste B
4. declare sorts, 53 € St where { € Nar
5. sort Marking .
6. forall pe Pand s e St
7. *** declare an operation
8. fp i 8i — Marking .
9. *EF M-SYSTEM
10. including M—-SIGNATURE
11. forall Be Cg. where k € Nar
12. forall TeBand G e B,
13. tl[t]: fi = f2
14. where £ is the set of operations mapped from . t,
15. fa 1s the set of operations mapped from r..
16. crlt] : f1 — frif g
17. where g is associatedwr,and ge Gandre T
18. *#+ M-PREDICATE
19, including M—SYSTEM .
20. including SATISFACTION .
21. sort Marking < State .
22, forall B e Cg. where & € Nar
23. forall Pe B.Stre B
24 ***declare an operation
25. Pfp: 5; — Prop.
26. my .o Marking .
27. *** define semantics using equations
28. eqm fpma F Pfp=true.
20 where i, j € Nar
30. =+ M-MODEL-CHECK
31. including M—SYSTEM .
32 declare initial markings
33. declare properties to be checked .

Fig. 1. Translation Algorithm from SAM to Maude

The SAM specification allows formal verification of a component system against system
constraints and property specified on its abstraction. Here, verification means that the
developer can animate the specification by providing initial markings and checking if the
responses meet the expected results. Verification of SAM is based on the precise syntax and
semantics of Petri net formal language and temporal logic.

In this work, we choose Maude [2] - a high level and high performance declarative
programming language - as a model checking tool. Maude is based on rewriting logic and
membership equational logic. During the verification, we found a seamless matching
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between SAM specification and rewriting logic. We use Nat to denote the set of natural
numbers. The translation algorithm is summarized in Fig. 1. The translation covers the
topology and dynamic behavior of the SAM specification.

In Fig. 1, B denotes the set of behavior models, Ck denotes the set of components, connectors
or compositions; St, P, T, and R the set of sorts, places, transitions, and constraints associated
with transition in the behavior model B, respectively; each element of the set St, P, T, and G
is represented by lower case letters si, p, ¢, g respectively. Following the rewriting logic
notation in [2], each operation is denoted by for fi where i € Nat. We use fpre to denote the
left side operations and fposr denote right side operations.

SAM specification is a hierarchical structure that provides the high level organization of the
system topology. When no behavior refinement defined, the components and connectors are
taken off so that a flattened architecture description with one behavior model (Petri net) is
obtained. Petri nets of all components/connectors form an integrated Petri net through
merging connected ports between components/connectors. This flattened SAM structure
simplifies the analysis and verification. Therefore, the translation algorithm presented in Fig.
1 is based on the flattened version of SAM specification. In this section, we first present the
translation algorithm and the corresponding Maude program in two groups - signature
translation and system description translation. Comments in Maude syntax are started with
three stars and ended at the end of the line.

In Maude syntax, there are two fundamental blocks defined - function module and system
module. Where functional module in Maude denotes the signature of the system, system
module describes the state changing under certain set of rules (conditions). The purpose of
the translation algorithm is to map each building block in SAM specification to a
corresponding one in Maude specification.

In Fig. 1, the signature of the system is described in a function module named M-
SIGNATURE where M represents the system. To describe the system, three system modules,
named M-SYSTEM, M-PREDICATE, and M-CHECKING must be defined. M-SYSTEM describes
the system topology with structure and interactions. In this module we describe the state
transition of the system using rewriting rules and the equations. M-PREDICATE describes
the semantics of the operations and state transitions. M-CHECKING is a verification module
of the system. This module specifies the initial conditions that are required for the model
execution and properties to be checked. We summarize the translation algorithm in Fig. 1.

3.1 Mapping to Signature

Signature (sorts, operations) and equations of the behavior model (B) of SAM - Petri nets -
can be mapped to the -signature in the rewriting theory. In addition, each sort of a place
and a port is considered as a local state, and defined as a sort Marking. The translated sorts in
the rewriting logic include the set of sorts in Petri nets St as well as a new sort Marking.
Maude currently supports limited basic data types (int, bool, String) and operations on them
in predefined module. The module for the basic sorts and operations can be loaded when
the core Maude is running. To implement all user defined sorts in Petri nets, we need
following two restrictions: a) specifying them as Cartisian product using the predefined
sorts in Maude; and b) trying to specify the system using the basic sorts and avoid the
complicated user defined sorts. We do not define any more equations in the signature
translation. The equations are those used for the basic sorts defined in rewriting and
membership equational logic for basic types.
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3.2 Mapping to System Module

In the behavior model Petri nets, the state changings are described by marking updating
through transition firing. Each time a transition ¢ is fired, some tokens consumed in the
preset (pre(?)) of the transition 7, new tokens are generated to the postset (post(?)). This state
changing can be described by a(n) (un)conditional rule 7/ in the rewriting theory R.

Let id(f) denote the name of transition 7. A transition ¢ € T with its preset and postset of
places can be mapped to an unconditional rule with following format:

riid(t)] : fpre(r) — fpost(f) if guard g € G associated with this transition is #rue or empty.
Otherwise, the transition ¢ € Tis mapped to a conditional rule

crllid(t)] : fpre(t) — fpost() iff g for g € G.

This translation is shown in Fig. 1 from line 11 to 17.
In Maude program, we can express the above translation as follows:

including M-SIGNATURE .
vars vi : si .
rl [id] : <operations of pre(transition)> => <operations of post(transition)> .

crl [id] : <operations of pre(transition)> => <operations of post(transition)> if <guard of
transition> . ,

where id is the identifier of the transition, pre(f) and post(f) denote the preset and postset of
transition ¢.

3.3 Mapping to State Predicates

After translating the signature and system model, to do model checking, the things left is for
the state predicates and initial markings. Maude provides the conversion from system
model to the Kripke Structure with internal modules based on rewriting theory. To specify
state predicates what we need is to associate the kind of sorts of the system to the formulae
in the Kripke structure. In Maude, the predefined module L7L converts the Linear Temporal
Logic (LTL) formulae to the Kripke structure [2]. Module SATISFACTION associates the state
to formula by declaring a sort State and a boolean operation on the sort State.

Sort Marking is defined as a subsort of predefined sort State. Based on the pre-exiting module
definitions of Maude, we can have following translation. Each state predicate is defined as
an operator of sort Prop. Then defines their semantics by means of a set of equations that
specify for what states a given state predicate evaluates to true. This is also expressed the
algorithm Fig. 1 in line 18 - 29. We have following code template in Maude:

protecting M-SIGNATURE .
including SATISFACTION .
subsort Marking < State .
vars m1 m2 : Marking .

op Pp : si > Prop .

eqml Pp m2 |= Pid = true . ,
where si denotes the set of sorts of the place p, .
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3.4 Mapping to Initial Markings & Properties

Finally, to define the initial marking and the properties to be verified (Fig. 1), upon previous
translation algebra, we can simply define initial markings as equations of operations to
initial conditions, and properties are equations from property operations to properties.
Implementing in Maude, we have following template:

In Maude, the predefined module MODEL-CHECKER convert the system model defined by
the rewriting logic to the Kripke structure so that we can apply model checking on the
system [2]. The module LTL-SIMPLIFIER is used to define the linear temporal logic in
rewriting logic. Based on these two modules, we define the following template Maude
program:

protecting M-PREDICATE .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

*#% declare initial markings as operations that output sort Marking.
op initn : -> Marking .

**%* declare operation for each property that output sort Formula.
op propertyn : -> Formula .

**%* declare equations for each place that has initial markings.

eq init=pi .

*#%* declare needed variables.

€(q propertyn = <propertyn> .

3.5 Discussion

The ports synchronization is a challenging issue. The semantics of each pair of merged ports
are described as interface places that are shared by component and connector in SAM.
Although ports are visible for communicated components/connectors, only when tokens
are produced in the outgoing ports, the incoming ports of corresponding
components/connectors can be executed. In the translation (Fig. 1) for the shared places of
ports, the outgoing ports are translated to right side of a rule, while the corresponding
incoming ones are the left side of the corresponding rule. On the other side, if the overlap
rewriting rules can fire concurrently, the executions of the concurrent rule is
nondeterministic.

This translation algorithm (Fig. 1) is applied on a case study - coffee machine and
experimented using Maude program. The experimental result is demonstrated in Section 4.

4. Case Study

Fig. 2 shows the SAM specification of a simple coffee machine [29], which accepts requests
and then either serves a cup of coffee or returns back money. Behavior models of all three
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components CoinHandler, BrewingFacility, and CMinter f ace are demonstrated in Appendix A
(Fig. 3(a)-Fig. 3(c)).

A request with a tuple of money and coffee type is accepted in the component CMinter f ace.
A simplification of this model is that we assume money and coffee type are input at the
same time instead of modelling input sequentially. Then the request flows into component
CoinHandler through connector CH-CMI. After checking the price table kept in the
CoinHandler, either a money return or a coffee request is issued through the corresponding
port coin_back_ch or coffee_request_ch, respectively. The place price (Fig. 3(a)) outputs a token
either to transition enough or not enough, which is used to check whether or not the input
money is enough for a certain type of coffee. If there is enough money, coffee request is
issued by port coffee_request_ch, and coin_back_ch gets a token when the money is more than
that kept in the place price. If there is not enough money, coin_back_ch will eventually get a
token to return the money.

CH_CMI request_cmi | coffee_serve_emi  pE g
ChInterface

coin [back_co

—
-]
o
@
&
I
fx]

e

7 2 t5 16
st_gh .
request_g coin_back_ch “ ready b coffee Een-e_bf
CHEBF  n )
B = =
. coffes reqest_ch Ucoffee_request_bf . )
CoimnHandler BrewingFaclity
( - I-I d
pay_r¢turn_ch I1J4

pay_retun_bf

Fig. 2. SAM specification of Coffee Machine

The component BrewingFacility (Fig. 3(b)) keeps a coffee storage table and is responsible for
cooking and providing coffee to CMinterface. BrewingFacility (Fig. 3(b)) serves coffee
whenever two conditions are satisfied - a token with #rue is obtained in place ready_bf, and a
token flows into place coffee_request_bf when requested coffee is not out of stock in place
storage. Place storage keeps a table to count how many cups of coffee the machine has
currently. If there is enough coffee, a user receives a cup of coffee in the CMinterface. If there
is not enough coffee, then an exception is issued to CoinHandler through place pay_return_bf.

4.1 Translated Maude Code
In this section, we use a simple example to illustrate the experimental results of the
translation algorithm as follows.

4.1.1 Mapping to Signature

Based on the above algorithm, we first translate the coffee machine example to obtain the
function module. We consider one component CoinHandler as the example here. In the SAM
specification, we define ports request _ch and coin_back_ch in the component CMHandler. The
sorts of the port request _ch is defined as < int, int >, while the sorts of the port coin_back _ch is
<int >. After the translation, we have following Maude program segment:

fmod CM-SIGNATURE is
protecting INT .
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sort Marking .

op request-ch : Int Int -> Marking .
op coin-back-ch : Int -> Marking .
*** other operations are ignored.

endfm

4.1.2 Translation of System

In the coffee machine example, port request_cmi(money, type) is translated to an operation on
sorts int and Marking. We want the data in this port go to the port request ch(money, type)
without condition. This behavior is controlled by the transition enough specified in the Petri
net, and specified in the rewriting logic as the following formula:

rl : request_cmi(money, type) — request_ch(money, type) if money > cost,

where operations request_cmi(money, type) and request_ch(money, type) are defined as follows:

request_cmi(money, type) : int x int — Marking and
request_ch(money, type) : int x int — Marking.

In Maude, we have the following rule for this state changing:
mod CM is
including CM-SIGNATURE .
vars money type cost : Int .

crl [enough] : request-ch(money, type) price(type,cost) => coffee-request-ch(type)
save(money, type)

price(type,cost) if money >= cost .

*#% other rules are ignored.

4.1.3 Mapping to State Predicates

After we have the translated function module and system module, we can define the state
predicates with their semantics. In the Maude program, concerning the translation of the
port request_ch(money, type) and coin_back_ch(money), we can have the following program
segment by applying the translation algorithm:

mod CM-PREDS is
protecting CM .

including SATISFACTION .
subsort Marking < State .
***(CMHandler)

op Prequest-ch : Int Int -> Prop .
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op Pcoin-back-ch : Int -> Prop .

vars money type cost capacity : Int .

vars m1 m2 : Marking .

eq ml request-ch(money,type) m2 |= Prequest-ch(money,type) = true .
eq ml coin-back-ch(money) m2 |= Pcoin-back-ch(money) = true .

*#% others are ignored.

4.1.4 Mapping to Initial Marking & Property
Following is the segment of translated model checking module:

mod CM-CHECK is

including CM-PREDS .

including MODEL-CHECKER .

including LTL-SIMPLIFIER .

vars money type : Int .

op initl : -> Marking .

eq initl = request-ch(75,2) price(1, 50) storage(1, 50) .
op propertyl : -> Formula .

eq propertyl = [] (Prequest-ch(money,type) -> <>(Pcoffee-request-ch(type) /\ Pcoin-back-
ch(money))) .

*#%* others properties are ignored

*#%* due to space limitation.

4.2 Discussion

We have examined several properties for this example, the running results evaluated from
translate Maude program follow the expected results of the SAM model. This algorithm had
been applied on several other examples such as cruise controller [5] and online shopping
example [11]. All the experimental results demonstrated its efficiency and portability.

5. Translation Validation

In our translation, we simply flattened the SAM specification so that all compositions are
dereferenced and all components and connectors are visualized by a Petri net. Petri nets of
dereferenced compositions are connected together through merging shared ports. Then the
whole system connects to one Petri net. This is shown in the M-SIGNATURE and M-
SYSTEM module of the translation algorithm (Fig. 1). We translate the flattened SAM
specification, i.e. its Petri nets into the rewriting logic. Therefore, we consider an individual
flattened component/connector in the translation validation. To validate the translation, we
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first build a Petri net based on the rewriting logic. The semantics of the rewriting based Petri
net can be expressed by a sequence of rewriting steps. Then we define the correspondence
results between the operational semantics of Petri nets and the logic one, lifting it to the
proved semantics.

5.1 Rewriting Theories and Deduction

The mapping of a Petri net model into a rewriting theory requires fairly sophisticated
algebraic techniques. In the following we first recall the rewriting logic and membership
equational logic [16].

5.1.1 Basic

Definition An equational logic is a pair (2, E), where X is a set of operations, also called its
“syntax”, and E is a set of equations of the form V.X.z = ¢ constraining the syntax, where Xis
some set of variables and ¢, # are well-formed terms over variable set X and operations in 2.
Equational logics can be many-sorted (operations in 2 have arguments of specific sorts), or
even order-sorted (sorts with a partial order on them). Equations can be conditional or
unconditional. Conditions is a typically finite set of pairs # = u’ over set of variables X.

Term rewriting is an approach related to the equational logic (2, E) in which equations are
oriented from left to right, with the form VX.p — ¢ if A;u; > «’;, and called rewrite rules. A
rewrite rule can be applied to a term ¢ at any position where p is matched. A pair (2, R),
where R is a set of rewrite rules, is called a rewrite system.

Rewriting logic [26] is a logic for concurrency. A rewrite theory is a tuple (2., E, L, R), where
(2, E) is an equational logic, L is set of labels, and R is a set of rewrite rules. Rewriting logic
therefore extend equational logic with rewrite rules, allowing one to derive both equations
and rewrites. Deduction remains the same for equations, but the symmetry rule is dropped
for rewrite rules. Rewriting logic is a framework for true concurrency [27]: the locality of
rules allows multiple rules to apply at the same time provided they don’t modify the shared
part. A formal definition of a labeled rewrite theory is given in the following.

Definition 1 An many-sorted labeled rewrite theory R is a 4-tuple <2, E, L, R > where . is an
many-sorted signature, E is a set of Y-equations, L is the set of labels, and R < L x T,E(X)* is
the set of labeled rewrite rules.

We often write.

L:[s] = [t1]if[@]— [V forl:[s] = [1]if [ ] = [vi]A oA Tug] = [ ]
Rewrite rules in R may be understood as the basic rewriting steps of a theory, the building
blocks of the actual rewrite relation. More complex deductions can be obtained by a finite
number of applications of inference rules. We introduce a suitable signature for building an
algebra of labels, each element of the term algebra encoding a justification of a rewrite. Out
of all possible different ways to introduce such a signature, we follow the lines of [4].
Definition 2 (rewriting step) Let R =<2, E, L, R > be a rewrite theory, let be the signature
containing all the labels r as suitable operators, with the corresponding arity and sort given
by the variables in R(r) A proof term o is a term of the algebra TR(X) =T _[(X) (We assume
that there are no clashes of names between the sets of operators).
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A rewriting step is a triple < a., [s], [t] > (usually written as o : [s] — [t]) where a is a proof
term and [s], [t] 2 TXE(X).

Ts p(X
(reflexivity) e e
t: ] — 1]
i a:[s] — [u].B: [u] =[]
(transitivity) @B 15 > 1]
(congruence) f € Zmai i [s1] = []
= Flyy ) 181 s 801 = [f(H1, n 1)]
(replacement) @i [wil = [z, R r:[s] = [t]
Pt Ml @) [sOF /)] — [1Z /)]
. Ers=ua" u—-u ,Evriu =t
(equality)
[V
(composition) @ :ls] = [ulfi [ul = (1
a:f3:[s] — [1]
-‘ t‘\,f‘l’ -
(associativity) as (By) = (a:p)y
o fex
(distributivity) , , -
Flap By vwan:Bn) = flag,.oan) F(Bry ... Br)

Table 1. Inference Rules

As argued in [26], “a rewrite theory is just a static description of ‘what a system can do’; the
behavior of the theory is instead given by the rewrite relation induced by the set of rules of
deduction”. Given a set of rewriting rules, we can derive a series of rewriting theorems
about the system. This procedure is called entailment and defined in the next definition.

Definition 3 (Entailment) Let R =<3, E, L, R > be a rewrite theory. We say that R entails the

rewriting step o : [s] — [t], written as R + : [s] — [t], if and only if it can be obtained by a
finite number of applications of the inference rules in Table 1.

5.2 A Theory for Petri nets

In Section 3, to describe local state represented by a place, we introduce a new sort Marking
to rewriting logic. The sort Marking lifts the local state on sort description and relates to
global state described by marking in Petri nets. Therefore, we use Marking as a sort of > in
the rewriting theory of Petri nets in the following.

Givena PrT net N= (P, T, F, 2, Eq, ¢, L, G, M0) [19], we define a rewriting theory RP+T= < 2R,
ER, LR, RR > for each ingredient of PrT nets as follows. If there is no confusion in the context,
we refer R simply as RPrT. A rewriting theory of Petri nets can be defined as:
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e SR =5tu {Marking} for St € 2. and OpR = Op U Opp, where Opp = {9(p) > Marking}
and p € P. Then we have signature _R = (SR,OpR).

e ER=Eq.

e LR s set of labels, which is defined by a function such that LR: PU T — f>. U RR,
where 2. denotes the operators on the signature 2, if no confusion, we simply refer
fas f2.

o Vpe P.LR(p) = f2, where fis defined as a mapping from sorts of p to the

sort marking, i.e., f: s & marking, where s is the sort of the place p.

o Vte T LR(t) = L(t), where L € N.

o Vx e X. LR(x) = L(x), where L € N.

o Va e F. LR(a) = ®. Label expression on each flow relation is used to
instantiate tokens in a place.

o  Vcons € CONS. LR(cons) = CONS , where CONSs is a set of constants.

e RRis the set of rewriting rules defined by constraint set G that is associated with
transitionst € T. Vg e G, tV T,

o if g={true} v g = @ of the transition t, we have an unconditional rule with
the form [ : [p] = [gq], where p, g € OpR, OpR € 2R, with p = Oppre(t) and g
= Oppost(t).

o otherwise, g = {TermOp,bool(X)}, then [ is conditional rule with the form [ :
[v] — [g] if ni Ci where Ci € TermOp,bool(X) and Vvi € Ci. vi € X, with p =
Oppre(t) and q = Oppost(t) respectively.

It is worth to note that ER can be empty. We define a rewriting step for a Petri net based
rewriting theory RPrT as follows.

Definition 4 (rewriting step) Let RPrT = < 2R, ER, LR, RR > be a rewrite theory of a PrT, a
proof term o is a term of the algebra TR(X) = T2(X) (We assume that there are no clashes of
names between the sets of operators).

A rewriting step is a triple < A, [s], [t] > (usually written as A : [s] — [t]) where a is a proof
term and [s], [t] 2 T2, E(X), s = pre(t)(o(p) : ), and t = post(t)(o(p) : o).

With the rewriting theory of Petri nets, we can give the following interleaving
correspondence based on the defined rewriting step.

5.3 An Interleaving Correspondence

We state a claim that relates the semantics of PrT nets based on the rewriting theory RP/T.
First we define a series of execution status of RPrT.

Definition 5 Let A be a closed proof term over the rewriting theory RPrT . Then we have A as

e initial, if it is element of sort SPrT .

e enabled, if it is initial and contains occurrence of an operator in OpR and ER # ®.

e one step, if it is enabled and contains occurrence of M(p) with p € P and no occurrence of
composition operator ;.

e fired, if it is one step.

e many steps, if A=Al, ..., An with 1 <n < Nat and each Ai is one step.

e rewriting step, if it is many steps and all the one-step rewriting step is enabled.
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In the following, we define the relation between an occurrence for a transition t € T of a PrT
net and a rewriting step A.

Definition 6 An occurrence for a transition t € T, a guard g € G of a PrT net N is a rewriting
step At : [p] = [q] if Al Ci with the following conditions:

e atransition t is initial, if g(t) € Term(X) and At is initial.
e atransition t is enabled, if t is initial and At is enabled.
e atransition t is fired once under marking M1 and reach marking M2, if At is one step.

This characterization is needed to prove the correspondence between PrT nets and rewriting
theory RPrT : given a PrT net N, there is a one-to-one correspondence between the
computation sequence of PrT net N and the rewriting theory RPrT .

Proposition 1 (One-step Correspondence) Let t € T be a transition in PrT net N, M1 and M2
be two markings before and after t is fired, then a one step computation sequence for PrT
net N is M1tM2.

If RPrT entails an initial, one-step rewriting step A : pre(t)(o(p) : a) = post(t)(p(p) : a), then
there is a computation sequence M1tM2 with pre(t)(¢(p) : &) € M1 and post(t)(p(p) : o) € M2
defined for PrT nets.

Proof.

The proof has two steps on the definition of rewriting step. For any transition ¢t € T, from
Subsection 2.1.1, with a one step computation sequence for PrT net N M1tM2,
Jconsuming-token-p(L((p, t), Terms2, X)) such that consuming-token-p(L((p, t), Terms2.,X))
€ M1, and 3Jproducing-token-q(L((t, q), Terms2. X)) such that producing-token-q(L((t, q),
Terms2., X)) € M2.

Based on the definition 1, we can conclude the above proposition.

endProof.

We already observed in previous section that each place defines an _-signature on the set of
sorts and the fixed sort marking as the operation/function with arguments. The markings are
connected by transition firing defined by the Petri net semantics [19]. Thus we can conclude
this section by the correspondence result between Petri net computational sequence
semantics and the rewriting theory semantics.

Corollary 1 Let Mi and Mj be two markings of a PrT net N. Then a computation sequence
Mi...Mj entails a transition Mi to Mj iff RPrT entails a rewriting step A : Mi(p) — Mj(p).
Finally, next result lifts the correspondence to computations.

Proposition 2 (Computational Correspondence) Let M and Mc; be two markings of a PrT
net N. Then there exists a proved computation 6 = M. ..tc -1My with source My and
target Mgj iff RPrT entails an initial one step sequential rewriting step A = Al, ..., Am with
Ai : pre(tk)(o(p) : o) = post(t)(e(p) : o) where i <k <j.

Proof.

This can be proved inductively on the computation sequence.
Base case: k = c0 we have the computation sequence Mc0tcOMcl, from Proposition for the
One-step Correspondence, we have AcO : pre(tc0)(p(p) : o) = post(tc0)(p(p) : o).
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Hypothesis Assumption: Suppose it is true for k = n where i < n < j the proposition for
computational correspondence holds. Then we have A = Al, ..., Am with Ai : (pre(tk))(o(p) : o)
— (post(tk))(o(p) : o) holds. Because RPrT entails an initial one step sequential rewriting step
A = Al, ..., Am, there exists one rewriting step Al : Al, ..., Ai where i < k < j and Ai :
pre(tk)(o(p) : o) = post(tk)(p(p) : o). We need to show for k = n + 1 it still holds.

If k=n + 1, we need to consider two situations:

1) one is that post(tn) = pre(tn+1);

2) post(tn) is not pre(tn+1). Because we use interleaving semantics for the PrT nets, and
in the rewriting theory, each rewriting rule can be executed concurrently, tn and
tn+1 may be in a causal relation.

Based on the one-step correspondence, for each transition firing, we can have a rewriting
step, so for fm+l under some marking Mn, we have Acntl : pre(tentl)(p(p) : o) —
post(tentl)(o(p) : ).

For case (1), under the marking Mn, based on the hypothesis assumption, we know that
(post(tn)) = (pre(tn+1)). From transition rule, the proposition holds.

For case (2), there must be some transition th fired and make the proposition holds, i.e., let th
be the transition in the hypothesis assumption, that is th = tn. Similarly, the proposition
holds.

endProof.

The characterization above is summarized as follows: for each firing transition, there is in
fact a one-to-one correspondence between proved computations starting from the preset of
the transition to the postset of transition and rewriting step with substitution _. Furthermore,
for a firing sequence under a series of markings, there is a correspondence between the
execution of the constructed Petri net and the rewriting sequence. The proofs of the
correspondence validate the correctness of translation in Section 3.

6. Conclusion

We discussed a rewriting semantics of a software architecture specification (SAM) by a
translation from specification to a rewriting logic based declarative programming language
Maude. In addition, to validate the translation, we have shown the correctness of the
translation by a stepwise proof. A case study of a coffee machine modeled in SAM is applied
on the translation algorithm. This paper provides an alternative concurrent semantics of a
formal architecture specification (SAM) using rewriting logic and equational logic
implemented on Maude. As a high performance declarative programming language
platform, Maude is efficient in different types of systems.

Maude provides modules that convert model in rewriting logic to Kripke structure so that it
is able to do model checking using Maude. Moreover, Maude supports the specification of
nested processes, which is hard accomplished in other model checking systems such as SMV
or SPIN. It is known that nested processes are the natural way to specify distributed systems,
which are supported by SAM. The Maude can model check systems whose states involve
data types in any algebraic data types [6]. Other model checkers only support limited data
types in terms of which all other data must be encoded. However the resulting Maude
program after translation is kind of large, which is hard to debug even with the support of
Maude tool.
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An important aspect of our work is the validation of translation. In addition to the fact that
translation validation is an important pragmatic procedure, we believe it is quite interesting
in the context of architecture specification verification and automatic code generation. Given
a SAM component or connector, it can be fully automatically translated to a Maude system
module on rewriting logic without the need of any information from other components in a
given architecture description. As the only visible entity in the architecture model, ports are
mapped to the operations in the signature from sorts to the local state representation
Marking and proposition sort Prop.

The transitions are mapped to rules in the rewriting logic with the variable substitution
mapped to the rewriting steps. The semantics consistency between Petri nets” and rewriting
logic’s is seamlessly established through these mappings.

We are also interested in a deeper treatment of specification and verification features with a
special focus on model checking techniques to tackle the state space problem. We will also
work on validating the usability and expressiveness of SAM specification by implementing
encodings of various process calculi that can be developed using Petri net and temporal
logic.
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A. Behavior Model of Components in Coffee Machine
The behavior model of each component in the coffee machine example is shown in the Fig. 3.
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Fig. 3. Behavior of Subcomponents in CoffeeMachine
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Petri Nets are graphical and mathematical tool used in many different science domains. Their characteristic
features are the intuitive graphical modeling language and advanced formal analysis method. The
concurrence of performed actions is the natural phenomenon due to which Petri Nets are perceived as
mathematical tool for modeling concurrent systems. The nets whose model was extended with the time model
can be applied in modeling real-time systems. Petri Nets were introduced in the doctoral dissertation by K.A.
Petri, titled “,Kommunikation mit Automaten” and published in 1962 by University of Bonn. During more than
40 years of development of this theory, many different classes were formed and the scope of applications was
extended. Depending on particular needs, the net definition was changed and adjusted to the considered
problem. The unusual “flexibility” of this theory makes it possible to introduce all these modifications. Owing to
varied currently known net classes, it is relatively easy to find a proper class for the specific application. The
present monograph shows the whole spectrum of Petri Nets applications, from classic applications (to which
the theory is specially dedicated) like computer science and control systems, through fault diagnosis,
manufacturing, power systems, traffic systems, transport and down to Web applications. At the same time, the
publication describes the diversity of investigations performed with use of Petri Nets in science centers all over
the world.
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