L=

. L . -
View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by IntechOpen

We are IntechUpen,

the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

Open access books available International authors and editors Downloads

Our authors are among the

154 TOP 1% 12.2%

Countries delivered to most cited scientists Contributors from top 500 universities

pTE AN
Q)Q ¢, ;,))

G

“ BOOK
CITATION
INDEX

NDEXE®

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

https://core.ac.uk/display/322388889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

29

Evaluation of the interface prototypes using
DGAIU abstract representation models

Susana Gémez-Carnero and Javier Rodeiro Iglesias
University of Vigo
Spain

1. Introduction

The user interface is determinant for the success or failure of a software application. Its
development is demanding as referring to time and costs of production. Myers and Rosson
(Myers & Rosson, 1992) determine—according to inquiries on developers—that the efforts
employed in building the interface of an interactive software rate around the 48%, whereas
Garthner Group (Garthner Group, 1994) situate them around the 70%. Hence, optimizing
the quality of the user interface by means of an effective design becomes vital so as to obtain
its maximum acceptability.

The acceptability of a user interface is measured according to three main points:

1. ;Is the user interface kind to the user view? In this case, the acceptability would be
linked to the aesthetical properties of the interface. The load memory of the user or its
functional correctness is not considered. The main point so far is that the user interface
remains friendly and kind to the user’s view.

2. ;(Does the user interface do what it has to do? Testing whereas the user interface remains
useful to accomplish successfully the tasks it was created for, both in the sense of its capacity
to do what the user wants, and with respect to the user’s capacity to do what the interface
wants. This second point is closely related to the tasks that a user will have to perform over
the user interface.

3. ¢Is the use of the user interface easy for the user? Here, the usability term is introduced
(Shackel, 1986) (Eason, 1988) (ISO, 1992) (ISO, 1993) (Nielsen, 1993) (IBM, 1993). If a user
considers that the use of the user interface is too complicated, the user may not accept this
user interface even though it may still remain efficient or aesthetically kind to the user.

The assessment of the functionality of these criteria, then, is really complicated. This remains
so because of the means whereby the assessment has generally being carried out, mainly
drawing on subjective appreciations through polls or inquiries on experts’ opinions or
questionnaires made to the users (Molich & Nielsen, 1990) (Preece & Rogers, 1994) (Nielsen,
1993) (Wharton, 1994). Therefore, and given the subjectivity of the user interface assessment
in user interface qualitative evaluation techniques, it would be interesting to reach a more
direct and discrete method of assessment in order to avoid the ‘inaccuracy’ of subjective
perception. A possible solution for this would be that the user got to interact with a
prototype of the user interface generated from a specification model obtained in a previous

www.intechopen.com

518 Human-Computer Interaction

phase of analysis of its requirements. Hence, the user could obtain a more rigorous view of
the user interface, while helping the early identification of possible problems before time
and money are ineffectually spent for the industry. Most of the evaluation methods are
conceived after the creation of the software. Due to the costs of software development, then,
it seems reasonable to suggest as necessary doing the evaluations previously to any software
implementations.

There exists a great amount of research on the above mentioned criteria, but most of it is in
theoretical state and isn’t yet available for implementation. In fact, after the examination of
different representation techniques in order to study whether these criteria can apply to
complex interfaces—and thus derive an objective manner for their assessment—the
conclusion is that these criteria remain somewhat unpractical and incomplete. Therefore, we
present here an alternative notation that allows representing the user interface in an abstract
manner while paying attention to its components, to its visual presentation (in graphic
terms) and to its interaction with the user.

In this chapter, we present the part of the notation which represents the functionality of the
user interface, so that the outcome will be a user interface that allows us to do
semiautomatic assessments minimizing the developmental and evaluative costs. In section
2, we introduce the part of the notation corresponding to user interface behaviour
representation. Section 3, then, proceeds to the notation that has to be used for test
evaluation. In section 4 the EAU tool is introduced, which will allow users a dynamic
assessment of the functionality of the user interface through an interactive simulation. And
finally, in section 5, we expose the conclusions drawn out of this chapter’s research.

2. DGAUI Representation

There is literature on user interface representation models. Reviewing research on different
models for user interfaces, and focusing on those that proposed the visual representation
mode (Gomez-Carnero, 2008), we here consider that the nature of the problems deriving
from these models makes it necessary to come across an alternative solution. The proposed
DGAUI representation is premised over the fact that the visual user interface is not a
continuous structure. In fact, it argues that the visual user interface is made of discrete finite
elements known as user interface components that define the interface as a composition of
individual elements. These user interface components follow a topological hierarchy, so that
one component may be contained within another (Rodeiro, 2001).

The notation for the definition of the visual user interface allows:

- To define the visual user interface components, with standard graphical
primitives if the component has visual representation in the user interface; or
else to determine properties if the component is for input information or simply
a container of other user interface components.

- To determine the topological composition of visual user interface components so
as to create the visual user interface with which the user interacts in a given
moment.

- To represent the dialogue between the different components within the user
interface, signalling the events to which a component reacts to and the manner
in which the other visual user interface components respond to this.

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models 519

The best choice in structuring the notation is XML. This will allow creating a DTD that will
ease the parsing of notation structures.

Paying attention to the semantics of the notation, the first part conveys the initial
representation of the visual user interface, while the second communicates the
representation of the structure of any of the states that the user interface experienced
derived of the interaction of its components—including as well the transitions between
states. Given that the nature of the two parts in the notation is so discordant, we divide the
notation in two DTD. The first (called DGAUI-DEF) consists of a detailed definition of each
of the user interface components that constitute an interface. This separation is effective for
the reusability of component definitions in other visual user interface representations. The
second DTD (called DGAUI-INT) depends on the first, for this second notation is calculated
from the first. The DGAUI-DEF contains all the states that a visual user interface can reach.
This set of states can be calculated from the initial representation of the user interface. The
initial state is made of the properties introduced into the user interface components’
definition. After the onset state, a series of possible individual events that may take place
over a user interface component or over the components in a state are simulated, and the
changes produced on the components will determine a new state (one that already exists or
one that is identified as new) and a transition between the actual state and the new state.
This is the application of the concept the state diagrams for a user interface but generates
from interaction on individual user interface components. This notation is oriented to the
state of the visual user interface components instead of being oriented to the state of the
whole visual user interface. An overall state of the visual user interface would be obtained
from the combined states of the different components in a visual user interface.

Thus, the notation conveys the separation between the presentation and the behaviour of the
user interface. The presentation is located in the representation definition while the
functionality is located on the states and the transitions between states. These transitions
between states are calculated using hypothetical user actions (events) on the visual user
interface components and using also events of the system.

By interface state we understand any of the conjunctions of the visual user interface
components that, according to the value of its properties, can be reached through the
interaction with a user in a given moment.

For the definition of the notation we consider that:

- The user actions are not arbitrary.

- The set of visual user interface states are finite and can be described and evaluated.

- A visual user interface state depends on the components that form it and their
properties.

- A state is a moment in the visual user interface in which the visual user interface is
waiting for a user’s action, and where the visual user interface does not change
while the user is not interacting with it.

Thus, each state is characterized by the value that the components of an interface acquire
according to the following four properties:

- Visible: Indicating the visibility of the component. Visible (T) or not Visible (F) on
screen.

- Active: Indicates if the component responds to a user’s actions (T) or not (F). If the
component has Activo (F) in a state it doesn’t exist transition to other state caused
by this component.

www.intechopen.com

520 Human-Computer Interaction

- Infl: This property activates the input of data associated to the component. If the
component property has the value of True it will accept data given by the user.

- InfO: The output of data associated to the component is activated. If this property
has value True the component will show the data sent from the “core” of the
application to the user.

Events are user’s actions over input hardware devices on the system. These are detected by
the system which will respond to them according to the behavioural patterns set for the
system to follow. An event is a single user action; for example, drag and drop is the
combination of three single actions or events: click, move and release. Similarly, we can
define pre-conditions and post-conditions for the events. If an event is defined using the
notation of a visual user interface component and it has no pre-condition, the changes in
other components can take place only if the event over this component is produced. For
example, in the event RightClick over ComponentTwo the condition is
“ComponentOne:Activo(T)” (the property Activo of componentOne has value True); here,
the user action over ComponentTwo will not be performed if the value of ComponentOne in
property Activo is F. For post-conditions, though, we need to define the values of the
properties that must be satisfied in order to reach the next state, that is, we need to define
the values of the transitions.

The notation does not limit the events that can be defined for interaction. The HCI engineer
can define the events that she/he considers necessary and communicate their meaning to
the workgroup. Some examples of basic events that we use are:

- LeftClick: click over left Mouse button.

- RightClick: click over right Mouse button.

- ReLeClick: Release left Mouse button.

- ReRiClick: Release right Mouse button.

- MouseOn: Mouse pointer over a component.

- Key(key of keyboard): keyboard keys combination.

It is possible to calculate the events from the states with DGAUI from the events of the
components in the visual user interface. Thus, if we know that a component is affected by an
event, we can build an oriented labelled state graphic of the user interface and establish
which will be its following state. The vertexes are the states of the visual user interface and
the labelled arcs are the transitions between states. There are two particularly important
states for the functionality of the interface:

- Initial state: a vertex in which all the associated arcs are exit arcs and in which there
are no entrance arcs which may possibly be reached without passing through the
initial state.

- Final State: a vertex in which all the associated arcs are input arcs and where there
is none of exit. The existence of two or more vertexes that only have input arcs is
symptomatic of an anomaly in the visual user interface, for it will correspond to
two different Final States.

A set of possible derivative states may be obtained from the initial state if a user’s action is
performed over it. This is done by applying the events over the visual user components with
property Activo(T) and by making the associate changes of interaction on the other visual
user components. The rest of the states can be obtained from this first set of derivative states

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models 521

by applying the same processes to each one of the states, until reaching a final state where
any visual user component has value True in the properties Active and Visible.

It is possible to identify transitions or arcs, labelled with a component and the event that is
applied in order to trigger the state, from previously identified states, during the obtaining
stage in the process of state creation in the user interface.

Two states are equal, and therefore, the same state, if all their visual user interface
components have the same values in properties Active, Visible, Infl and InfO. The
components that belong within a state are the ones that have some function within the state.
A visual user interface component belongs to a state if it has some functionality. This
functionality may derive from a visual appearance that conveys relevant information about
the interface to the user (in this case the component property Active has value True). Or else,
the functionality may derive from the fact that the visual user interface component causes
changes on the properties of other components when an event is triggered. In any case, one
of the advantages of this notation system is that it allows the modification of the visual
properties of a component without causing any variations in its behaviour (the user cannot
see the component but its behaviour is maintained along intermediate states).

If the modification of the appearance of a visual user interface component is so that it
changes the functionality of the component, this would result in the configuration of a
different visual user interface component. The interpretation of the appearance of the
component in a visual user interface by the user must be unique for each visual user
interface component and must also help to identify and clarify its functionality to the user.
Otherwise, the component will remain ambiguous and the visual user interface design will
be wrong.

This situation is common in interactive models that use interactors for the specification of
components. The specification of the interactor is given or defined to specify the different
states that may be reached by a component through its interaction with a user. According to
the traditional specification of interactors, there is a definite functionality and a unique
appearance for each state interactor. There is no model considering multiple renderings or
visualizing options for a unique given interactor state. This is so because the specification
centres on the dialogue of the interactor instead of on its visual appearance.

In the DGAUI proposal, there exists the possibility of different appearances for the
components in the visual user interface—counting on their being triggered by a user’s
actions by means of visual operations—but the behaviour of the visual user interface
component is always the same. Visual operations are, for example, resizing or changes on
the size of visual user interface components. By resorting to the DGAUI, the consistence of
the visual interface is implicitly maintained, for two visual user interface components
created with the same appearance should follow the same behavioural pattern. And even if
the appearance of the visual user interface component is altered or modified as the result of
a personal choice made by the user, this modification will not affect the behaviour of the
visual user interface component.

The DGAUI proposal does not consider the representation of abstract information in the
application because this work is oriented to the early stages in the prototyping of the
application. The participation of visual user interface components as elements that may
allow the user to choose the input and output of information on the user interface is defined
including in version 3.04 the domain definition of data or the mask for text input. If a user’s
action changes dramatically the appearance of a visual user interface component, then this

www.intechopen.com

522 Human-Computer Interaction

new appearance would be a new visual user interface component, and hence, a different
visual user interface state.

If the visual user interface is correct there should only exist a state in which all the visual
user interface components would have the properties Active and Visible with value False (in
the final state). Likewise, the initial state of the user interface can be unequivocally identified
from the representation of the visual user interface components in the DGAUI-DEF, through

an examination of their properties.

In order to simplify its comprehension, here follows a description of the DTD DGAUI-DEF.

Item Description

<IELEMENT Composicion (Componente+)>

The composition indicates the
topologic relation among the
components contained within a
containing component.

<IELEMENT Componente (Alineado?,
Equiespaciado?, Subcomponentes)>

<!ATTLIST Componente
Nombre CDATA #REQUIRED
>

Each component is identified by a
name and contains a group of
subcomponents which facilitates the
identification of the alignment
characteristics and the equidistant
spacing for each subcomponent.

<IELEMENT Alineado (#PCDATA)>

<IATTLIST Alineado

opcion (iz | de | su | in)
#REQUIRED
>

It signals that the contained
components are aligned. There are
various possibilities: right or left
alignment, or else top or bottom
alignment, all of which occur at a
given distance in pixels.

<IELEMENT Equiespaciado (Nombre+)>
<IELEMENT Nombre (#PCDATA)>

It highlights that the contained
components are equidistant from one
another and from the borders of the
containing component.

<IELEMENT Subcomponentes (Cont+)>

Grouping of the subcomponents in
the containing component.

<IELEMENT Cont (#PCDATA)>
<IATTLIST Cont
Infl CDATA #IMPLIED
InfO CDATA #IMPLIED

The component introduces
information given by the user (Infl).

The component shows information
from the application (InfO).

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models

523

<IELEMENT Descripcion (Grafico* | Texto* |
Enumeracion*)*>

The description of each component in
the interface signals that it can be a
graphic, a textual component, or a
graphic defined by enumeration.

<IELEMENT Grafico ((Rectangulo | Linea
| Circulo | Elipse | Poligono), EstiloLinea?,
AnchoLinea?, ColorLinea?, ColorRelleno?,
Posicién?, Tamano?, Datos?)>

<IATTLIST Grafico
Nombre CDATA #REQUIRED
Visible (t | f) #REQUIRED
Activo (t | f) #REQUIRED
InfI (t | f) #IMPLIED
InfO (t | f) #IMPLIED

The graphic component is defined by
its name, a primitive, the style,
wideness and color of its line, its
filling color, its position and size, as
well as the type of data that may get
into the system or out of the system
through such a component.

<IELEMENT Rectangulo (Coordenada,
Coordenada)>

The rectangle derives from two
coordinates that determine their
diagonal.

<IELEMENT Linea (Coordenada,
Coordenada)>

The line derives from two coordinates
that determine its ends.

</ELEMENT Circulo (Coordenada, Radio)>
<!ELEMENT Radio (#PCDATA)>

The circle derives from a coordinate
that determines the circle’s centre and
from a number that indicates its
radio.

<!IELEMENT Elipse (Coordenada,

Coordenada, Angulolnicio, AnguloFin)>
<IELEMENT Angulolnicio (#?CDATA)>
<IELEMENT AnguloFin (#PCDATA)>

The ellipsis derives from the main
rectangle within the ellipsis and from
two angles: an onset angle and an
ending angle.

<IELEMENT Poligono (Coordenada,
Coordenada, Coordenada+)>

The polygon derives from the
coordinates which determine its
vertexes.

<IELEMENT Coordenada (Px, Py)>
<IELEMENT Px (#PCDATA)>
<IELEMENT Py (#PCDATA)>

Every coordinate derives from a
given position for the X axis and
another for the Y axis.

www.intechopen.com

524 Human-Computer Interaction
<IELEMENT EstiloLinea EMPTY>
<IATTLIST EstiloLinea The StUdy of the line admits two
Estilo (continua | discontinua) values: continuous and
#REQUIRED discontinuous.
>
<IELEMENT AnchoLinea (#PCDATA)> Pixel size of the primitive line.
<IELEMENT ColorLinea (#PCDATA)> Line color in format RGB XXXXXX
<IELEMENT ColorRelleno (#PCDATA)> | Filling color in format RGB XXXXXX
The position of a component
determines its location within a
<!ELEMENT Posicion (Fija | Relativa)> Cont.ammg. compc?nent or w1tl:1m the
<IELEMENT Fija (Coordenada)> dev1?e. ThlS. position may be fixed or
<IELEMENT Relativa (OpCRel? relative, signalled by topologic
éoor denada)> " restrictions in the area OpCRel; in any
case, this position derives from a
!
<§$§§f§j}; ?iiﬁig;i?gado | coordinate that signals its left top
’ ' position (with respect to its
containing component or else to the
visualizing device)
<IELEMENT Centrado EMPTY> The component is centered according
<IATTLIST Centrado to its containing component. The
' . centering may be horizontal, vertical
) Tipo (h | v | a) #REQUIRED or both.
<IELEMENT Justificado
(#PCDATA)> Alignment of the component on the
IATTLIST ficad right, left, top or bottom sides of a
<) i]u§t1 tcado containing component according to a
4REQUIRED Tipo (de [iz | su | in) given number of pixels.
>

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models

525

<IELEMENT Tamano (Valorx, Valory)>

<!IATTLIST Tamano
Tipo (fijo | relativo) #REQUIRED
>
<IELEMENT Valorx (#PCDATA)>
<IELEMENT Valory (#PCDATA)>

Size of the component within the
containing component or within the
visualizing device.

<IELEMENT Datos (Tipo?)>
<IELEMENT Tipo (#PCDATA)>

<IATTLIST Tipo
Longitud CDATA #IMPLIED
Rangolnf CDATA #IMPLIED
RangoSup CDATA #IMPLIED
Decimales CDATA #IMPLIED

Conditions to be met by the input and
output of data in the interface;
attributes may vary depending on the
type of data.

<IELEMENT Texto (Txt, Fuente,
TamanoFuente, ColorFuente, EstiloFuente,
Posicion, Tamano)>

<IATTLIST Texto
Nombre CDATA #REQUIRED
Visible (t | f) #REQUIRED
Activo (t | f) #REQUIRED

>

<IELEMENT Txt (#PCDATA)>
<IELEMENT Fuente (#?CDATA)>
<!IELEMENT TamanoFuente (#PCDATA)>
<IELEMENT ColorFuente (#PCDATA)>
<IELEMENT EstiloFuente (#PCDATA)>

The textual component is defined by
the text that it presents, its type, size
and font color; besides, it also
conveys the characteristics of size and
position. The size can be fixed or
relative.

<!IELEMENT Enumeracion
Posicion, Tamano)>

(Fichero,

<!IATTLIST Enumeracion
Nombre CDATA #REQUIRED
Visible (t | f) #REQUIRED
Activo (t | f) #REQUIRED

<!ELEMENT Fichero (#PCDATA)>

The graphic components by
enumeration contain the folder’s
route that contains the corresponding
graphic’s image.

www.intechopen.com

526

Human-Computer Interaction

<!IELEMENT Dialogo (ItemDialogo*)>

The dialogue about the components
in the interface is formed by.

<IELEMENT ItemDialogo
(Precondiciones?, Respuesta)>

<!ATTLIST ItemDialogo
Elemento CDATA #IMPLIED
Evento CDATA #REQUIRED
>

Each ItemDialogo is made of the
component from which the dialogue
derives (Element), the event that
triggers it, the preconditions that
must be met, and the answer that
such event triggers on the component.

<IELEMENT Precondiciones
(Precondicion+)>

<IELEMENT Precondicion (#PCDATA)>

<IATTLIST Precondicion
Visible (t | f) #IMPLIED
Activo (t | f) #IMPLIED
InfI (t | f) #IMPLIED
InfO (t | f) #IMPLIED>

The preconditions indicate the
condition/s that must be met for the
dialogue to be produced.

<IELEMENT Respuesta (Cambio+)>
<IELEMENT Cambio (#PCDATA)>

<IATTLIST Cambio
Visible (t | f) #IMPLIED
Activo (t | f) #IMPLIED
InfI (t | f) #IMPLIED
InfO (t | f) #IMPLIED
ProcID CDATA #IMPLIED
>

The answer indicates the changes
occurred in the properties of other
components.

Table 1. DTD DGAIU-DEF

The visual user interface component definition, the topological composition, and the
dialogue between components are constants for a visual user interface. The information that
is introduced for each state of the visual interface refers to the values of the properties in the
visual user interface components.
Once the states which a visual user interface goes through are obtained we use a state graph
(multidigraph) to represent the whole set of transitions between states. In the state graph,
the vertexes correspond to the visual user interface states and the arcs represent the
transitions from one state to another. The arcs are labelled with the name of the visual user
interface component and the event that causes the transition.

The XML document (DGAUI-INT) contains the following information:

The Topological Composition of the visual user interface components contained in

other visual user interface components.

The Information about the evolution of the visual user interface. All the visual user
interface states are defined by the description and properties of its components.

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models 527

The initial state is obtained from the description of the components in the visual
user interface and the rest of other possible states are obtained as part of an

automatic process.

- Set of transitions between states. This is obtained during the automatic process of

states identification.

Thus following, the detailed description of the DTD DGAUI-INT is given:

Item

<IELEMENT Composicion (Componente+)>

Description

The composition is the same as the
one noted in DTD DGAUI-DEEF .

<!ELEMENT Estados (Estado+)*>

<!IELEMENT Estado (Descripcion?)>

<IATTLIST Estado

Numero CDATA #REQUIRED
>

Each state is formed by a state
number and the description of the
components that make that state;
that is, those components that are
visible or active or those components
with any of the properties of Infl o
InfO valued as T.

<IELEMENT Descripcion (Grafico* | Texto* |
Enumeracion*)*>

The description of each component
in the interface indicates that it can
be a graphic, a textual component, or
a graphic defined by enumeration.

<IELEMENT Grafico ((Rectangulo | Linea |
Circulo | Elipse | Poligono), EstiloLinea?,
AnchoLinea?, ColorLinea?, ColorRelleno?,
Posicién?, Tamano?, Datos?)>

<IATTLIST Grafico
Nombre CDATA #REQUIRED
Visible (t | f) #REQUIRED
Activo (t | f) #REQUIRED
Infl (t | f) #IMPLIED
InfO (t | f) #IMPLIED

The graphic component is defined
by its name, its primitive, the style,
wideness and color of the line, its
filling color, its position and size,
and the kind of data that can get
into the system out of the system
through it.

<IELEMENT Rectangulo (Coordenada,
Coordenada)>

The rectangle derives from the
coordinates that determine its
diagonal.

www.intechopen.com

528

Human-Computer Interaction

<IELEMENT Linea (Coordenada,
Coordenada)>

The line derives from two
coordinates that determine its ends.

<IELEMENT Circulo (Coordenada, Radio)>
<IELEMENT Radio (#PCDATA)>

The circle derives from a coordinate
that determines its centre and a
number that indicates its radio.

<IELEMENT Elipse (Coordenada,

Coordenada, Angulolnicio, AnguloFin)>
<IELEMENT Angulolnicio (#PCDATA)>
<IELEMENT AnguloFin (#PCDATA)>

The ellipsis derives from the main
rectangle within the ellipsis and two
angles: an onset angle and an
ending angle.

<IELEMENT Poligono (Coordenada,
Coordenada, Coordenada+)>

The polygon derives of the
coordinate, which determines its
vertexes.

<IELEMENT Coordenada (Px, Py)>
<IELEMENT Px (#PCDATA)>
<IELEMENT Py (#PCDATA)>

Each coordinate derives from a
position in the X axis and another
in the Y axis.

<IELEMENT EstiloLinea EMPTY>

<IATTLIST EstiloLinea
Estilo (continua | discontinua)

#REQUIRED
>

The style of line admits two values:
continuous and discontinuous.

<IELEMENT AnchoLinea (#PCDATA)>

Size in pixels of the primitive line.

<IELEMENT ColorLinea (#PCDATA)>

Line color in format RGB XXXXXX

Filling color in format RGB
!
<IELEMENT ColorRelleno (#PCDATA)> OOOKX

The position of a component

<IELEMENT Posicion (Fija | Relativa)>
<IELEMENT Fija (Coordenada)>
<IELEMENT Relativa (OpCRel?,
Coordenada)>
<!IELEMENT OpCRel (Centrado |
(Justificado, Justificado?))>

determines its location within a
containing component or within the
device. This position may be fixed
or relative, signalled by topologic
restrictions in the area OpCRel; in
any case, this position derives from
a coordinate that signals its left top
position (with respect to its
containing component or else with
respect to the visualizing device)

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models 529

<IELEMENT Centrado EMPTY>

<IATTLIST Centrado
Tipo (h | v | a) #REQUIRED
>

<!ELEMENT Justificado (#PCDATA)>

<IATTLIST Justificado
Tipo (de | iz | su | in)
#REQUIRED
>

The component is centered with
respect to its containing component.
The centring can be horizontal,
vertical or both.

Alignment of the component on the
right, left, top or bottom side of its
containing component a given
number of pixels.

<IELEMENT Tamano (Valorx, Valory)>

<!ATTLIST Tamano
Tipo (fijo | relativo) #REQUIRED
>
<IELEMENT Valorx (#PCDATA)>
<IELEMENT Valory (#PCDATA)>

Size of the component within the
containing component or within the
visualizing device.

<!IELEMENT Datos (Tipo?)>
<IELEMENT Tipo (#PCDATA)>

<IATTLIST Tipo
Longitud CDATA #IMPLIED
Rangolnf CDATA #IMPLIED
RangoSup CDATA #IMPLIED
Decimales CDATA #IMPLIED

The conditions to be met by the
input and output data in the
interface; attributes may vary
depending on the type of data.

<IELEMENT Texto (Txt, Fuente,
TamanoFuente, ColorFuente, EstiloFuente,
Posicion, Tamano)>

<IATTLIST Texto
Nombre CDATA #REQUIRED
Visible (t | f) #REQUIRED
Activo (t | f) #REQUIRED

>

<IELEMENT Txt (#PCDATA)>
<IELEMENT Fuente (#PCDATA)>
<!IELEMENT TamanoFuente (#PCDATA)>
<IELEMENT ColorFuente (#PCDATA)>
<!ELEMENT EstiloFuente (#PCDATA)>

The textual component is defined
by the text that it presents, its kind,
size and font colour; besides, it also
conveys the characteristics of size
and position. The size can be fixed
or relative.

www.intechopen.com

530 Human-Computer Interaction

<!IELEMENT Enumeracion (Fichero, Posicion,

Tamano)>

<IATTLIST Enumeracion The graphic components by
Nombre CDATA #REQUIRED enumeration contain the folder’s
Visible (t | f) #REQUIRED route that contains the
Activo (t | f) #REQUIRED corresponding graphic’s image.

>

<!ELEMENT Fichero (#PCDATA)>

<IELEMENT Transiciones (Transicion*)>

<!IELEMENT Transicion (Precondiciones?)>
Each transition is made of an

<IATTLIST Transicion original transition state, the
Estadolnicial CDATA #REQUIRED component (element) over which
Elemento CDATA #IMPLIED the event takes place, the event
Evento CDATA #REQUIRED which triggers the transition, and
EstadoFinal CDATA #REQUIRED the indicator that signals whether
Alcanzable (t | f) #lMPLIED the transition is feasible.

>

<IELEMENT Precondiciones

(Precondicion+)>

[-
<IELEMENT Precondicion (#PCDATA)> The preconditions indicate the

<IATTLIST Precondicion condition/s that must be met for the
Visible (t | f) #IMPLIED transition from one state to another
Activo (t | f) #IMPLIED to occur.

InfI (t | f) #IMPLIED

InfO (t | f) #IMPLIED
>

Table 2. DTD DGAIU-INT

3. Definition of the User Tests

Once the visual user interface is defined, we can proceed to create a notation that will define
the tests that must be carried out on a given visual user interface to test its liability. The aim
is to record as many parameters and actions as possible and necessary during a user’s
interaction with a user interface prototype. The DGAUI provides a description of the
appearance of the components and the states that may be obtained from a standard
rendering device. It also provides renderings of the user tasks and the states that a user can
derive by deploying the visual user interface. The first step, then, in automating the
evaluation of the visual user interface, and as signalled above, will be to define a notation
that may allow us to describe the atomic parts of the evaluation.

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models 531

As occurred in the case of the DGAUI-DEF, we will use XML in structuring the notation.
With this, we will create a DTD that will allow us an easy parsing of notation structures. It is
possible to define as many evaluations as it is desired. Each evaluation is formed by a set of
user tasks that have to be performed, and the following information should be provided for
each of the user tasks:

- A description. (A textual description of the user task for documentation)

- The parameters that have to be assessed and recorded during the evaluation
process. These may be Time Parameters, for instance, the total amount of time used
by the user in accomplishing the task; the time elapsed until the user starts
interacting with the task; average time in between events; time elapsed until the
first mistake by the user takes place, etc. Other parameters may be counter
parameters, that is, the number of user events; the number of user mistakes during
the evaluation task; the number of times that an error takes place; etc. A final
possible parameter to quantify may be the error parameter, identifying and
controlling types of user mistakes/errors; for example, which is the most frequent
user mistake or which is the most frequent mistake or error in a state.

- The different states that a visual user interface will go through during the
accomplishment of a task, including a description of the transitions that are
generated between states, highlighting the event that must be carried over a given
component for the transition to take place. In the prototype that the user will
manipulate it will be clearly defined which are the possible states and the resulting
transitions.

The description in full of the DTD is as follows:

Item Description

<!IELEMENT DPU (Prueba)> Interface test description

The test is defined departing
from a description of the very
test, of the identification of the
<IELEMENT Descripcion (#PCDATA)> interface over which the test is
done and the limitation of the
activities that the user will
have to perform over it.

<!IELEMENT Prueba (Descripcion,Interfaz,Tareas)>

<IELEMENT Interfaz (#PCDATA)>

Each task that the user has to

perform as part of the test
<IELEMENT Tareas (Tarea+)> includes its own descriptions,

<IELEMENT Tarea (Descripcion, Parametros, the parameters that will be
Estados)> measured for the fulfilment of

the test and the states to be
measured by these parameters.

www.intechopen.com

532

Human-Computer Interaction

<!IELEMENT Parametros (Parametro*)>
<!IELEMENT Parametro (Nombre, Tipo,
Estado_Inicial, Estado_Final)>

The parameters are identified
by a name and belong to a

type.

<!IELEMENT Nombre (#PCDATA)>

Name of the parameter

<!IELEMENT Tipo
(Tiempo | Contador | Error)>

<!IELEMENT Tiempo EMPTY>

<!ATTLIST Tiempo
Caracteristica (TTotal | TPrimerEvento |
TMedioEntreEventos | TMedioReaccion

| TPrimerError) #REQUIRED
>

<IELEMENT Contador EMPTY>

<!ATTLIST Contador
Caracteristica (NumEventos |
NumErrores | NumOcuError)
#REQUIRED

>

<IELEMENT Error (Descripcion?,
ID_Estado?, Evento?, Componente?)>

<IATTLIST Error
Caracteristica (IdError | EstadoError |
ErrorMasFrec) #REQUIRED

>

<IELEMENT ID_Estado (#{PCDATA)>

The parameters can be of three
different types:

Time: referring to temporal
aspects.

Counter: referring to
quantitative values related to
the user’s actions.

Error: referring to failures
occurred during the task’s
performance.

<IELEMENT Estado_Inicial (#PCDATA)>

State in which the assessment
of the parameter begins

<IELEMENT Estado_Final (#PCDATA)>

State in which the assessment
of the parameter ends.

<!IELEMENT Estados (Estado*)>

<IELEMENT Estado (Parametros?, Transicion)>

<IELEMENT Transicion (Estado_Inicial,
Estado_Final, Componente, Evento)>

<IELEMENT Componente (#PCDATA)>
<IELEMENT Evento (#PCDATA)>

The transition is identified by
the onset state, the component
over which the event must be
produced, the event that has to
take place and the final state
derived from its production

Table 3. DTD DPU

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models 533

In the following lines, we provide a detailed description of each ot the parameters that can
be assessed:
Time
- Total time (TTotal): time that the user devotes in implementing the task.
- Time Firs Event (TPrimerEvento): Time that the user devotes in accomplishing
an event the first time that she/he has contact with the interface.
- Average time between events (TMedioEntreEventos): Time that the user spends
in between two successive events.
- Average time of reaction (TMedioReaccién): Time that the user takes in
accomplishing a new event after making a mistake.
Counter
- Number of events (NumEventos): number of successful and failed events that
the user needs to accomplish the task.
- Number of mistakes (NumErrores): total number of mistakes that were
generated during the task.
- Number of appearance of the same mistake (NumOcuError): number of times
that each mistake has taken place.
Error
- Error identifier(IdError): textual identification of the error.
- Error State(EstadoError): state in which the error has taken place.
- Most frequent error (ErrorMasFrec): the most frequent error in the test.

4. Evaluator for the user's actions (EUA)

The EAU tool allows the user to dynamically evaluate the visual user interface usability.
This evaluation is carried out trough an interactive simulation of the interface. From the
abstract notation of DGAUI (DGAUI-INT) we can build the visual appearance of the states
in the interface and simulate possible user actions over the components. With de EAU
notation it becomes possible to define the user tasks that a user can try. The simulation
reproduces the visual appearance of the interface following the user tasks described in
section 3.

Through the interaction of the user with the simulator, a great amount of information is
recorded according to the parameters set forth in section 3. This information is stored in a
data base for its future study and analysis. Hence, this tool allows the HCI engineer to
define as many assessments as may be thought necessary, obtaining quantitative
information about the actual impact of a user on the visual user interface. Normally, the HCI
engineer explains to the user which are the aims to be reached while evaluating the visual
user interface by means of the prototype. Then, with the information obtained, the HCI
engineer can determine if the interface has any problems before starting its coding.

www.intechopen.com

534

Human-Computer Interaction

Abstract especification
of user interfaces
Specification of
usability tests

Fig. 1. Schema for the functioning of the EAU tool.

EAU

=

12 X

interface
Test
Resulis

prototy pe

The EAU tool shows a simple interface with two basic functionalities:

- Load Interface: which allows the selection of an XML file that contains the visual
user interface description (DGAUI-DEF and GDAUI-INT) and which generates the
visual appearance of the states in the user interface.

- Test Interface: necessary in order to evaluate the visual user interface, by selecting
the individual user task definitions that complete the evaluation (AEU XML file).
By means of these definitions, and through the configuration of the parameters in
order to have access to the data base, the simulation is executed. The information
about each user’s interaction with the prototype is stored in the data base for study.

File LUWtilities

<! Select Database () Load interface Test interface

=10]

Help

Edlit INT Edit DPU O]

Fig. 2. Main window for the application.

Figure 3 Shows a visual user interface state generated by the EAU tool from a DGAUI
description. The interface example corresponds to an average text processor.

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models

535

dEEEEsSsse i
|l | M s
o ke Dotk |) Wil idwtaie o Tl msterhan I Lo oo =
Antuer Cowibn wav wroers Ferdtd Talie Avaste
D@
1
- 3

&

Fig. 3. Text processor prototype.

Zone 1: Shows the interface.
Zone 2: Shows the state that the interface is in.
Zone 3: Shows the record of states that the interface has gone through.

We will here take as an example the definition of a test that will assess the accomplishment
of a task consisting on the selection of the option New in the File menu. We will evaluate the
following parameters: Total time devoted for the execution of the task; number of events;
time in which the first event takes place; average time in between events and total number

of errors produced throughout the task.

The defining code is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<IDOCTYPE DPU SYSTEM "DPU.dtd">
<DPU>

<Prueba>
<Descripcion>Pruebal</Descripcion>
<Interfaz>Editor</Interfaz>

www.intechopen.com

536 Human-Computer Interaction

<Tareas>
<Tarea>
<Descripcion>Selection of the option New in the File menu</Descripcion>

<Parametros>
<Parametro>
<Nombre> Total time devoted for the execution of the task </Nombre>
<Tipo>
<Tiempo Caracteristica="TTotal"/>
</Tipo>
<Estado_Inicial>0</Estado_Inicial>
<Estado_Final>10</Estado_Final>
</Parametro>
<Parametro>
<Nombre> Number of events </Nombre>
<Tipo>
<Contador Caracteristica="NumEventos"/>
</Tipo>
<Estado_Inicial>0</Estado_Inicial>
<Estado_Final>10</Estado_Final>
</Parametro>
<Parametro>
<Nombre> Time in which the first event takes place </Nombre>
<Tipo>
<Time Caracteristica=" TMedioEntreEventos "/>
</Tipo>
<Estado_Inicial>0</Estado_Inicial>
<Estado_Final>10</Estado_Final>
</Parametro>
<Parametro>
<Nombre> Average time in between events </Nombre>
<Tipo>
<Time Caracteristica=" TMedioEntreEventos "/>
</Tipo>
<Estado_Inicial>0</Estado_Inicial>
<Estado_Final>10</Estado_Final>
</Parametro>
<Parametro>
<Nombre> Total number of errors produced throughout the task </Nombre>
<Tipo>
<Contador Caracteristica="NumErrores"/>
</Tipo>
<Estado_Inicial>0</Estado_Inicial>
<Estado_Final>10</Estado_Final>
</Parametro>
</Parametros>

www.intechopen.com

Evaluation of the interface prototypes using DGAIU abstract representation models

537

<Estados>
<Estado>
<Transicion>
<Estado_Inicial>0</Estado_Inicial>
<Estado_Final>2</Estado_Final>
<Componente>Marc_Archivo</Componente>
<Evento>MouseOn</Evento>
</Transicion>
</Estado>
<Estado>
<Transicion>
<Estado_Inicial>2</Estado_Inicial>
<Estado_Final>9</Estado_Final>
<Componente>Marc_Archivo_Selec</Componente>
<Evento>LeftClick</Evento>
</Transicion>
</Estado>
<Estado>
<Transicion>
<Estado_Inicial>9</Estado_Inicial>
<Estado_Final>10</Estado_Final>
<Componente>Menu_Archivo_op_nuevo</Componente>
<Evento>MouseOn</Evento>
</Transicion>
</Estado>
</Estados>
</Tarea>
</Tareas>
</Prueba>
</DPU>

Once the test is finished, the results would appear on the screen.

File

=18l

Task results

Task number 0: Selection of the option Mew' in the File menu
- Total time devoted for the execution ofthe task 3.435
- Mumber of events: 14
- Time inwhich the first event takes place: 1.412
- Average fime in hetween events: 0.245
- Total number of errors produced: 11

Fig. 4. Window showing the results of the test in EAU

www.intechopen.com

538 Human-Computer Interaction

5. Conclusions

In this chapter we have presented an abstract representation of user interfaces particularly
designed for visual interactive systems. The focus of this representation has been the visual
aspect of the user interface because, for the user, it remains the most important part. It is
through the interaction with the appearance of a user interface that the user obtains
information from the user interface, and reacts to it.

Another aspect explored in this essay is the relevance of the appearance of the behaviours in
the visual user interface components (with varying sizes and positions). Such variations
allow for the same state of a component to render different functions.

We have proved that it is possible to describe a set of interface user tasks in a notation;
similarly, we have shown how to automatically generate a prototype with which to assess
the user interface behaviour with its users and its acceptability by them in a quantitative
manner.

6. References

Eason, K. (1988). Information Technology and Organizational Change. Taylor and Francis,
London.

Gartner Group (1994). Annual Symposium on the Future of Information Technology,
Cannes 7-10 November 1994.

Goémez Carnero, S. (2008). Sistematizacion de la validaciéon de interaccién del usuario sobre
la visualizacién en interfaces de usuario usando especificaciéon abstracta. PhD
Thesis. Universidad de Vigo. March 2008.

IBM (1993). IBM Dictionary of Computing. McGraw-Hill

ISO (1992). Software product evaluation quality characteristics and guidelines for their use.

ISO (1993). Ergonomics Requirements for Office Work with Visual Displays Terminals:
Guidance and Usability.

Molich R. y Nielsen J. (1990). Heuristic evaluation of user interfaces. Proceedings of ACM
CHI 1990. Seattle, WA, April 1990, Pag. 249-256, 1990.

Myers B. A. y Rosson M. B.(1992). Survey on user interface programming. CHI'92
Conference Proceedings on Human Factors in Computing Systems (Bauersfeld
P.Bennett]. y LYNCH G. eds.), page. 195-202. ACM Press, Nueva York, NY.

Nielsen, J. (1993). Usability Engineering. Academic Press, London.

Nielsen J. and Mack R. L. (1994). Usability Inspection Methods. John Wiley and Sons, New
York, NY.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. And Carey Tom. (1994). Human-
Computer Interaction. Addison-Wesley Publishing, Reading, Mass.

Rodeiro Iglesias, J. (2001). Representacién y analisis de la componente visual de la interfaz
de usuarios. PhD Thesis. Universidad de Vigo. September 2001.

Shackel, B. (1986). Ergonomics in designing for usability. In M. D. Harrison and A. Monk,
editors. People and Computers: Designing for Usability. Cambridge University
Press.

Wharton C. (1994). The cognitive walkthrough method: a practitioner's guide. Usability
Inspection Methods (NIELSEN J. y MACK R. L. eds.). John Wiley & Sons, New
York, NY, Page. 105-140, 1994.

www.intechopen.com

e

; Human-Computer Interaction
Human-Compuler))
Interaction e 7, Edited by Inaki Maurtua

ISBN 978-953-307-022-3

Hard cover, 560 pages

Publisher InTech

Published online 01, December, 2009
Published in print edition December, 2009

In this book the reader will find a collection of 31 papers presenting different facets of Human Computer
Interaction, the result of research projects and experiments as well as new approaches to design user
interfaces. The book is organized according to the following main topics in a sequential order: new interaction
paradigms, multimodality, usability studies on several interaction mechanisms, human factors, universal design
and development methodologies and tools.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Susana Gomez-Carnero and Javier Rodeiro Iglesias (2009). Evaluation of the Interface Prototypes Using
DGAIU Abstract Representation Models, Human-Computer Interaction, Inaki Maurtua (Ed.), ISBN: 978-953-
307-022-3, InTech, Available from: http://www.intechopen.com/books/human-computer-interaction/evaluation-
of-the-interface-prototypes-using-dgaiu-abstract-representation-models

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE Eh R RKe5S _LiEE N RE A RIE INAEE4058 5T
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

