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1. Introduction

The most of the classical time series literature suppose that the series are stationary (or that
the time series can be transformed in stationary series through some simple transformation,
such as differentiation), and that the series phenomenon is a linear process. In this sense, all
time series can be represented by linear models.
However, time series encountered in practice way not always exhibit characteristics of a linear
process, then there is not any reason that generalizes the linearity supposition for a real world
time series. In fact, the high complexity of the real world phenomena induce to think, more
naturally, about non-linear and chaotic structures presents in the data of time series than linear
structures.
Loosely speaking, a time series is a set of observations made sequentially in time. Examples
of real world time series abound in such fields as economics, business, engineering, natural
sciences (commonly in the meteorology, geophysics and biology), social sciences, etc (Lam,
1998). Phenomena like human breath rate, human electrocardiogram, earthquake, stock prizes
are some examples of real world time series. A typical intrinsic feature of a time series is that
the adjacent observations are dependent, where the nature of this dependence among time
series observations is of considerable practical interest. The time series analysis and forecasting
is concerned in mathematical and statistical (and more recently, computational) modelling for
analysis of this dependence.
Mathematical and statistical methods are successfully used for time series analysis and fore-
casting (Box et al., 1994; Gooijer and Kumar, 1992; Kantz, 2004), but sometimes these ap-
proaches are not trivial to apply in practical sense, considering that some times series (mainly
real world time series, as the financial or economical series, climatic series, etc) have a chaotic
and non-linear behavior and many types of components, such as trends, seasonality, impulses,
steps, model exchange and other uncontrolled features.
Alternatively, in the last two decades, the Artificial Neural Network (ANN) model have
been widely used in order to solve the time series forecasting problem, presenting less
mathematical complexity than the typical non-linear statistical methods. However, the ANN
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approach has a critical point, the correct adjust of its parameters, since this adjustment is
dependent of the problem. To solve this problem of adjustment, many Intelligent Hybrid
Systems have been proposed to model a time series, where an ANN has the parameters au-
tomatically adjusted, with a problem dependent procedure. A very promising approach is to
combine the ANN with others Artificial Intelligence techniques, as genetic algorithms, evolu-
tionary strategies, simulated annealing, among others, for enhancement the final time series
forecast.
In this chapter is presented some intelligent techniques as Artificial Neural Networks (Haykin,
1998), Genetic Algorithms (GA) (Goldberg, 1989), Particle Swarm Optimization (PSO) (Eber-
hart and Kennedy, 1995; van den Bergh and Engelbrecht, 2004), Greedy Randomized Adap-
tive Search Procedures (GRASP) (Feo and Resende, 1995; Resende and Ribeiro, 2003) and an
Intelligent Hybrid method, composed of an ANN combined with GRASP procedure and Evo-
lutionary Strategies, for chaotic and non-linear time series prediction, called GRASPES.
The GRASPES method is based on a multi-start metaheuristic for combinatorial problems to
train, to tune and to adjust the structure and parameters of an ANN. The GRASPES is capable
to evolve the parameters configuration and the weights in order to train the ANN, searching,
in evolutionary sense, the minimum number of relevant time lags for a correct time series
representation. It also looks for an optimal or sub-optimal predictive model. A detail experi-
mental procedure, explained step by step, is shown, where an investigation is conducted with
the GRASPES method with four different fitness function and with two time series. The results
achieved are discussed and compared, according to five well-known statistical performance
measures, like MSE, MAPE, POCID, Statistical of U Theil and ARV. Furthermore, in order to
fill some lacks of experimental justified guidelines to help the practitioners to find good pre-
dictions using these techniques, an experimental analysis is made according to different types
of fitness functions evaluations.
This document is organized as follows. In Section 3, some modelling strategies for non-linear
times series analysis are presented. Intelligent methods for computational modeling are de-
scribed in Section 4 and the problem of time series forecasting is defined in Section 2. The
proposed method is developed in Section 5. The statistical performance measures and the
fitness functions are presented in Section 6 and 7 respectively. Experimental results and some
discussions are presented in Section 8. Finally, Section 9 provides the conclusion and a few
remarks.

2. Time Series Forecasting Problem

In the branch of statistics, signal processing, or many other study fields, a time series is a set of
data points, measured generally at successive times, spaced at (often uniform) time intervals,
defined by,

Xt = {xt ∈ R | t = 1, 2, 3 . . . N}, (1)

where t is the temporal index and N is the number of observations. Therefore, Xt is a sequence
of temporal observations orderly sequenced and equally spaced.
The objective of the forecast problem is to apply some prediction techniques for the time series
Xt and to identify patterns presents in the historical data, building a model able to identify
the next time patterns. This kind of problem is not always easy to solve, considering that a
real world time series has a huge complexity.
In this context, a most relevant factor for a good forecasting performance is the correct choice
of the time lags considered for a time series representation. For situations where there is a clear
linear relationship among historical data of a phenomenon, the functions of auto-correlation
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and partial auto-correlation are capable of identifying the important lags. Such procedure is
usually applied in linear models, such as Box-Jenkins’ models (Box et al., 1994).
However, when working with complex time series, which is the general situation in real
world applications, the structures of relationship among historical data are actually non-linear,
which makes the analysis procedure of the time lags based on those functions only a crude
estimate.
Such relationship structures among historical data constitute a d-dimensional state space,
where d is the minimum dimension capable of representing such relationship. Therefore, a
d-dimensional state space can be built so that it is possible to unfold a time series in its in-
terior. Takens (Takens, 1980) has proved that if d is sufficiently large, such built state space
is homeomorphic to the state space which generated the time series. Thus, Takens Theorem
(Takens, 1980) has provided the theoretical justification that it is possible to build a state space
using the correct lags, and if this space is correctly rebuilt, guarantees that the dynamics of
this space are topologically identical to the dynamics of the original system’s state space.
In this way, it verifies that the main problem in the rebuilding of the state space is the correct
choice of dimension d, i.e., the correct choice of the relevant time lags necessary for system
dynamics characterization. In literature, can be found many methods used for the definition
of the lags(Pi and Peterson, 1994; Savit and Green, 1991; Tanaka et al., 2001). Such methods
are usually based on measures of conditional probabilities, which consider:

xt = f (xt−1, xt−2, . . . , xt−d) + Rt (2)

where f (xt−1, xt−2, . . . , xt−d) is a possible mapping of the pasts values to the facts of the future
and Rt is a noise term. Generally, Rt decreases with the increase of d, and if the system is
totally deterministic, Rt tends to zero when d exceeds the minimum embedded dimension
necessary for the system description. With this kind of procedure, the objectives are to define
the minimum embedded dimension capable of representing the series, to find the sensibility
of xt with respect to the time lags, and to estimate the size of the noise.
The exhibited method in this chapter does not discard any possible correlation that can exist
between the series data, even higher order correlations, since it carries out an iterative auto-
matic search for solving the problem of finding the relevant time lags using an evolutionary
algorithm.

3. Computing and Mathematical Modelling

The term model is normally used for a structure which has been built purposely to exhibit
the behavior of some other objects. Generally only some features and characteristics will be
retained in the model depending upon the use.
Many models used for time series forecasting have standard forms, where they try to capture
the time series features. One of these models is the popular ARIMA model (Box et al., 1994),
which is the most common choice among the practitioners for time series prediction, but it is
not the best choice for the case of non-linear time series forecasting problems (Rodrigues et al.,
2008)
Furthermore, statistical parameters are obtained as a result of modelling uncertainty about
problem data by specification of probability distributions over these data. The value of a sta-
tistical model stem from the ability to represent solutions that hedge against multiple possible
future outcomes. In deterministic and linear model, optimal solutions tend toward extreme
point solutions which rely on a limited set of activities (basic variables) and force a solution
to meet critical constraints tightly. Thus, to model real problems, statistical parameters have
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been used with Mathematical Programming, Differential Equations and Cellular Automata.
Particularly, Kantz (2004) has been presented the most common strategies these approaches.
As reported by Derek Holmes (Robert R. Mc Cormick school of Engineering and Applied Sci-
ence - Northwestern University - http://users.icms.northwestern.edu), many de-
cision problems can be modeled using mathematical programs, which seek to maximize or
minimize some objective which is a function of decisions. The possible decisions are con-
strained by limits in resources, minimum requirements. Decisions are represented by vari-
ables. Objectives and constraints are functions of the variables, and problem data. Stochas-
tic programs are mathematical programs where some of data incorporated into the objective
or constraints is uncertain. Uncertainty is usually characterized by a probability distribu-
tion on the parameters. Although the uncertainty is rigorously defined, in practice it can
range in detail from a few scenarios (possible outcomes of the data) to specific and precise
joint probability distributions. It is possible to formulate a Stochastic Linear Program, as
shown on the Argonne National Laboratory (Mathematics and Computer Science Division
- http://www.mcs.anl.gov), like a task that seek to minimize the cost of the first-stage
decision plus the expected cost of the second-stage recourse decision:

Min cT x + EwQ(x, y),

subject to
Ax = b and x ≥ 0,

where
Q(x, y) = Min d(w)Ty,

subject to
T(w)x + W(w)y(w) = h(w).

The first linear program(LP) minimizes the first-stage direct costs, cT x plus the expected re-
course cost, Q(x, y), over all the possible scenarios while meeting the first-stage constraints,
Ax = b.
The cost Q depends both on x, the first-stage decision, and on the random event, w. The
second LP describes how to choose y(w) (a different decision for each random scenario w). It
minimizes the cost dTy subject to some function, Tx +Wy = h. This constraint can be thought
of as requiring some action to correct the system after the random event occurs.
One important issue to notice in stochastic programs is that the first-stage decision, x, is in-
dependent of which second-stage scenario actually occurs. This is called the non-anticipativity
property. The future is uncertain and so today’s decision cannot take advantage of knowledge
of the future. In this way, we can treat the events as independent ones and approximations
on expected values are mathematically possible as to convert the problem in a deterministic
equivalent one, which is used in Kantz (2004).
Therefore, intelligent methods for computational modelling have been successful applied to
capture the chaotic and non-linear behavior of forecasting real time series (Ferreira et al., 2005;
Ghiassi et al., 2005; Rodrigues et al., 2008; Zhang et al., 1998).

4. Intelligent Methods for Computational Modelling

In the field of intelligent computing there are several approaches that can be used for com-
putational modeling. The techniques to be used are determined by the problem at hand, for
problems such as classification or recognition of patterns can be used RBF networks, Support
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Vector Machines (SVMs), KNN (K-Nearest Neighbors Algorithm), Meta-Heuristics, among
others. For optimization problems can be utilized Genetic Algorithms, Particle Swarm Op-
timization, among others. For forecasting problem, Neural Networks , Multi-Layer Percep-
tron, Jordan type or Elman type, are heavily used and generally are combined with others
techniques as Evolutionary Algorithms (Genetic Algorithms, Evolution strategy, Evolution-
ary programming and Genetic programming) and others approaches as Particle Swarm Opti-
mization or SVMs for example.
In the next sections will describe some techniques used to further the time series forecasting
problem.

4.1 Artificial Neural Networks – Multi-Layer Perceptron

An Artificial Neural Networks (ANN) is a mathematical model inspired in a biological neural
network which automatically extract useful patterns to represent the desired information. The
ability to learn through examples and to generalize the learned information is one of the most
attractive characteristics of the ANN.
The key element of this abstract model is the structure of the information processing dis-
tributed system. It is composed of a large number of highly interconnected processing units
divided in layers, but working in union to solve a determinate problem. Through a learning
process, where adjustments to the synaptic connections that exist between the neurones, the
ANN seek the best possible solution, being a similar process to biological neurons.
Each ANN is create and configured for a specific application, such as data classification or
forecasting problem. The ANN is used with successful in solving time series forecasting prob-
lems due to its characteristic of modeling complex non-linear relationships among data (Ghi-
assi et al., 2005), without any prior supposition of the data nature.

Fig. 1. Multi-Layer perceptron networks with link switches.

The possibility to improve the prediction performance of ANN can be achieved through the
correct adjustment of its parameters. The main problem is to determine the optimal or sub-
optimal values of these parameters. Whereas that all parameters are problem dependent, it is
a very complex task to find them into a very wide universe of possibilities. However, a layer
ANN just solve a set of linearly separable problems, so to solve non-linearly separable prob-
lems, it is necessary to use at least one hidden layer ANN, according to Cybenko(Cybenko,
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1989), who also proved that an ANN is an universal approximate function since the ANN has
at least one hidden layer.
As the goal of this work is to predict continuous functions, then a MultiLayer Perceptron
(MLP) networks with three layers of type i-j-k should be used, where i denotes the number
of time lags (processing units in input layer), j denotes the number of processing units in
hidden layer (sigmoidal units) and k denotes the number of processing units in output layer
(the chosen prediction horizon here is of one step ahead, so k = 1 should be used).
Three possible distinct forms of modeling the ANN are proposed (NetMod = 1, 2, 3), where
each one is described below and its parameters are:

• Wij, weight of connections of the input layer for the intermediary layer;

• Wjk, weight of connections of the intermediary layer for the output layer;

• b1
j , bias of the intermediary unit;

• b2
k , bias of the output unit,

where all these parameters are real values.
The first ANN model (NetMod = 1), uses the sigmoidal activation function for all hidden pro-
cessing units. The output processing unit uses a linear activation function where a sigmoidal
function is applied to its bias. The output of ANN is given by,

yk(t) =
nh

∑
j=1

WjkSig

[ nin

∑
i=1

(WijZi(t)− b1
j )

]

− Sig(b2
k), (3)

where Zi(t) (i = 1, 2, . . . , nin) are the ANN input values, nin denotes the ANN input number
and nh is the hidden units number. Since the prediction horizon is one step ahead, only one
output unit is necessary (k = 1). The term Sig is a sigmoidal function,

Sig(x) =
1

1 + exp(−x)
. (4)

The utilization of the sigmoidal function to the bias, in this model, is the assumption of the
linear correlation between the delay and a possible non-linear behavior of the series.
The Second ANN model (NetMod = 2), consists of hidden units activated by a sigmoidal
function with its output layer using a linear function, given by:

yk(t) =
nh

∑
j=1

WjkSig

[ nin

∑
i=1

(WijZi(t)− b1
j )

]

− b2
k . (5)

The Third ANN model (NetMod = 3), applies the sigmoidal activation function to all process-
ing units, given by:

yk(t) = Sig

{ nh

∑
j=1

WjkSig

[ nin

∑
i=1

(WijZi(t)− b1
j )

]

− b2
k

}

. (6)

These three MLP modeling (NetMod = 1, 2, 3) can be combined with other systems, and it
will search by architecture that better describes the time series phenomenon.
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4.2 Genetic Algorithm

Genetic Algorithms (GA) (Goldberg, 1989) are a technique of directed random search widely
applied in complex optimization problems. They are particularly interesting for employment
in situations where the number of parameters is very large and analytical solutions are very
difficult, or impossible, to obtain. The modified GA (MGA) exhibited here was originally
proposed by(Leung et al., 2003) where new genetic operations were introduced to improve its
performance.

4.2.1 Population

The population is composed of individuals (chromosomes), where each of these individuals
represents a possible model for time series prediction: an ANN and its parameters.
Initially, the first set of population, P, is generated randomly, P = {ind1, ind2,
. . . , indpop_size}, where indi (i = 1, 2, . . . , pop_size) are the individuals that make up the
population and pop_size is the population size. Each individual, or chromosome, is composed
of genes (the parameters of the solution) given by

X = (x1, x2, . . . , xp) (7)

where xi (i = 1, 2, . . . , p) are the solution parameters and p is the maximum parameters num-
ber.
Each chromosome in the population is evaluated (Section 7) and the better chromosomes re-
turn higher fitness values.

4.2.2 Selection

In each generation, two chromosomes in the population will be selected to undergo a ge-
netic operation (crossover operation) by the fitness proportionate method. A popular selec-
tion method is the spinning the roulette wheel(Goldberg, 1989; Leung et al., 2003), where the
chromosome having a higher fitness value should therefore have a higher chance of being
selected (higher potential parents will produce better offspring).

4.2.3 Genetic Operations

After the selection process, two chromosomes (parents) are combined to generate new chro-
mosomes (offspring) by genetic operations. The genetic operations include the crossover and
mutation operations.
The crossover operation is the basic means for exchanging information from the two parents
(p1 and p2). These parents will produce one offspring composed of four new chromosomes
(four sons), according to the following mechanisms:

C1 = [c1
1 c2

1 · · · cno_Vars
1 ] =

p1 + p2

2
(8)

C2 = [c1
2 c2

2 · · · cno_Vars
2 ] = pmax(1 − w) + max(p1, p2)w (9)

C3 = [c1
3 c2

3 · · · cno_Vars
3 ] = pmin(1 − w) + min(p1, p2)w (10)

C4 = [c1
4 c2

4 · · · cno_Vars
4 ] =

(pmin + pmax)(1 − w) + (p1 + p2)w

2
(11)

Pmax = [para1
max para2

max · · · parano_Vars
max ] (12)
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Pmin = [para1
min para2

min · · · parano_Vars
min ] (13)

where w ∈ [0 . . . 1] denotes a weight to be determined by user, max(p1, p2) and min(p1, p2)
denotes the vector with each element obtained by taking the maximum and minimum, re-
spectively, among the corresponding element of p1 and p2, no_Vars denotes the number of

variables to be tuned and para
j
min and para

j
max are the minimum and maximum values of the

parameter X
j
i for all i, respectively.

According to the Equations 8 – 11, the potential offspring spread over the state space defined
by Pmax and Pmin. Equations 8 and 11 result in searching around the center region of the state
space (if w → 1 then C4 → C1), whereas Equations 9 and 10 move the potential offspring near
to the domain boundary (if w → 1 then C2 → Pmax and C3 → Pmin).
After the potential offspring are generated by the crossover operation, the best offspring is
chosen, and if this offspring is better than the worst chromosome from the old population,
then this offspring replaces the worst chromosome.
Each one of the four new chromosomes generated by the crossover process is cloned and its
clones undergo the mutation operation, where three new chromosomes are generated by,

MCi,α = [c1
i c2

i · · · cno_Vars
i ] + [δ1mc1

i δ2mc2
i · · · δno_Varsmcno_Vars

i ] (14)

where α = 1, 2, 3 is the mutation index, i = 1, 2, 3, 4 is the offspring index, δu (u =
1, 2, . . . , no_Vars) can only take values 0 or 1, and mcu

i (u = 1, 2, . . . , no_Vars) are randomly
generated numbers that satisfy the constraint parau

min ≤ cu
i + mcu

i ≤ parau
max. Small mutation

are more likely than largest ones(Eiben and Smith, 2003) therefore a gaussian, with normal
distribution, is used to perform the mutation operation .
The first mutation operation (α = 1) is such that only one δu is 1 and all the others are 0
in Equation 14. The second mutation operation (α = 2) is obtained by Equation 14, where
some δu, randomly chosen, are set to 1 and others are set to 0. The third mutation operation
(α = 3) is obtained with all δu equal to 1 in Equation 14. A real number is randomly generated
and compared to a user defined number pMut ∈[0 . . . 1] (accepted mutational probability).
If the real number is smaller than pMut then the mutated chromosome replaces the chromo-
some with the smallest fitness in the population. However, if the real number is larger than
pMut, then the mutated chromosome replaces the chromosome with the smallest fitness of the
population if and only if its fitness is greater than the fitness of the worst chromosome in the
population.
The stopping criterion are: training progress, where the GA will stop when occurs a defined
number of generations without a percentage increase the average of the population, and the
maximum generations number.
The steps necessary for implementing the whole modified GA algorithm are shown below
(Algorithm 2).

4.3 Particle Swarm Optimizer Fundamentals

The Particle Swarm Optimization (PSO) is an optimization technique based on a particle
population of randomly solutions (i.e. individuals) to the optimization task at hand, where
the population is referred to as swarm. At each iteration, each particle moves by the search
space in the direction of its own personal best solution found so far, as well as in the direction
of the global best position discovered so far by any of the particles in the swarm (van den
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begin
τ → 0; // τ: Number of iteration

initialize Pop(τ); // Pop(τ): population for iteration τ

evaluate f (Pop(τ)); // f (Pop(τ)): fitness function

while not termination condition do
τ → τ + 1;
select two parents p1 and p2 from Pop(ø);
perform crossover operation according to Equations 8 to 11;
perform mutation operation according to Equation 14 to generate three new
chromosomes MC1, MC2 and MC3;
// Reproduce a new Population

The chromosome generated by the crossover operation with the largest fitness
value replaces the chromosome with the smallest fitness value in the
Pop(τ − 1);
for i=1 to 3 do

// pMut: probability of Mutation acceptance

if random number < pMut then
MCi replaces the chromosome with the smallest fitness value in the
Pop(τ − 1)

else
if f (MCi) > smallest fitness value in the Pop(τ − 1) then

MCi replaces the chromosome with the smallest fitness value in
the Pop(τ − 1)

evaluate f (Pop(τ));

end

Fig. 2. Procedure of the Modified GA

Bergh and Engelbrecht, 2004). In this way, if any particle discovers a promising solution, the
swarm is guided to the new solution in order to explore more thoroughly the found region.
Assume that the swarm size is given by s. Each individual (1 ≤ i ≤ s) has a current position
in search space (xi), a current velocity (vi) and a personal best position in the search space (yi).
Assuming that the function f is to be minimized, the swarm consists of n particles, and at each
iteration, each swarm particle velocity is updated by

vi,j(t + 1) = wvi,j(t) + c1r1[yi,j(t)− xi,j(t)] + c2r2[ŷj(t)− xi,j(t)] , (15)

where j ∈ 1, 2, . . . , n, ŷj(t) denotes the current position in search space (found by any swarm
particle), yi,j(t) represents the personal best position in the search space (found by each swarm
particle), vi,j is the velocity of the j-th dimension of the i-th particle, c1 and c2 represent the
acceleration coefficients, which control how far a particle will move in a single iteration, and
r1 ∼ U(0, 1) and r2 ∼ U(0, 1) are elements from two uniform random sequences in the interval
[0,1]. The term w is referred to as inertia weight, in which this value is typically setup to vary
linearly from 1 to near 0 during the course of the procedure. It is worth to mention that
this is reminiscent of the temperature adjustment schedule found in Simulated Annealing
algorithms(van den Bergh and Engelbrecht, 2004).
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Thus, the new particle position is updated by

xi(t + 1) = xi(t) + vi(t + 1). (16)

The personal best particle position and the global best particle found by any particle during
all previous iterations are updated by equations (17) and (18), respectively.

yi(t + 1) =

{

yi(t) if f (xi(t + 1)) ≥ f (yi(t)),
xi(t + 1) otherwise.

; (17)

ŷ(t + 1) = argmin f (yi(t + 1)). (18)

begin
initialize the particle population;
while stop criterion not satisfied do

for i = 1 to s of population swarm do
if f (xi(t)) < f (yi(t)) then

yi(t) = xi(t);
end
if ( f (yi(t)) < f (ŷi(t))) then

ŷi(t) = yi(t);
end

end

end
update the velocity and position of each particle according to equations (13) and
(14);

end

Fig. 3. Particle Swarm Optimizer Procedure

The term vi is normalized in the range [−vmax, vmax] in order to reduce the likelihood of par-
ticles leaving the search space. It is worth to mention that this mechanism doesn’t restrict
the values of xi in the range of vi, it only limits the maximum distance that a particle will
move during each iteration(van den Bergh and Engelbrecht, 2004). Figure3 illustrates the PSO
procedure.

4.4 The GRASP Method

The GRASP (Resende and Ribeiro, 2003) method is a randomly interactive technique which
each iteration consists of two phases: construction and local search.
The construction phase builds a feasible solution, whose neighborhood is investigated until a
local minimum is found during the local search phase. The best overall solution is kept as the
result. The general expectation is that, given a sub-optimal solution, closed to it there will be,
with high probability, other sub-optimal (or optimal) solutions. The search will tend to look
around of such solution, stopping when a local optimum model is found.
A problem of combinatorial optimization, is defined by the finite set of data D = {1, 2, . . . , N},
the set of possible solutions G ⊆ 2D, and the objective function f : 2D → R. For minimization
problems, searches for the excellent solution S′ ∈ G such that f (S′) =< f (S)∀S ∈ G. The
ground set D, the cost function f , and the set of feasible solutions G are defined for each
specific problem for example as described on Algorithm 4.
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begin GRASP
initialize MaxIter, Seed;
Read Input();
for i=1 to MaxIter do

Solution ← Greedy Randomized Construction(Seed);
Solution ← Local Search(Solution);
UpdateSolution(Solution, BestSolution);

end
return BestSolution;

end

Fig. 4. Pseudo-code of the GRASP metaheuristic (Resende and Ribeiro, 2003).

5. The GRASPES Method

The GRASPES (Rodrigues et al., 2008) is basically a combination of Evolutionary Strate-
gies(ES) and the GRASP method (Section 4.4).
For methods based on evolutionary computation (Evolutionary Strategies are a part of evo-
lutionary computation), the process of biological evolution is mimicked. Population is com-
posed by set of trial solutions of the problem, being each solution (individual) coded by a
parameter vector (data structure, referred to as chromosome).
Let X be a chromosome defined by,

X = (x1, x2, . . . , xp; σ1, σ2, . . . , σp) (19)

where xi and σi are respectively the solution parameters and the mutation step size of each pa-
rameter with i = 1, 2, . . . , p and p is the maximum parameters number. The model represented
by Equation 19, used to describe a three-layer ANN parameters, coded the chromosomes in
the population.
The mutation operation is defined by Eiben and Smith (2003) ,

X′ = (x′1, x′2, . . . , x′p; σ
′
1, σ

′
2, . . . , σ

′
p), (20)

with
σ
′
i = σi · exp(τ′ · N(0, 1) + τ · Ni(0, 1)), (21)

x′i = xi + σ
′ · Ni(0, 1), (22)

where τ
′ ∝ 1/

√

2 f , τ ∝ 1/
√

2
√

f , f is the degree of freedom and N(0, 1) is a normal gaussian

distribution.
Each individual codifies a three layer Multilayer Perceptron (MLP) ANN, which represents a
model for time series forecasting. An ES initialize one individual I, which is a potential solu-
tion, generated randomly. The individual will be evaluated by the fitness function, Equation
29 described on Section 7, where betters individuals will return higher fitness values. The
ES clones the father’s chromosome Ip and will then undergo a operation of mutation which
changes the genes of the chromosome. For tuning the ANN structure (Leung et al., 2003), inte-
ger random numbers are generated to define the ANN number of time lags (processing units
in input layer i), the number of processing units in hidden layer (sigmoidal units j) and the
modeling of the ANN. For each weight of the optimal individual I the mutation is applied as
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described in the Equations 20, 21 and 22. This new individual is evaluated and will be saved,
if and if only, its solution quality (Section 7) is better than the actual father.
This steps will be repeated until the mutated individuals number criterium or the size of the
population n is reached. When this fact occur, it will be said that a Parent’s Generation (PG)
occurs and if this PG has any offspring better than father it will substitute the father. The
stopping criterion are: progress of PG evolution, where the method will stop if a PG iteration
number occur without better individual generation (a individual is considered “better” when
your fitness is greater, a percentage value, than the father), or a maximum PG number. The
basic steps of the method are described in the Algorithm, 5.

begin GRASPES
initialize parent;
evaluate f (parent); // f (·): fitness function
while not PG criterium reached do

clone parent;
for w=1 to number of iteration per father do

define the input layer i and hidden layer j;
perform mutation operation on sons Iτ ;
evaluate f (Iτ);
if f (Iτ) > parent’s fitness value then

save the offspring;
if the size of n was reached then

break;
end

end

end
if ( f (parent) - f (o f f spring)) > % of minimal fitness) then

the individual will be the new parent;
end

end

end

Fig. 5. Pseudo-code of the GRASPES Method

6. Error Measure

For the forecasting problem, the natural measure of performance is the prediction error. How-
ever, there is no universal measure adopted (by the literature of the branch) to evaluate the
prediction (Tashman, 2000). Error measures also play an important role in calibrating or refin-
ing a model so that it will forecast accurately for a set of time series (Armstrong and Collopy,
1992). The use of only one error for evaluate the model performance (e.g., MSE), not shows
the behavior of the predict (Clements and Hendry, 1993) in a clear way, for this reason more
performance criteria should be considered for make robust the evaluation of the results and
final desirable goals (Tashman, 2000).
Considering T the value to be predicted of the time series (target) and O the model output
(prediction), five well known error measure are considered to evaluate the prediction perfor-
mance:
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MSE (Mean Squared Error):the most popular measure used for performance prediction,

MSE =
1

N

N

∑
j=1

(

ej

)2
, (23)

where N is the amount of the target points on the set and ej = (Tj − Oj).
MAPE (Percentage Average Error):

MAPE =
1

N

N

∑
j=1

∣

∣

∣

∣

∣

ej

Xj

∣

∣

∣

∣

∣

(24)

where Xj is the point of the set in the instant j.
U of Theil Statistics: it is based in the predictor MSE, normalized by a random walk forecast
error. A random walk model assumes that optimum value for the time t+ 1 is the value gotten
in the time t, plus a noise term. Thus, the U of Theil Statistics can be given by:

Theil =
∑

N
j=1

(

Tj − Oj

)2

∑
N
j=1

(

Tj − Tj+1

)2
. (25)

that associates the model performance with a random walk model. If the U of Theil Statistics
is equal to 1, the predictor has the same performance of a random walk model. If the U of
Theil Statistics is greater than 1, then the predictor has a worse performance than a Random
Walk model, and if the U of Theil Statistics is less than 1, the predictor is better than a random
walk model. So, the predictor is usable if its U of Theil Statistics is less than 1, and tends to
the perfect model if the U of Theil Statistics tends to zero.
POCID (Prediction of Forecast the Alterations of Direction): measures the percentage of rightness
with the trend of the series, if the future value will to go up or to go fall in relation to the
current value.

POCID = 100

N
∑

j=1
Dj

N
, (26)

with

Dj =

{

1 if (Tj − Tj−1)(Oj − Oj−1) > 0,

0 other case.
(27)

ARV (Average Relative Variance): measures the relative performance model gain of the predic-
tion of the series average,

ARV =
∑

N
j=1(Oj − Tj)

2

∑
N
j=1(Oj − T)2

(28)

where N, Tj, and Oj are the same parameters of the other evaluation measures, and T is the
time series mean. If the ARV value is equal to 1, the predictor has the same performance as
calculating the mean over the series, if the ARV value is greater than 1, the predictor is worse
than simply taking the mean, and, if the ARV is less than 1, then the predictor is better than
considering the mean as the prediction. So, the predictor is usable if the value of ARV is less
than 1, and tends to the perfect model when the ARV tends to zero. In an ideal model, the
POCID tends to 100% and all other error measures tends to zero.
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7. Fitness Function

The first important feature about fitness computation is that it represents 99% of the total
computational cost of evolution in most real-world problems. Second, the fitness function
very often is the only information about the problem in the algorithm: any available and
usable knowledge about the problem domain should be used (Eiben and Schoenauer, 2002).
Basically, the fitness function (aptitude), assigns a fitness value to each point in the space,
where this value can be seen as a measure of how good a solution, represented by that point
in the landscape, is to given problem (Hordijk, 1996). The correct choice of the fitness function
is fundamental for a good solution of the problem.
For the best ANN model choice (of each individual), it is calculated its fitness function through
of error measure, which is:

f itness = fn(I) (29)

where the functions are:

f1(I) =
1

1 + ARV
(30)

f2(I) =
1

1 + MSE
(31)

f3(I) =
1

1 + THEIL
(32)

f4(I) =
POCID

1 + ARV + MSE + THEIL + MAPE
(33)

8. Experimental Results

There is no only and universal way adopted for define the cardinality of the data set, but
one common example used is divide the series in three sets: training set with 50% of the
data, validation set with 25% of the data and test set with the last 25% of data. In order
to be able to concentrate on the effects of the methods, it makes sense avoid unnecessary
complications due to effects of other much more components (Jansen et al., 2005). For this
reason all series investigated were normalized to lie within the interval [0;1] and the MLP
networks are not trained by any conventional algorithms like backpropagation (Haykin, 1998)
for example, avoiding the possibility that the training method could interfere in the general
search.
Conclusions about the accuracy of various forecasting methods typically require comparisons
across some time series (Armstrong and Collopy, 1992). Two financial time series were used
for evaluation of the GRASPES (Dow Jones Industrial Average Index and S&P500 Stock In-
dex).
For each time series with a different fitness function, ten experiments were repeated and the
results with the best individual according with the best value of the validation fitness function
(of the test set) is chosen to represent the model. For the predictions (with 1 step ahead of
prediction horizon), the methods automatically choose a window time with length between 1
lag and 10 lags for the time series representation and the size of the j-layer (between 1 and 10).
In addition, experiments with two hybrid methods to training an ANN (one using a modified
genetic algorithm -MGA- and another using particle swarm optimization -PSO) are used for
comparison with the proposed method.
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The termination conditions for the GRASPES are increase of 1% of the minimal population
fitness average value better than the previous (in the case of GRASPES the population is only
one individual), after 10000 generations or when the fitness function of the validation set
decrease 1% with respect to last round.

8.1 Standard & Poor 500 (S&P500)

The S&P500 Stock Index is a index of market values of the most negotiated actions in the
New York Stock Exchange (NYSE), American Stock Exchange (AMEX) and Nasdaq National
Market System. The S&P500 series corresponds to the monthly records from January 1970 to
August 2003, constituting a database of 369 points. In order to reduce exponential trend of the
S&P500 Stock Index, the natural logarithm was applied to the original values of the series.

MGA PSO GRASPES

Measures f3 f4 f1 f2 f3 f4

ARV 0.015 0.053 0.009 0.012 0.011 0.044

MAPE 0.012 0.240 0.009 0.010 0.010 0.020

MSE(10−4) 1.776 6.988 1.183 1.418 1.416 4.896

POCID 77.419 51.111 67.391 68.817 67.391 72.043

THEIL 1.760 9.704 1.166 1.407 1.395 4.871

Table 1. Results - S&P500 - Best Individuals

The table 1 shows the experiments results, where for the MGA (Modified Genetic Algorithm)
methodology the best fitness function was the f3, for the PSO methodology the best fitness
function was the f4 and for the GRASPES method all fitness functions were shown. The
GRASPES has always a superior performance when compared with the hybrid method us-
ing PSO. The Table also shows that when the GRASPES uses the fitness function f1, f2 and f3

the MGA beat only the POCID error.
Figures 6, 7, 8 and 9 show the results of the test set according with the target (solid lines) and
the predict values (dashed lines).
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Fig. 6. Prediction os S&P500 series with Fitness Function f1.

Fig. 7. Prediction os S&P500 series with Fitness Function f2.
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Fig. 8. Prediction os S&P500 series with Fitness Function f3.

Fig. 9. Prediction os S&P500 series with Fitness Function f4.
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8.2 Dow Jones Industrial Average (DJIA)

The Dow Jones Industrial Average (DJIA) Index series corresponds to daily records from Jan-
uary 1st 1998 to August 26th 2003, constituting a database of 1420 points.

MGA PSO GRASPES

Measures f1 f4 f1 f2 f3 f4

ARV 0.034 0.049 0.032 0.034 0.033 0.033

MAPE 0.098 0.143 0.095 0.098 0.096 0.097

MSE(10−3) 0.909 1.200 0.831 0.827 0.823 0.842

POCID 52.112 47.025 51.685 52.112 51.267 52.112

THEIL 1.087 1.986 0.998 0.991 0.986 1.009

Table 2. Results - DJIA - Best Individuals

Table 2 shows that the GRASPES has always a superior performance when compared with
the hybrid method using PSO. The Table also shows that when the GRASPES uses the fitness
function f2 and f3 the POCID error is the same as MGA and the others error are better.
Figures 10, 11, 12 and 13 show the results of the test set according with the target (solid lines)
and the predict values (dashed lines).

Fig. 10. Prediction os DJIA series with Fitness Function f1.
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Fig. 11. Prediction os DJIA series with Fitness Function f2.

Fig. 12. Prediction os DJIA series with Fitness Function f3.
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Fig. 13. Prediction os DJIA series with Fitness Function f4.

9. Conclusions

In this chapter was presented a summary of how use the intelligent computational modelling
for time series forecasting and the importance of the correct choice of the fitness function.
Three methodology were employed for adjust the parameters of an ANN, a Modified Genetic
Algorithm (MGA) (Section 4.2), a Particle Swarm Optimization (PSO) (Section 4.3) and the
GRASPES Method (Section 5).
The success of evolution control is highly dependent of the optimization algorithm and the fit-
ness function complexity (Buche et al., 2005). As affirmed in the Section 7, the fitness function
assigns a fitness value to each individual in the population of Evolutionary Algorithm, at any
time, measuring how good is a solution. This solution is represented by a point in the land-
scape. When an algorithm has a possibility to be guided by different fitness functions, each
one will walk on the space, pointing in a different way. The experiments presented here show
that the choice of the fitness function is also very important as the choice of the intelligent
method employed for time series modelling.
The results reached with the MGA and PSO methods were developed in independent way
and can be found at (de Mattos Neto et al., 2009; Rodrigues et al., 2009), respectively. In
the Rodrigues et al. (2009) was employed eight different fitness functions, where the fitness
function of Equation 32 achieved the best performance for the S&P500 index series and the
fitness function 3 obtained the best result for the Dow Jones Industrial Average index series.
However, in the (de Mattos Neto et al., 2009) the main goal was to develop the combination
between the intelligent techniques ANN and PSO. For this reason, only one fitness function
was applied (fitness function given by Equation 33)
Analyzing the S&P500 index results obtained here is possible to observe that the statistical
error measures have a strong accomplished. These statistical measures present many times a
competitive behavior. For example, observing the Table 1 for the GRASPES method, the fitness
function f2 (Equation 31) is directly based on MSE error, but f2 has a inferior performance for
the MSE error than the fitness function f1 (Equation 30) which is based on ARV error. This
observation shows that the choice of the fitness function is not a trivial decision.
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According to the Table 2, where the experimental results for the Dow Jones Industrial Average
are exhibits, it is possible to observe that the variation among the analyzed fitness functions
are not significative. This observation shows that the sensibility of the choice of the fitness
function for the Dow Jones Industrial Average is very low in comparison with the S&P500
index results, i.e., small changes of the fitness function evaluation could lead to a significantly
improved forecast performance.
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