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1. Introduction

The registration of tubular organs (pulmonary tracheobronchial tree or vasculature) of 3D
medical images is critical in various clinical applications such as surgical planning and radio-
therapy. For example, the pulmonary tracheobronchial tree or vascular structures can be used
as the landmarks in lung tumor resection planning; the quantifying treatment effectiveness
of the radiotherapy on lung nodules is based on the registration of the pulmonary tracheo-
bronchial tree or vessels; the planning inter-patients partial liver transplants use registered
contrast injection angiography (CTA) to create digital-subtraction contrast injection angiogra-
phy (CTA) of liver vessels. The bifurcation of the tubular organs plays a critical role in clinical
practices as well. Inflammation caused by bronchitis alters the airway branching configura-
tion which causes various breathing problems (Luo et al., 2007). Atherosclerotic disease at the
bifurcation has been widely known as a risk factor for cerebral ischemic episodes and infarc-
tion (Binaghi et al., 2001). The bifurcation points (or the branching points) have been chosen
to build the validation protocol of the registration methods (Gee et al., 2002).

Many researchers have developed various methods for registration of tubular organs from
medical images. Baert et al. (2004) used an intensity based 2D-3D registration algorithm to
register the pre-operative 3D Magnetic Resonance Angiogram (MRA) data to the interven-
tional digital subtraction angiography (DSA) images. Chan et al. (2004) proposed a 2D-3D
vascular registration algorithm based on minimizing the sum of squared differences between
the projected image and the reference DSA image. However, these registration methods are
all developed for applications with 2D-3D registration. Chan & Chung (2003) solves a 3D-
3D registration problem by transform the problem into 2D-3D registration problem. Aylward

��

www.intechopen.com



'�(���)�	�*�����������������
	�+�
�������
��,

et al. (2003) presented a registration method by registering a model of the tubes in the source
image directly with the target images. This method extracted an accurate model of the tubes
in the source image and multiple target images without extractions could be registered with
that model. However, this method does not utilize the information in the bifurcation points
of the tubular organs.

In this chapter, we present a rigid registration method of the tubular organs based on the
automatically detected bifurcation points of the tubular organs. There are two steps in our
approach. We first perform a 3D tubular organ segmentation method to extract the center-
lines of tubular organs and radius estimation in both planning and respiration-correlated CT
images. This segmentation method automatically detects the bifurcation points by applying
Adaboost algorithm with specially designed filters. We then apply a rigid registration method
which minimizes the least square error of the corresponding bifurcation points between the
planning CT images and the respiration-correlated CT (RCCT) images.

2. Method

Our method consists of two steps: the first step is the 3D tubular organ segmentation method
to extract the centerlines of tubular organs in both planning and respiration-correlated CT im-
ages with the analysis of the Hessian matrix and bifurcation detection using Adaboost with
specially designed filters (Zhou et al., 2007); in the second step, we apply a rigid registra-
tion method which minimizes the least square error of the corresponding bifurcation points
between the planning and respiration-correlated CT images. Without loss of generality, we
assume that the tubular organs appear brighter than the background and their centerlines
coincide with the ridges in the intensity profile. When the vessel tree is segmented, the orig-
inal CT images will be used. When the pulmonary tracheobronchial tree is segmented, the
inverted CT images will be used.

2.1 Tubular organ segmentation and bifurcation detection

2.1.1 Tubular organ direction estimation and normal plane extraction

The eigenanalysis of the Hessian matrix is a widely used method for tubular organs detec-
tion (Danielsson & Lin, 2001; Lorenz et al., 1997; Zhou et al., 2006). The signs and ratios of the
eigenvalues provide the indications of various shapes of interest, as summarized in Table 1.
Also, the eigenvector corresponding to the largest eigenvalue can be used as an indicator of
the elongated direction of tubular organs.
Given an image I(x), the local intensity variations in the neighborhood of a point x0 can be
expressed with its Taylor expansion:

I(x0 + h) ≈ I(x0) + hT∇I(x0) + hT H(x0)h

Eigenvalues Shape

λ1 ≤ 0, λ2 ≤ 0, λ3 ≤ 0 blob

λ1 ≤ 0, λ2 ≤ 0, λ3 ≈ 0 tube

λ1 ≤ 0, λ2 ≈ 0, λ3 ≈ 0 plane

λ1 ≤ 0, λ2 ≤ 0, λ3 ≥ 0 double cone

Table 1. Criteria for eigenvalues and corresponding shapes.
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Fig. 1. Tracing along the direction of the tubular organs. Figure shows e⃗3 and the normal plane
defined by e⃗1 and e⃗2.

where, ∇I(x0) and H(x0) denote the gradient and the Hessian matrix of I at x0, respectively.
Let λ1, λ2, λ3 and e⃗1, e⃗2, e⃗3 be the eigenvalues and eigenvectors of H such that λ1 ≤ λ2 ≤ λ3

and ∣⃗ei∣ = 1.

Tracing the centerlines of tubular organs by integrating along the elongated direction of tubu-
lar organs may be less sensitive to image noise (Aylward & Bullitt, 2002). Our method for
tracing the centerlines of tubular organs starts from a preselected point (and, thereafter, from
the point selected in the previous step) and follows the estimated direction of tubular organs
to extract intensity ridges. The intensity ridges in 3D must meet the following constraints:

λ1 ≪ 0, λ2 ≪ 0
e⃗1 ⋅ ∇I(x) ≈ 0 and e⃗2 ⋅ ∇I(x) ≈ 0

Note that the intensity reduces away from the ridge: λ1/λ2 ≈ 0. Also note that the ridge
point must be a local maximum of the plane defined by e⃗1 and e⃗2, while e⃗3 is normal to the
plane. Thus, e⃗1 and e⃗2 define the cross-sectional plane orthogonal to the tubular organs, while
e⃗3 provides the estimate of the tubular organs direction. Therefore, to trace tubular organs
centerlines, the cross-sectional plane defined by e⃗1 and e⃗2 is shifting a small step along the
direction of the tubular organs given by e⃗3 (Fig. 1).

2.1.2 Bifurcation detection using AdaBoost

Boosting is a method for improving the performance of any weak learning algorithm which,
in theory, only needs to perform slightly better than random guessing. A boosting algorithm
called AdaBoost improves the performance of a given weak learning algorithm by repeatedly
running the algorithm on the training data with various distributions and then combining the
classifiers generated by the weak learning algorithm into a single final classifier (Freund &
Schapire, 1996; Schapire, 2002). The proposed method uses AdaBoost with specially designed
filters for fully automatic detection of bifurcation points.

We design three types of linear filters to capture the local appearance characteristics: 2D Gaus-
sian filters to capture low frequency information; the first order derivatives of 2D Gaussian
filters to capture high frequency information, i.e., edges; the second order derivatives of 2D
Gaussian filters to capture local maxima, i.e., ridges (Lindeberg, 1999). These filters function
as weak classifiers for AdaBoost.

We design three types of linear filters to capture the local appearance characteristics: 2D Gaus-
sian filters to capture low frequency information; the first order derivatives of 2D Gaussian
filters to capture high frequency information, i.e., edges; the second order derivatives of 2D
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(a) (b)

(c) (d)

Fig. 2. (a) The cross-sectional planes of the pulmonary tracheobronchial tree with bifurcation
(top row) and without bifurcation (bottom row), (b) 2D Gaussian used for low frequency in-
formation detection, (c) the first derivatives of Gaussian used for edge detection, and (d) the
second derivatives of Gaussian used for ridge detection.

Gaussian filters to capture local maxima, i.e., ridges (Lindeberg, 1999). These filters function
as weak classifiers for AdaBoost.
Let G = G(µx, µy, σx, σy, θ) be an asymmetric 2D Gaussian, where

(

µx

µy

)

= R ×

(

x − x0

y − y0

)

, R =

(

cos θ − sin θ
sin θ cos θ

)

and, (σx, σy), (x0, y0), and θ are the standard deviation, translation, and rotational parameters
of G, respectively. We set the derivatives of G to have the same orientation as G:

G′ = Gx cos(θ) + Gy sin(θ)
G′′ = Gxx cos2(θ) + 2 cos(θ) sin(θ)Gxy + Gyy sin2(θ)

From the above equations, we tune x0, y0, σx, σy, and θ to generate the desired filters. For
a 15 × 15 sized window, we designed the total of 16, 200 filters—x0 × y0 × (σx, σy) × θ =
10 × 10 × 3 × 18 = 5, 400 filters for each of G, G′, and G′′. Some of the filter are shown in
Fig. 2.

We then normalized the cross-sectional planes obtained from the previous step to the size of
the filters and collected an example set containing both positive (i.e., samples with bifurcation)
and negative (i.e., samples without bifurcation) examples from the normalized planes. The
AdaBoost method is used to classify positive training examples from negative examples by
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selecting a small number of critical features from a huge feature set previously designed and
creating a weighted combination of them to use as a strong classifier. Even when the strong
classifier consists of a large number of individual features, AdaBoost encounters relatively
few overfitting problems (Viola & Jones, 2001).

During the boosting process, every iteration selects one feature from the entire feature set and
combines it with the existing classifier obtained from previous iterations. After a sufficient
number of iterations, the weighted combination of the selected features become a strong clas-
sifier with high accuracy. That is, the output of the strong classifier is the weighted sum of
the outputs of the selected features (i.e., weak classifiers): F = ∑t αtht(x), where αt and ht are
weights and outputs of weak classifiers, respectively. We call F the bifurcation criterion. Ad-
aBoost classifies an example plane as a sample with bifurcation when F > 0 and as a sample
without bifurcation when F < 0.

To estimate the generalization error of AdaBoost in classification, we applied bootstrap-
ping (Efron, 1983). We trained and tested the method on a bootstrap sample, i.e., a sample
of size m chosen uniformly at random with replacement from the original example set of size
m. the test error continues improving even after the training error has already become zero
and converges to error rate of 3.9% after about 20 iterations of boosting steps, i.e., 95% confi-
dence interval of 3.1∼4.6%.

2.1.3 Tubular organs radius estimation for 3D reconstruction

We use a deformable sphere model to estimate the radii of the tubular organs for 3D tubular
organs reconstruction (Zhou et al., 2007). At each of the detected center points as well as the
detected branching points, a deformable sphere is initialized. The position of points on the
model are given by a vector-valued, time varying function of the model’s intrinsic coordinates
u⃗:

x⃗(u⃗, t) = (x1(u⃗, t), x2(u⃗, t), x3(u⃗, t))T = c⃗(t) + R⃗(t)⃗s(u⃗, t)

where, c⃗(t) is the origin of a noninertial, model-centered reference frame Φ, R⃗(t) is the rotation
matrix for the orientation of Φ, and s⃗(u⃗, t) denotes the positions of points on the reference
shape relative to the model frame Metaxas (1997). The reference shape of a sphere is generated
in spherical coordinate system with fixed intervals along longitude and latitude directions in
the parametric (u, v) domain:

e⃗(u, v) =

⎛

⎝

x
y
z

⎞

⎠ = a0 ⋅

⎛

⎝

a1 ⋅ cos u ⋅ cos v
a2 ⋅ cos u ⋅ sin v
a3 ⋅ sin u

⎞

⎠

where, a0 ≥ 0 is a scale parameter and 0 ≤ a1, a2, a3 ≤ 1 are deformation parameters that
control the aspect ratio of the cross section of the sphere. We collected the parameters in e⃗(u, v)
into the parameter vector

q⃗s = (a0, a1, a2, a3)
T

The velocity of a point on the model is

˙⃗x = ˙⃗c + ˙⃗R⃗s + R⃗ ˙⃗s = ˙⃗c + B⃗
˙⃗
θ + R⃗ ˙⃗s =

[

I⃗ B⃗ R⃗J
]

˙⃗q = L⃗ ˙⃗q

where, θ⃗ is the vector of rotational coordinates of the model, B⃗ =
[

∂(R⃗s)/∂⃗θ
]

, J⃗ = [∂⃗s/∂⃗qs],

q⃗ =
(

q⃗T
c , q⃗T

θ , q⃗T
s

)T
, q⃗c = c⃗, q⃗

θ⃗
= θ⃗, and L⃗ is the model’s Jacobian matrix that maps generalized
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coordinates q⃗ into 3D vectors. When initialized near a vessel, the model deforms to fit to the
vessel due to the overall forces exerted from the edge of the vessel and comes to rest when q⃗
is found that minimizes the simplified Lagrangian equation of motion:

q⃗ = f⃗q⃗ =
∫

L⃗T f⃗ du

where, f⃗q⃗ is the generalized external forces associated with the degrees of freedom q⃗ of the

model and f⃗ is the external force exerted from the images. In this paper, we use Gradient
Vector Flow (GVF) field computed from the images as the external force (Xu & Prince, 1998).

2.2 Tubular organs registration

The registration is formulated as a rigid global deformation. We denote the bifurcation points
in the planning CT images as the source points and the corresponding bifurcation points in
the respiration-correlated CT images as the target points. Since our tubular organs tracing
starts from preselected points, the correspondence between the source points and the target
points can be easily determined. The global deformation is a transformation of a point x⃗ in the

planning CT image coordinate system into a point x⃗′ in the respiration-correlated CT image

coordinate system, that is, x⃗′ = M⃗ ⋅ x⃗, where M⃗ is the transformation matrix. Let X⃗P and X⃗B

be the bifurcation points for the planning CT images and respiration-correlated CT images,

respectively. The global deformation of X⃗P onto X⃗B is achieved by finding the parameters of
a 3D transformation that minimizes the least square error:

ε =
n

∑
i=1

∥

∥

∥x⃗B
i − M⃗ ⋅ x⃗P

i

∥

∥

∥

2

where, x⃗i is the i-th point of a deformable model in the homogeneous coordinate system. We
use Levenberg-Marquardt optimization method with the following Jacobian of the transfor-
mation as the metric to provide transformation parameter gradients:

∂ε

∂M⃗
= −

n

∑
i=1

2(x⃗B
i − M⃗ ⋅ x⃗P

i )(x⃗P
i )

T

3. Results

We applied our method on clinical lung CT data from six different patients. Each patient has
one planning CT data set and ten respiration-correlated CT (RCCT) data sets taken in one
complete respiratory cycle. They represent CT images at ten different points in the patient’s
breathing cycle. The number of slices in each CT scan ranged from 83 to 103 with 2.5mm
slice thickness(and also digitally resliced to obtain cubic voxels, resulting in 206 to 256 slices),
each of which are of size 512 × 512 pixels, with in-plane resolution of 0.9mm. All experiments
were performed on a PC with 2.0GHz processor and 2.0GB of memory. We first extracted
507 cross-sectional planes from the VOIs using cross-sectional plane extraction method. The
extracted planes were originally of size 30*30 pixels and were normalized to be the same size
as the filter, i.e., 15*15 pixels. The smallest diameter of bronchi in our samples was 3 pixels.
These example planes contained 250 positive (i.e., with bifurcation) and 257 negative (i.e.,
without bifurcation) examples. Our method was trained with 150 positive and 150 negative
examples and tested on 100 positive and 107 negative examples. We performed bootstrapping

www.intechopen.com
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(a) (b)

Fig. 3. Pulmonary tracheobronchial tree segmentation and bifurcation detection. (a) center-
lines superimposed on an isosurface of the initial image, (b) 3D reconstruction of pulmonary
tracheobronchial tree from the graph representation in (a). Blue points in (a) shows the bifur-
cation points detected by our method.

(a) (b)

Fig. 4. Registration results. Blue shows the 3D reconstruction of pulmonary tracheobronchial
tree in the registered planning images and red shows 3D reconstruction of pulmonary tra-
cheobronchial tree in the respiration-correlated images.

to estimate the generalization error of our method, obtaining the mean error rate of 3.1∼4.6%,
which is 95% confidence interval, as described in previous section.

Fig. 3 illustrates further visual validation of our segmentation method applied to the pul-
monary tracheobronchial structures. In Fig. 3(a), the extracted centerlines are superimposed
on the isosurface of the original CT images along with the detected bifurcation points by the
Adaboost learning method (shown in blue). Fig. 3(b) shows the 3D reconstruction of the pul-
monary tracheobronchial tree from the centerlines and bifurcation points in Fig. 3(a). Fig. 4
shows the registration results. The results are also summarized in Table 2. It shows that,
on average, the mean distance and the root-mean-square error (RMSE) of the corresponding
bifurcation points between the respiration-correlated images and the registered planning im-
ages are less than 2.7 mm. There are breathing-induced deformations in the tracheobronchial
tree, owing to the different amount of lung inflation in the different RCCT data sets. These
may partly explain the mean distance and the root-mean-square error (RMSE) in Table 2.
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Dataset Mean distance (mm) Root mean square error (mm)

Best 1.51 1.63

Worst 3.08 3.38

Average 2.17 2.63

Table 2. Results of the registration method on clinical datasets.

4. Conclusion

In this chapter, we present a novel method for tubular organs registration based on the au-
tomatically detected bifurcation points of the tubular organs. We first perform a 3D tubular
organ segmentation method to extract the centerlines of tubular organs and radius estimation
in both planning and respiration-correlated CT images. This segmentation method automat-
ically detects the bifurcation points by applying Adaboost algorithm with specially designed
filters. We then apply a rigid registration method which minimizes the least square error of
the corresponding bifurcation points between the planning CT images and the respiration-
correlated CT images. Our method has over 96% success rate for detecting bifurcation points.
We present bery promising results of our method applied to the registration of the plan-
ning and respiration-correlated CT images. On average, the mean distance and the root-
mean-square error (RMSE) of the corresponding bifurcation points between the respiration-
correlated images and the registered planning images are less than 2.7 mm.
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