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Learning Pattern Classification Tasks with
Imbalanced Data Sets

Giang Hoang Nguyen, Abdesselam Bouzerdoum and Son Lam Phung
University of Wollongong
Australia

1. Introduction

This chapter is concerned with the class imbalance problem, which has been recognized as a
crucial problem in machine learning and data mining. The problem occurs when there are
significantly fewer training instances of one class compared to another class. Most machine
learning algorithms work well with balanced data sets since they aim to optimize the overall
classification accuracy or a related measure. For imbalanced data sets, the decision
boundary established by standard machine learning algorithms tends to be biased towards
the majority class; therefore, the minority class instances are more likely to be misclassified.
There are many problems that arise from learning with imbalanced data sets. The first
problem concerns measures of performance. Evaluation metrics are known to play a vital
role in machine learning. They are used to guide the learning algorithm towards the desired
solution. Therefore, if the evaluation metric does not take the minority class into
consideration, the learning algorithm will not be able to cope with class imbalance very well.
With standard evaluation metrics, such as the overall classification accuracy, the minority
class has less impact compared to the majority class. The second problem is related to lack of
data. In an imbalanced training set, a class may have very few samples. As a result, it is
difficult to construct accurate decision boundaries between classes. For a class consisting of
multiple clusters, some clusters may contain a small number of samples compared to other
clusters; therefore, the lack of data can occur within the class itself. The third problem in
learning from imbalanced data is noise. Noisy data have a serious impact on minority
classes than on majority classes. Furthermore, standard machine learning algorithms tend to
treat samples from a minority class as noise.

In this chapter, we review the existing approaches for solving the class imbalance problem,
and discuss the various metrics used to evaluate the performance of classifiers. Furthermore,
we introduce a new approach to dealing with the class imbalance problem by combining
both unsupervised and supervised learning. The rest of the chapter is organized as follows.
Section 2 describes the problems caused by class imbalance. Section 3 reviews current state-
of-the-art techniques for tackling these problems. Section 4 describes existing classification
performance measures for imbalanced data. Section 5 describes our proposed learning
approach to handle the class imbalance problem. Section 6 presents experimental results,
and Section 7 gives concluding remarks.
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194 Pattern Recognition

2. Class Imbalance Problems

Class imbalance occurs when there are significantly fewer training instances of one class
compared to other classes. In some applications, class imbalance is an intrinsic property. For
example, in credit card usage data there are very few cases of fraud transactions as
compared to the number of normal transactions. However, imbalanced data can also occur
in areas that do not have an inherent imbalance problem. Instead, the imbalance is mainly
caused by limitations in collecting data, such as cost, privacy, and the large effort required to
obtain a representative data set. Class imbalance presents several difficulties in learning,
including imbalanced in class distribution, lack of data, and concept complexity. These
factors are explained in more detail in the following subsections.

2.1 Imbalance in class distribution

The class imbalance problems can arise either from between classes (inter-class) or within a
single class (intra-class). We first discuss issues related with inter-class imbalance, where the
number of examples of one class is much larger than the number of examples of another
class, namely the minority class. The degree of imbalance can be represented by the ratio of
sample size of the minority class to that of the majority class. Most classification techniques
such as decision tree, discriminant analysis and neural networks assume that the training
samples are evenly distributed amongst different classes. However, in real-world
applications, the ratio of minority to majority samples can be as low as 1 to 100, 1 to 1000, or
1 to 10,000 (Chawla et al., 2004). Hence, the standard classifiers are affected by the prevalent
classes and tend to ignore or treat the small classes as noise. Weiss and Provost investigated
the relationship between the imbalance ratio of training samples in each class and classifier
performances, in terms of overall accuracy and area under the ROC curve (AUC) (Weiss and
Provost, 2003). They used a decision-tree classifier and tested it on a number of data sets
from the UCI Repository (Asuncion and Newman, 2007). Their experimental results
indicated that the ratio of samples in each class depends on the evaluation metrics used.
When the performance is measured using classification accuracy, the best ratio is near the
natural ratio; on the other hand, when the AUC measure is used, the best ratio is near the
balanced ratio. Visa and Ralescu also reported similar results using fuzzy classifiers (Visa
and Ralescu, 2005). However, we should note that the imbalance ratio between classes is not
the only factor that reduces classification performance; other factors such as training size
and concept complexity also affect performance.

In tasks that involve learning a concept or detecting an event, data imbalance can appear
within a single class. The within-class imbalance problem occurs when a class consists of
several sub-clusters or sub-concepts and these sub-clusters do not have the same number of
samples (Japkowicz, 2001). The within-class and between-class imbalances together are
known as the problem of small disjuncts (Holte et al., 1989), in which classifiers are biased
towards recognizing large disjuncts correctly, but overfitting and misclassifying samples
represented by small disjucts. In most classification tasks, the presence of within-class
imbalance is implicit. It is known to have negative effects on the performance of standard
classifiers and increases the complexity of concept learning (Yoon and Kwek, 2007).
However, most existing methods for class imbalance focus mainly on rectifying the
between-class imbalance, and ignore the case where imbalance occurs within each class.
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2.2 Lack of data

One of the primary problem when learning with imbalanced data sets is the associated lack
of data where the number of samples is small (Weiss, 2004). In a given classification task, the
size of data set has an important role in building a good classifier. Lack of examples,
therefore, makes it difficult to uncover regularities within the small classes. Fig. 1 illustrates
an example of the problem that can be caused by lack of data. Fig. 1 (a) shows the decision
boundary (dashed line) obtained when using sufficient data for training, whereas Fig. 1 (b)
shows the result when using a small number of samples. When there is sufficient data, the
estimated decision boundary (dashed line) approximates well the true decision boundary
(solid line); whereas, if there is a lack of data, the estimated decision boundary can be very
far from the true boundary. In fact, it has been shown that as the size of training set
increases, the error rate caused by imbalanced training data decreases (Japkowicz and
Stephen, 2002). Weiss and Provost conducted experiments on twenty six data sets, taken
from the UCI repository, to investigate the relationship between the degree of class
imbalance and training set sizes (Weiss and Provost, 2003). They showed that when more
training data become available, the classifiers are less sensitive to the level of imbalance
between classes. This suggests that with sufficient amount of training data, the classification
system may not be affected by high imbalance ratio.

() (b)

Fig. 1. The effect of lack of data on class imbalance problem; the solid line represents the true
decision boundary and dashed line represents the estimated decision boundary.

2.3 Concept complexity

Concept complexity is an important factor in a classifier ability to deal with imbalanced
problems. Concept complexity in data corresponds to the level of separability of classes
within the data. Japkowicz and Stephen reported that for simple data sets that are linearly
separable, classifier performances are not susceptible to any amount of imbalance
(Japkowicz and Stephen, 2002). Indeed, as the degree of data complexity increases, the class
imbalance factor starts impacting the classifier generalization ability. High complexity refers
to inseparable data sets with highly overlapped classes, complex boundaries and high noise
level. When samples of different classes overlap in the feature space, finding the optimum
class boundary becomes hard. In fact, most accuracy-driven algorithms bias toward the
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prevalent class. That is, they improve the overall accuracy by assigning the overlapped area
to the majority class, and ignore or treat the small class as noise (Murphey et al., 2007).

The class imbalance problem is more significant when the data sets have a high level of
noise. Noise in data sets can emerge from various sources, such as data samples are poorly
acquired or incorrectly labeled, or extracted features are not sufficient for classification. It is
known that noisy data affect many machine learning algorithms; however, Weiss showed
that noise has even more serious impact when learning with imbalanced data (Weiss, 2004).
The problem occurs when samples from the small class are mistakenly included in the
training data for the majority class, and vice versa. For the prevalent class, noise samples
have less impact on the learning process. In contrast, for the small class it takes only a few
noise samples to influence the learned sub-concept. For a given data set that is complex and
imbalanced, the challenge is how to train a classifier that correctly recognizes samples of
different classes with high accuracy.

3. Existing approaches

To address the problems associated with imbalanced data sets, many studies have been
conducted to improve traditional learning algorithms. In this section, we review various
approaches, which have been proposed both at the data level, such as re-sampling and
combinations, and at the algorithmic level, such as recognition-based approach, cost-
sensitive learning and boosting.

3.1 Recognition-based approach

As discussed previously, certain discriminative learners such as neural networks, decision
trees, support vector machines and fuzzy classifiers tend to recognize the majority class
instances since they are trained to achieve the overall accuracy, to which the minority class
contributes very little. A recognition-based or one-class learning approach is another
alternative solution where the classifier is modeled on the examples of the target class (the
small class) in the absence of examples of the non-target class. One of the early systems that
utilize this recognition-based approach was proposed in (Japkowicz et al., 1995). It uses
neural networks and attempts to learn only from the target class examples and thus
recognizing the target concept, rather than to differentiating between majority and minority
instances of a concept. One-class learning approach is also applied to autoencoder-based
classifiers (Eavis and Japkowicz, 2000), SVMs (Raskutti and Kowalczyk, 2004), and ensemble
one-class classifiers (Spinosa and Carvalho, 2005). Here similar patterns from positive
instances of a concept are learnt, classifiers are then presented with unseen samples,
classification is accomplished by imposing a threshold on the similarity value. A too high
threshold will result in misclassifying positive samples, while a too low threshold will
include more negative samples. Since threshold draws the boundaries that separate the two
classes, choosing an effective threshold is crucial in one-class learning. Japkowicz shows that
one-class learning approach to solving the imbalanced class problem is better than
discriminative (two-class learning) approach (Japkowicz, 2001). However, recognition-based
approach cannot apply to many machine learning algorithms such as, decision tree, Naive
Bayes, and associative classifications. These classifiers are not constructed from only
samples of one-class.
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3.2 Cost-sensitive learning

In many applications such as medical diagnosis, fraud detection, intrusion prevention and
risk management, the primary interest is in fact in the small classes. In these applications, it
is not only the data distributions that are skewed, but so are the misclassification costs. Most
classical learning algorithms assume that all misclassification errors cost equally, and ignore
the difference between types of misclassification errors. One practical solution to this
problem is to use cost-sensitive learning methods (Elkan, 2001).

A cost-sensitive learning technique takes costs, such as misclassification cost, into
consideration during model construction and produces a classifier that has the lowest cost.
Let C'(i, j, denote the cost of estimating an example from class ¢ as class j. In a two class
problem, C'(+,—] signifies the cost of misclassifying a positive sample as the negative
sample, and '(—. +, denotes the cost of the contrary case. Cost-sensitive learning methods
take advantage of the fact that it is more expensive to misclassify a true positive instance
than a true negative instance, that is €'{+, =) = €{—, +). For a two-class problem, a cost-
sensitive learning method assigns a greater cost to false negatives than to false positives,
hence resulting in a performance improvement with respect to the positive class.

Existing cost-sensitive learning for dealing with imbalanced data sets can be divided into
two different categories. The first category consists of learning algorithms that are designed
to optimize a cost-sensitive function directly. One example is cost-sensitive decision tree,
proposed in (Ling and Li, 2004) that directly takes costs into model building. The
misclassification costs are used to choose the best attribute as a root of the tree. The second
category is a collection of existing cost-insensitive learning algorithms that are converted
into cost-sensitive ones. This category, also known as cost-sensitive meta-learning, can be
further divided into sampling, weighting, thresholding, and ensemble learning. Methods in
the weighting group (Alejo et al., 2007), convert sample-dependent costs into sample
weights; in other words, they assign heavier weights to the minority training instances.
Different weighting strategies have been reported: Nguyen and Ho proposed to weight
samples of the minority class based on the local data distributions (Nguyen and Ho, 2005),
and others suggested to weight training samples based on posterior probability (Tao et al.,
2005). Zhou and Lui conducted a rigorous comparison on the effects of oversampling, and
under-sampling, threshold-moving and ensemble classifiers in training cost-sensitive neural
networks (Zhou and Liu, 2006). They find that in training cost-sensitive neural networks,
threshold-moving and ensemble learning are relatively good choices in both two-class and
multi-class tasks. However, like many other solutions, they also have some drawbacks.
Cost-sensitive learning approach assumes the misclassification costs are known. In practice,
specific cost information is often unavailable because costs often depend on a number of
factors that are not easily compared. Moreover, Weiss found that cost-sensitive classifiers
may lead to over fitting during training (Weiss, 2004).

3.3 Sampling

One of the common approaches to class imbalance problem is sampling. The key idea is to
pre-process training data to minimize any discrepancy between the classes. In other words,
sampling methods modify the prior distributions of the majority and minority class in the
training set to obtain a more balanced number of instances in each class.
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Basic sampling methods. The two basic methods of reducing class imbalance in training
data are under-sampling and over-sampling. Under-sampling extracts a smaller set of
majority instances while preserving all the minority instances. Under-sampling is suitable
for large-scale applications where the number of majority samples is very large and
lessening the training instances reduces the training time and storage. However, a drawback
with under-sampling is that discarding instances may lead to loss of informative majority
class instances and degrade classifier performance.

In contrast, over-sampling increases the number of minority instances by replicating them
(Chawla et al., 2002, Japkowicz and Stephen, 2002). The advantage is that no information is
lost, all instances are employed. However, over-sampling also has its own drawbacks. By
creating additional training instances, over-sampling leads to a higher computational cost.
Moreover, if some of the small class samples contain labeling errors, adding them will
actually deteriorate the classification performance on the small class (Chawla et al., 2004).
Lastly, over-sampling duplicates majority instances rather than introducing new data, so it
does not address the underlying lack of data.

Despite the fact that sampling methods are widely used for tackling class imbalance
problems, there is no established way to determine the suitable class distribution for a given
data set (Weiss and Provost, 2003). The optimal class distribution is dependent on the
performance measures and varies from one dataset to another. However, effectively
sampling training instances can improve and overcome some of the weaknesses discussed
above. Next, we describe some of the advanced sampling methods that are reported to be
superior to random over-sampling and under-sampling.

Advanced sampling methods

In advanced sampling, instances are added or removed adaptively. Advanced sampling
methods may also combine under-sampling and over-sampling techniques. One of the
popular over-sampling approaches is SMOTE (Synthetic Minority Over-sampling
TEchnique), which attempts to add information to the training set by introducing new, non-
replicated minority class examples (Chawla et al, 2002). Generative over-sampling,
proposed in (Liu et al., 2007), is a variation of SMOTE. It creates new data points by learning
from available training data. In other words, a probability distribution is selected to model
the available minority class examples. Then new data points are generated from this model.
A drawback of this method is that when the number of examples of the minority class is not
adequate, the probability distribution estimates that model the actual data distributions may
not be accurate.

In an under-sampling scheme, instead of eliminating instances randomly, Yu and co-
workers proposed a different method to re-sampling the majority class instances (Yu et al.,
2007). The authors proposed to use vector quantization, which is a lossy compression
method, on the majority class to build a set of representative local models and use them for
training the SVM. Another informative re-sampling technique is cluster-based under-
sampling (Yen and Lee, 2009). In this technique, clustering is employed for selecting the
representative training samples to improve the predictive accuracy for the minority class.
Yen and Lee reported that this approach empirically outperforms other under-sampling
techniques. Yoon and Kwek also proposed to use clustering to reduce the imbalanced ratio,
called Class Purity Maximization (CPM) (Yoon and Kwek, 2005). CPM partitions the data
space into clusters, and filters out regions in the data space that consist of high majority class
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purity. Hence, only regions containing minority samples are used to build a predictive
model. CPM reduces the imbalance ratio and makes the learning task more tractable.

Active learning is also another solution to class imbalance problem. Ertekin et al. proposed
using active learning to select informative samples of the training set (Ertekin et al., 2007).
Similarly to re-sampling, active learning query technique creates balanced training sets at
the early stages of the learning process. This technique focuses on query instances near the
classification boundary rather than selecting randomly any instance. Active learning gives
the learners the ability to select examples adaptively. Furthermore, the risk of losing
important information is reduced, compared with the under-sampling approach. Active
learning does not create extra data as in oversampling.

3.4 Ensemble-learning methods

Another alternative solution for the class imbalance problem is ensemble-learning, in which
multiple classifiers are trained from the original data and their predictions are combined to
classify new instances. Boosting (Freund and Schapire 1996) and bagging (Breiman, 1996)
are two widely known ensemble-based approaches. Boosting algorithms, such as AdaBoost
(Leskovec and Shawe-Taylor, 2003), improve performance of weak classifiers by forcing the
learners to focus more on the difficult examples. Boosting algorithms have been adapted to
address the problem with small classes. At each boosting iteration, the distribution of
training data is altered by updating the weight associated with each sample. Examples of
algorithms that use boosting to address the class imbalance problems are SMOTEBoost
(Chawla et al., 2002), DataBoost-IM (Guo and Viktor, 2004), and cost-sensitive booting (Sun
et al., 2007). Both DataBoost-IM and SMOTEBoost improve boosting by combining data
generation and boosting procedures. To avoid over fitting, SMOTEBoost alters the data
distribution by adding new minority class samples using the SMOTE algorithm (Chawla et
al., 2002).

DataBoot-IM, proposed by (Guo and Viktor, 2004), generates data to balance not only the
class distribution but also the total weight within the class. Through experiments on
seventeen data sets, the authors showed that DataBoost method does not sacrifice one class
over the other but improve the predictive accuracies of both majority and minority classes.
A cost-sensitive booting algorithm for classification of imbalanced data was proposed in
(Sun et al., 2007), in which misclassification costs are integrated into AdaBoost learning. The
AdaBoost weight-update strategy is altered so that the weights of misclassified samples
from the small class increase at a higher rate compared to those of the prevalent class. The
weights of correctly classified samples from the small class reduce at a lower rate, compared
to those from the prevalent class.

Bagging is one of the ensemble-based meta-learning algorithms. Most current bagging
methods use a similar learning procedure: re-sampling subsets from a given training set,
building multiple base classifiers on those subsets, and combining their predictions to make
final prediction (Breiman, 1996). Several algorithms based on a variety of sampling
strategies are proposed, for example roughly balanced (RB) bagging (Hido and Kashima,
2008), underBagging (Liu et al., 2006), overBagging and SMOTEBagging (Wang and Yao,
2009). In underBagging, each subset from the training set is created by under-sampling the
majority classes randomly to build a classifier. RB bagging is a variation to underBagging: it
makes use of both minority samples and under-sampling majority samples. However, RB
bagging uses an effective under-sampling technique based on negative binomial
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distributions. In comparison, overBagging forms subsets simply by over-sampling the
minority classes randomly. SMOTEBagging (Wang and Yao, 2009) differs from
underBagging and overBagging in that it involves generating synthetic instances during
subset construction. The main advantage of bagging is that it maintains the class
distribution of the training set on which bagging is applied. However, bagging relies on a
simple strategy that is very limited for dealing with class imbalance problem, except from
changing the bag size and sampling step.

4. Classifier performance measures

Evaluation metrics play an important role in machine learning. They are used to evaluate
and guide the learning algorithms. If the choices of metrics do not value the minority class,
then the learning algorithms will not be able to handle the imbalance problem very well.
The commonly used metric for these purposes is the overall classification rate (i.e. accuracy).
However, on an imbalanced data set, the overall classification rate is no longer a suitable
metric, since the small class has less effect on accuracy as compared to the prevalent class.
Weiss and Provost conducted an empirical study on twenty-six data sets, and showed that
using the overall accuracy measure leads to poor performance for the minority class (Weiss
and Provost, 2003). Therefore, other metrics have been developed to assess classifiers
performance for imbalanced data sets. A variety of common metrics are defined based on
the confusion matrix (also called a contingency table). A two-by-two confusion matrix is
shown in Table 1.

True class
Positive Negative
Positive True Positives | False Positives
Prediction (TP) (EP)
class Negative False Negatives | True Negatives
(FN) (IN)

Table 1. Confusion matrix for a two-class classification task.

Among the various evaluation criteria, the measures that are most relevant to imbalanced
data are precision, recall, F-measure, sensitivity, specificity, geometric mean, ROC curve,
AUC, and precision-recall curve. These metrics share a commonality in that they are all
class-independent measures.

Precision, recall and F-measure. These metrics arise from the fields of information retrieval.
They are used when performance of positive class (the minority class) is considered, since
both precision and recall are defined with respect to the positive class.

e  Precision of a classifier is the percentage of positive predictions made by the
classifier that are correct.

P

Precison= ——
TP + FP

e  Recall is the percentage of true positive patterns that are correctly detected by the
classifier.
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P

Recall = ——
TP + EN

e  F-measure is defined as the harmonic mean of recall and precision (Fawcett, 2006).
A high F-measure value signifies a high value for both precision and recall.

2 x Recall x Precision

F-measure = —
Recall + Precision

Sensitivity, Specificity and Geometric mean. These measures are utilized when
performance of both classes is concerned and expected to be high simultaneously. The
geometric mean (G-mean) metric was suggested in (Kubat and Matwin, 1997) and has been
used by several researchers for evaluating classifiers on imbalanced data sets (Ertekin et al.,
2007, Karagiannopoulos et al., 2007, Su and Hsiao, 2007). G-mean indicates the balance
between classification performances on the majority and minority class. This metric takes
into account both the sensitivity, (the accuracy on the positive examples) and the specificity
(the accuracy on the negative examples):

Sensitivity = Recall

FP
Total Negatives

Specificity = 1 —

G-means = \/Sensitivity x Specificity

ROC and AUC. The receiver operating characteristic (ROC) and the area under the ROC
curve (AUC) are the two most common measures for assessing the overall classification
performance (Weiss, 2004). The ROC is a graph showing the relationship between benefits
(correct detection rate or true positive rate) and costs (false detection rate or false positive
rate) as the decision threshold varies. The ROC curve shows that for any classifier, the true
positive rate cannot increase without also increasing the false positive rate. The true positive
rate is the same as recall, and the false detection rate is equal to

FDR = fP .
Total Negatives

A ROC curve gives a visual indication if a classifier is superior to another classifier, over a
wide range of operating points. However, a single metric is sometimes preferred when
comparing different classifiers. The area under the ROC curve (AUC) is employed to
summarize the performance of a classifier into a single metric. The AUC does not place
more weight on one class over the another. The larger the AUC, the better is the classifier
performance.

Precision-Recall (PR) curve. Precision-recall curve is used in information retrieval in a
similar fashion as the ROC curve. The PR curve depicts the relationship between precision
and recall as the classification threshold varies.

Apart from the above evaluation metrics, a number of new evaluation metrics have been
proposed to take small class size into account when evaluating the end result. For
imbalanced data sets, not only the class distribution but also the misclassification costs are
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skewed. Hence, Weng and Poon introduced a new metric, weighted-AUC, that can take into
account the cost bias when evaluating classifier performance (Weng and Poon, 2008). Some
other authors had suggested that the ROC curve alone is not sufficient, and the effect of
imbalance class distribution should be analyzed when comparing different learning
algorithms (Landgrebe et al., 2004). Therefore, they proposed to use costs that are dependent
on class distribution such as positive fraction together with ROC curve. The positive fraction
is defined as the fraction of objects that are positively labeled.

Other metrics such as rank metrics, rank prop and soft ranks are proposed for training and
model selection (Caruanan, 2000). These metrics prevent learners from mainly optimizing
classification performance on the dominant class. Comparisons of several evaluation metrics
were conducted by Liu and Shriberg and found that a single measure such as precision,
recall, F-measure, sensitivity, specificity, G-mean or AUC provide limited information, since
each measure is designed to assess one particular property or decision point (Liu and
Shriberg, 2007). Hence, to analyze and compare learning algorithms involving class
imbalance, it is necessary to combine different metrics and performance curves such as ROC
and PR.

5. The proposed learning approach for imbalanced data set

In this chapter, we introduce a new learning approach that aim to tackling the class
imbalance problem. In our approach, we first propose a new under-sampling method based
on clustering. Here, a clustering technique is employed to partition the training instances of
each class independently into a smaller set of training prototype patterns. Then a weight is
assigned to each training prototype to address the class imbalance problem.. The weighting
strategy is introduced in the cost function such that the class distributions become roughly
even. In the extreme imbalance cases, where the number of minority instances is small, we
apply unsupervised learning to resample only the majority instances, and select cluster
centers as prototype samples, and keep all the small class samples.

The proposed learning approach, which combines unsupervised and supervised learning to
deal with the class imbalance problem, can be applied on any classifier model. In this
chapter, we apply the proposed learning approach to train feed-forward neural networks,
which is a classification model that has been used extensively in pattern recognition. Based
on the proposed learning approach, we derive and analyze the resilient back-propagation
training algorithm for feed-forward neural networks. The algorithm is implemented and
tested on some benchmark data sets.

5.1 Under-sampling based on clustering
Suppose that a multi-layer feed-forward neural network is to be trained on a given training
data set D of size M

Dy = {(zs,di)|ws € RV, i=1,2,..., M}

where 7; is the i-th input pattern and d. is the corresponding desired output vector. Let w
be a vector consisting of all free network parameters, including weights and biases. The
objective of supervised learning is to find a vector w, that minimizes a cost function. A
common objective function is the mean square error (MSE), defined as
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E(w) = MXNZZyU_ i), (1)

i=1 =1

where N is the number of neurons in the output layer, and v, is the network output.

When the numbers of training instances of different classes are uneven, the contribution
from each class to the objective function is not equal. In a two-class problem, the majority
class has a significant effect in the optimization process. Hence, we propose a more efficient
algorithm for training feed-forward neural networks. In this approach, a pre-processing step
is introduced to obtain a more balanced number of samples in each class. To this end,
unsupervised clustering is applied to training samples to extract cluster centers that yield a
compact representation of the majority classes.

Here, clustering is applied independently to each class. Therefore, each cluster contains
samples from the same class, and each class can have several clusters. We deal with
imbalanced data sets by assigning the same number of clusters to each class. When the
number of minority samples is small, we only apply unsupervised clustering to resample
the majority instances, and retain all the minority samples. After clustering, the data set is
reduced to K exemplars; each is represented by a cluster centroid cx and cluster size zx. Here,
the cluster size zx is simply the number of training samples in the cluster. Next, we present
the resilient back-propagation training algorithm that integrates the cluster centroids and
sizes into the learning rule.

5.2 Modified training algorithm

In the supervised learning stage, training samples are replaced by a set of cluster centroids,
which is then presented to the network along with the target outputs. To compensate for the
information lost during the clustering process, weights for each class are introduced in the
cost function, which is modified as follows.

1 K N
:NZZ ylm—dlm X Pk, (2)

where dy; is the i-th element of the target or desired output vector dx, and px is the cluster
weight. The cluster weight is defined as follow,

Zk

pkzia kzl,,K (3)
ZiV:C{ Wi Vki
where N¢ is number of classes in the training set, w; is the size of class i, and ki is the
degree of membership of cluster k in class i:

- {1 if ¢, € class 1 @)
Numerous optimization algorithms for minimizing E can be derived to train feed-forward
neural networks, such as gradient descent (GD), gradient descent with momentum and
variable learning rate (GDMV), resilient back-propagation (RPROP), and Levenberg-
Marwquardt (LM). We have implemented and analyzed these algorithms based on our
proposed learning approach (Nguyen et al., 2008). In this chapter, we only perform the

0 otherwise.
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analysis on the resilient back-propagation method (RPROP) to train the feed-forward neural
network, refer to (Nguyen et al., 2008) for other training methods. The RPROP training
algorithm updates network weights and biases according to w(t+ 1) = w(t) + Aw(t).
Because details of the standard RPROP algorithms can be found in (Riedmiller and Braun,
1993), we only summarize its main characteristics here.

Resilient back-propagation: Weight update depends only on the sign of the gradient
: o))
Awi(l) = —mgn{a—m(t)} X As(t), (1)

where A (t) is on adaptive step specific to weight w; (¢).

6. Experiments

In this section, we apply the proposed learning approach to four benchmark problems,
taken from UCI database repository (Asuncion and Newman, 2007). The benchmarks used
are the liver disorder, hepatitis, Wisconsin diagnostic breast cancer, and Pima Indian
diabetes data sets. These data sets are summarized in Table 2. Our aim is to study the
generalization capability of the proposed approach in tackling the class imbalance problem,
compared to the standard approach for training feed-forward neural networks.

The comparison is based on a five-fold cross validation in the classification tasks. For each
fold, the data set is partitioned into 60% for training set, 20% for validation set and 20% for
test set. Several networks are trained and the best performing network on the validation set
is selected to be evaluated on the test set. The average classification rate on the test set, over
the five folds, is used as an estimate of generalization performance. Since the overall
classification rate is not the most suitable tool for imbalanced data, other measures are also
used, including the geometric mean and F-measure.

Data sets Size Features Class Imbalanced ratio
distribution | (Majority/Minority)

Liver 345 6 145/200 1.38

Hepatitis 155 19 32/123 3.84

Pima diabetes 768 8 268/500 1.87

Wisconsin

Breast cancer 699 10 241/458 1.90

Table 2. Summary of data sets used in the experiments.

The comparison results of different training algorithms over all data sets are shown in Table
3. The modified training (Mod-RPROP) and the standard training (RPROP) achieve almost
similar classification rates (CRs). For examples, in the hepatitis data set, CRs of RPROP and
Mod-RPROP are 92.00% and 92.67%, respectively. However, the modified algorithm has
higher values of G-mean and F-measure than its counterpart. In the hepatitis data set, the G-
mean values of RPROP and Mod-RPROP are 90.80% and 91.65%, and the F-measure value
of RPROP and Mod-RPROP are 80.48% and 82.57%, respectively. This finding suggests that
the modified training algorithm exhibits good classification rates for all classes.

Fig. 2 shows the classification rates of each class over all data sets. The classification rates of
positive class (or the sensitivity) as well as classification rates of negative class (or the
specificity) are increased. For example, the sensitivity of Mod-RPROP increases by 1.38% in

www.intechopen.com



Learning Pattern Classification Tasks with Imbalanced Data Sets

205

liver data set, and 1.13% in Pima data set, compared to the standard RPROP. In terms of
specificity, the Mod-RPROP maintains the accuracies and in some occasions improves them.

Overall CR F-measure G-means
Data sets Mod- Mod- Mod-
RPROP | pooc, | RPROP | pooc | RPROP | pooc

Liver 73.91 74.78 66.53 67.66 70.80 71.79
Hepatitis 92.00 92.67 80.48 82.57 90.80 91.65
Pima 80.65 82.22 70.70 7211 77.60 7838
Diabetes
Breast Cancer | 98.13 98.27 97.35 9756 98.18 98.39

Table 3. Comparision of standard and reduced training algorithms on benchmark data sets.

Specificity Sensitivity
Data sets Mod- Mod-
RPROP RPROP RPROP RPROP

Liver 79.00 79.50 63.45 64.83
Hepatitis 88.33 90.00 93.33 93.33
Pima
Diabetes 79.40 79.80 75.85 76.98
Breast Cancer 98.02 98.02 98.33 98.75

Table 4. Classification rates of each class on benchmark data sets.
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Fig. 2. Comparison of the standard RPROP and Mod-RPROP trainging algorithms on four
data sets in terms of (a) classification rates of negative class and (b) classification rates of

positive class.

7. Conclusion

In this chapter, we discussed the problems that arise when learning with imbalanced data
sets, including between classes imbalance, within-class imbalance, the lack of data, and
concept complexity. Then we reviewed various methods and techniques that address the
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class imbalance problems, both at the data level (re-sampling and combinations) and the
algorithmic level (recognition-based approach, cost-sensitive learning and boosting). We
also discussed a number of evaluation metrics that have been developed to assess classifier
performance on imbalanced data sets. Then we presented a new approach that combines
unsupervised clustering and supervised learning to handle imbalanced data set and applied
this learning approach for training feed-forward neural networks. The proposed approach
can be applied to existing training algorithms. Experimental results show that the proposed
approach can effectively improve the classification accuracy of the minority classes, while
maintaining the overall classification performance.
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