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Abstract

Because semiconductor assembly plants generally apply individual indicators to monitor
manufacturing processes, this research proposes the approach of data envelopment analysis
(DEA) to evaluate production performance from the perspective of overall efficiency. Our
DEA models are composed of 3 input variables (average employee number, average labor
hours, and cost of goods sold) and 4 output items (production output, average overall
equipment effectiveness, production cycle time, and production ratio). To test the
practicability of proposed models, one semiconductor assembly company was selected to
investigate the relative efficiency of its 10 manufacturing plants. DEA-based Malmquist
productivity index was also applied to describe the productivity change over time. Findings
show that the main cause of technology inefficiency for the sample company is its
inappropriate resource allocation in the aspect of operation efficiency. From the viewpoint
of efficiency variation, the productivity of six relatively efficient plants was increasing
during 2 years of observations while the productivity of the other four plants was
decreasing at the same period. Through the analysis of slack variable and sensitivity
analysis, number of employees in the relatively inefficient manufacturing plants may cause
additional hidden costs and wastes. Our analysis results not only demonstrate the
applicability of DEA approach for the measurement of production efficiency in
semiconductor assembly industry but also provide this industry with methodology to
indentify where to improve operational performance.

Keywords: Efficiency Assessment, Data Envelopment Analysis, Malmquist Analysis
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1. Introduction

As the semiconductor assembly industry is capital-intensive, operations management
becomes one of the important issues for its business effectiveness. Especially under the
pressure of limited profit margin and customer requirements, plants have to enhance their
operating efficiency so as to improve the competitive advantage. Currently, the
manufacturing process of semiconductor assembly plant faces bottlenecks of die bond, wire
bond and potting sites. For instance, the outputs of most die bonding machines are
contricted by their actuation modes of absorption and desorption. Moreover, wire bonding
machine is constricted by the number and arc of wire bond, while potting machine is
restrained by the time of potting. In terms of cost, although employees account for 15%-20%
of total expenditure, machines of die bond, wire bond and potting sites are still the largest
investments for the semiconductor assembly house. Accordingly, management tends to
focus on enhancing man-machine ratio and simplifing SOP to reduce human cost and
improve productivity. In addition, various performance indexes are also applied routinely
to monitor operational efficiency and quality for further improvement. However, the
performance indexes adopted by the semiconductor manufacturing factories usually
consider single angle like machine breakdown or yield rate. Although this kind of method is
easy to calculate and understand, index approach has limitations because it's unable to
identify the causes of inefficiency and to reflect the actual relative efficiency among plants.
Therefore, evaluation methods that can consider both the inputs and outputs of
manufacturing plants could provide more reliable findings for management to adjust their
production operations.

In order to bridge the gap between practical and theoretical issues in the semiconductor
manufacturing industry, this paper considered Data Envelopment Analysis (DEA) method
for performance assessment. This approach not only takes into account input-output
variables but also proves to be useful for efficiency analysis. Without specifying the
production functions in advance, we are also able to trace the sources of inefficiency for
every evaluated plant. Together with DEA-based Malmquist productivity measurement,
productivity rate of growth for each plant can be further analyzed to understand their
progress or regression during a specific period. Hence, the main purposes of this study
include the analysis of operational performance and changes for the semiconductor
assembly house, and the improvement solutions for inefficient plants assessed. In the
following discussion, we start with the brief review of past research regarding the efficiency
assessment in the electronics industry. Then section 3 describes the DEA methodology used
in this study. To validate the applicability of our proposed approach, one semiconductor
assembly company was selected to investigate the relative efficiency of its 10 manufacturing
plants. Findings of this case study are discussed in section 4. Finally, we conclude our
research in the final section.

2. Efficiency Assessment of Electronics Industry

In the electronic manufacturing industry, common methods of efficiency assessment include
machine utilization rate, regression analysis, and DEA. Leachman and Hodges (1996) used
regression analysis to study 16 wafer factories, and obtained the production cycle and yield
rate for each product line. Thore et al. (1996) applied DEA method to evaluate the cycle time
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efficiency of computer manufacturing industry in the U.S,, so as to find out how to improve
machine’s production rate and to maintain efficiency. Shang and Sueyoshi (1995) analyzed
the efficiency of flexible production systems, and found that DEA method could be applied
to evaluate different manufacturing systems. Their study also compares the efficiency of
different production lines and gives managers the suggestions for improvements. Beeg
(2004) used crash time and average repair time to establish the capability indicators of
machine and personnel. Besides, Beeg took into considerations the variables of production
amount, overall equipment efficiency (OEE), and production ratio as the items of outputs
for DEA models. Ertray and Ruan (2004) employed DEA method to evaluate workers’
efficiency in mobile manufacturing plants. Work hours and staff allocation are listed as the
efficiency assessment of inputs. Hosseinzadeh and Ghasemi (2007) investigated the
efficiency and productivity in telecommunication companies through DEA models and
Malmquist productivity index. Pan et al. (2008) explored the managerial and productive
technical efficiencies of Taiwan's IC design industry. They also adopted DEA models and
DEA-based Malmquist method to examine the performance of 72 companies from 2003 to
2005.

In the semiconductor industry, OEE is often employed to measure productivity (SEMI,
1999). Other common indicators include: availability efficiency, efficiency ratio, operating
efficiency, and quality efficiency (Nakajima, 1988; Leachman, 1995; Konopka, 1996).
Availability efficiency is defined by the difference between total production time and
downtime over total production time. Meanwhile, efficiency ratio is the ratio of ideal cycle
time to actual cycle time. Operating efficiency is the ratio of total production time to facility
operating time. Accordingly, we can rank performance by the cross product of efficiency
ratio and operating ratio. Additionally, quality efficiency is defined by the difference
between total production volume and total returns over total production volume. Hence,
each machine can use one of the above indicators to evaluate their respective performance.
Integrated performance index can be also computed by the average performance of all
machines. Furthermore, Thomas (2000) applied DEA approach to measure efficiency of
semiconductor manufacturing operations. Input variables in DEA models include mean
time between failures, scrap/1000 wafer moves, cycle time, and downtime. Meanwhile,
wafer moves, OEE, activity ratio (actual moves/planned moves) are output variables. Liu
and Wang (2007) also employed DEA models to assess the Malmquist productivity of
semiconductor packaging and testing firms in Taiwan. Their Malmquist productivity
considers 3 major measurements, which are technical change, frontier forward shift, and
frontier backward shift of a company over two consecutive periods. From the above review
of past studies, DEA has been proved to be a successful evaluation approach for efficiency
performance in the semiconductor industry. Hence, this study would like to further
investigate how to apply the DEA method to measure the production efficiency and
efficiency change in the semiconductor assembly industry.

3. Methodology

3.1 Decision Making Unit (DMU)

Decision making unit is any entity that is to be assessed by its abilities to convert inputs into
outputs (Charnes et al., 1978). According to Golany and Roll’s (1989) definition, DMUs must
be a group of homogeneous units, but there should be some differences between them.
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Thus, this study took 10 independent factories (denote Pi, i = 1,...,10) of a certain
semiconductor assembly company in Taiwan as the target of assessment. Monthly data of
activities were retrieved from the manufacturing execution system during the period of
2005/01-2006/12. These 10 factories generally had common manufacturing machines. For
example, the same type of wire bonder machines can produce lead frame and BGA products.
Factories could support each other and do cross feeding. P1, P2, P3, P4, P5 and P6 factories
mainly manufactured consumptive IC products, the general logic and IC control lead-frame
products, such as PDIP, PLCC, QFP, and TQFP; while P7, P8, P9 and P10 factories mainly
manufactured graphics chip, CPU, LCD driver chip and other mid and high-end BGA
products, such as BGA, TFBGA, QFN, and FBGA.

3.2 Inputs and Outputs

To select the input variables and output variables for the DEA models used in this study,
factors that affect overall production processes, costs, operating time, product quality, and
machine efficiency were under our considerations. Based on the results of past research and
on-site investigation of engineers, three input variables were chosen and are summarized as
follows:

(1) Average employee number: the average number of employees per month;

(2)  Average labor hour: the average work hours per month;

(3) Average cost of goods sold: the average cost of goods sold divided by the net sales
per month.

All of the input data were collected from the personnel database of target manufacturer for
each plant.
Besides, the output variables of DEA models are defined as follows:

(1) Production output: the actual production of each factory per month;

(2) Average OEE: OEE = Availability Ratio x Performance Ratio x Quality Ratio,
where availability ratio is the share of the actual production time and the planned
production time, performance ratio is the loss of production due to under-
utilization of the machinery, quality ratio is the amount of the production that has
to be discharged or scrapped;

(3) Production cycle time: time it takes for production personnel to make the product
available for shipment to the customer;

(4) Production ratio: the actual delivery of each factory per month divided by the
planed delivery.

All of the output observations were collected from the manufacturing execution system of
each plant.

3.3 Research Models

The basic DEA model of efficiency analysis is composed of the inputs and outputs of DMUs. This
approach tends to reduce the multiple-output/multiple-input situation to a single “virtual'
output and ‘virtual” input. The ratio of single output to single input for a particular DMU, which
is a function of the multipliers, forms the objective function for optimization. Because DEA
approach is empirically-oriented and has no a priori assumptions like other approaches, it has
been applied to a number of studies involving efficient frontier estimation. To encounter different
problem issues, there is a variety of alternate DEA models to evaluating performance. The CCR
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model with constant returns to scale (Charnes et al., 1978) and the BCC model with variable
returns to scale (Banker et al., 1984) were applied in this study to evaluate efficiency performance
among manufacturing plants of semiconductor assembly house. Suppose we have m different
inputs and s outputs for n DMUs. The CCR model can be described by

Min h, = 9—8(is, +Zs,*j
i=1 r=l1
s.t.

D AX,-0X, +s;7 =0

J=1

Z];Linj -8, =Y,
p=

Xy =0X, —s;

Y, =Y, +s,

VA,s,8 20, j=1,...,mi=1,...,mr=1,.,50 €R
The mathematical meaning of Eq. (1) is to get the minimum value of K in restriction
conditions, where Y;; is r-th output for plant j, Xj; is i-th input for plant j, s; is slack variable,
and s,* is surplus variable. The optimal solution of § must be positive and yield an efficiency
score for a specific DMU. The necessary and sufficient condition of every DMU with relative
efficiency is 0 = 1 and sy = s,*= 0. However, CCR model is assumed to be the linear
programming model with constant returns to scale, which is not necessarily in line with the
actual situation of industry. Therefore, Banker et al. (1984) replaced with variable returns to

scale, that is, 21 =1 was added into the above formula and get the BCC model in Eq. (2):

Min b, = H—f{f:si_ +Z\:s,+]
i=l r=1
s.t.

D AX,-0X, +s =0

J=1

;lfyr:i s, =1, ()

Z 4 =1

j=1

Xy =0X, —s;

Y, =Y, +s/

V/li,s[,s: >0;7=1...,mi=1....myr=1,..,5;0 R
After solving the technical efficiency values based on CCR and BCC models specified in Eq.
(1) and (2), scale efficiency (SE) is obtained, which is the ratio of two values. SE = 1
represents scale efficiency and SE < 1 represents scale inefficiency, where SE can be divided
into increasing returns to scale (IRS) and decreasing returns to scale (DRS). A = 1 implies
constant returns to scale, 21 > 1 indicates IRS, and >A < 1 describes DRS.
In order to find out the real value of comparative efficiency in different periods, and solve the
shortcomings of assessed unit, this study used Malmquist productivity analysis as the basis for
measurement and comparison. This approach can show the changes in technical efficiency and
technical change process with the definition of Malmquist index specified in Eq. (3):
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1/2
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) denotes the relative efficiency of a particular DMU in period t + 1

)

0
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against the performance of those DMUs in period t. Productivity My > 1 implies that the
productivity is improved over time whereas the productivity is declined when My < 1. This
approach not only reveals patterns of productivity change but also identifies the strategy
shifts of individual plant.

4. Results

4.1 Efficiency analysis

Table 1 and 2 summarize the efficiency scores evaluated by the CCR and BCC models
respectively for each plant in year 2005 and 2006. The CCR model assumes constant returns
to scale while the BCC model allows for variable returns to scale.

DMU | Efficiency | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CCR 0815 1 0.692 0.682 0.682 0.701 0.701 0.701 0.701 0.701 0.700 0.700
P1 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0815 1 0.692 0.682 0.682 0.701 0.701 0.701 0.701 0.701 0.700 0.700
CCR 1 1 1 1 1 1 1 1 1 1 1 1
P2 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1
CCR 1 1 1 1 1 1 1 1 1 1 1 1
P3 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1
CCR 1 1 1 1 1 1 1 1 1 1 1 1
P4 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1
CCR 1 1 1 1 1 1 1 1 1 1 1 1
P5 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1
CCR 0.819 0.790 0.802 0.802 0.802 0.846 0.846 0.917 0.917 0.917 0.914 0.914
P6 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.819 0.790 0.802 0.802 0.802 0.846 0.846 0.917 0.917 0.917 0.914 0.914
CCR 1 1 1 1 1 1 1 1 1 1 1 1
P7 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1
CCR 0.745 0.629 0.612 0.612 0.612 0.612 0.610 0.612 0.648 0.648 0.691 0.741
P8 BCC 1 1 098 0.932 0933 0933 1 1 1 1 1 1
SE 0.745 0.629 0.624 0.656 0.656 0.656 0.610 0.612 0.648 0.648 0.691 0.741
CCR 0.860 0.831 0.829 0.818 0.818 0.812 0.806 0.806 0.829 0.829 0.824 0.827
P9 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.860 0.831 0.829 0.818 0.818 0.812 0.806 0.806 0.829 0.829 0.824 0.827
CCR 0.809 0.832 0.847 0.813 0.813 0.916 0.916 0.916 0916 0.916 0.916 0.919
P10 BCC 1 0907 1 1 1 1 1 1 1 1 1 1
SE 0.809 0916 0.847 0.813 0.813 0.916 0.916 0.916 0.916 0.916 0.916 0.919

Table 1. The efficiency scores of DMUs in 2005
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DMU | Efficiency | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CCR 0.701 0.679 0.734 0.811 0.785 0.785 0.801 0.867 0.857 0.815 0.835 0.810

P1 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.701 0.679 0.734 0.811 0.785 0.785 0.801 0.867 0.857 0.815 0.835 0.810

CCR 1 1 1 1 1 1 1 1 1 1 1 1

P2 BCC 1 1 1 1 1 1 1 1 1 1 1 1

SE 1 1 1 1 1 1 1 1 1 1 1 1

CCR 1 1 1 1 1 1 1 1 1 1 1 1

P3 BCC 1 1 1 1 1 1 1 1 1 1 1 1

SE 1 1 1 1 1 1 1 1 1 1 1 1

CCR 1 1 1 0986 1 1 1 1 1 1 1 1

P4 BCC 1 1 1 09% 1 1 1 1 1 1 1 1

SE 1 1 1 0989 1 1 1 1 1 1 1 1

CCR 1 1 1 1 1 1 1 1 1 1 1 1

P5 BCC 1 1 1 1 1 1 1 1 1 1 1 1

SE 1 1 1 1 1 1 1 1 1 1 1 1
CCR 0.916 0.828 0.828 0.828 0.828 0.828 0.862 0.863 0.843 0.863 0.833 0.859

P6 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0916 0.828 0.828 0.828 0.828 0.828 0.862 0.863 0.843 0.863 0.833 0.859

CCR 1 1 1 1 1 1 1 1 1 1 1 1

P7 BCC 1 1 1 1 1 1 1 1 1 1 1 1

SE 1 1 1 1 1 1 1 1 1 1 1 1
CCR 0.714 0.628 0.627 0.605 0.605 0.599 0.637 0.612 0.640 0.640 0.657 0.647

P8 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.714 0.628 0.627 0.605 0.605 0.599 0.637 0.612 0.640 0.640 0.657 0.647
CCR 0.808 0.766 0.752 0.752 0.752 0.753 0.752 0.762 0.766 0.681 0.681 0.708

P9 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.808 0.766 0.752 0.752 0.752 0.753 0.752 0.762 0.766 0.681 0.681 0.708
CCR 0916 0.922 0.921 0.921 0.888 0.889 0.874 0.864 0.874 0.826 0.846 0.840

P10 BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.916 0.922 0.921 0.921 0.888 0.889 0.874 0.864 0.874 0.826 0.846 0.840

Table 2. The efficiency scores of DMUs in 2006

If taking the time interval of month for analysis, plants P2, P3, P4, P5 and P7 are efficient in
CCR Model during the observation period. On the other hand, plants 1, P6, P8, P9, and P10
are inefficient for all 24 months. In terms of factory analysis, plant P; has only one month
achieving technical efficiency, and the rest are scale inefficiency. Besides, plants P2, P3, P4,
P5 and P7 all have scale efficiency. But plants P6, P8, P9 and P10 are scale inefficiency.

From the SE analysis, the study found that plants P2, P3, P5 and P7 maintained efficient
during the observation period, whereas plants P6, P8, P9 and P10 had no scale efficiency for
24 months. But the SE inefficiency factories all had efficiency value of 1 in the BCC model.
This phenomenon implies that their inefficiency is possibly from the influence of scale
inefficiency. Additionally, the efficiency scale of plant P1 is 1 in only one month while its
performance remains inefficient for the remaining 23 months. This finding also indicates the
possibility of scale inefficiency. Therefore, reducing the scale of production can improve
scale inefficiency.

Moreover, although plant P4 had technical and scale inefficiency only in April 2006, it had
the overall relative efficiency of 1 for the rest of observations. The main reason is the input
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imbalance between average employee number and average labor hours. After adjusting the
related imbalanced variables, the overall relative efficiency was recovered to 1. Meanwhile,
plant P8 has similar situation like plant P4. It had technical and scale inefficiency from
March to July in 2005 and the rest had the overall relative efficiency of 1. After adjusting
related variables, the overall relative efficiency can be recovered to 1. Similar implication can
be inferred for plant P10. Therefore, although each factory couldn’t use input resource
effectively to achieve the output with scale efficiency in a short time, it can still achieve
efficiency if related variables were adjusted. This information provides an important
managerial impact on resource control of manufacturing plants.

4.2 Analysis of Slacks and Returns to Scale
We further performed the analysis of slack variables to understand the improvements of
inefficient DMUs on inputs. Meanwhile, returns to scale analysis was applied to identify
whether a proportional change in inputs result in the same proportional change in outputs.
IRS indicates that proportional changes in inputs result in a more than proportional changes
in outputs. On the other hand, DRS implies the opposite changes in outputs. Therefore, after
analysis of slacks and returns to scale, this study summarizes the influential elements of the
efficiency in each inefficient factory as follows:
(1) P1is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and labor hours.
(2) P6 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number.
(3) P8 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and labor hour.
(4) P9 is DRS, which should be improved through reducing its input of resources,
especially the control of labor hour.
(5) P10 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and average cost of goods sold.

4.3 Sensitivity Analysis

The sensitivity analysis is mainly to get CCR overall efficiency of each assessed factory
through respectively removing inputs and outputs. The resulted value is compared with the
original input-output efficiency. Sensibility analysis can be used to understand the impact of
each variable on efficiency and to find out the sources of efficiency and inefficiency for each
unit assessed. After sensitive analysis, the findings of this study are as follows:

(1) When deleting "average employee number": P8's efficiency is significantly
reduced by about 10%, so average employee number is the advantage to enhance
the overall efficiency. P4’s efficiency decreases significantly only in 6 months. Its
efficiency scores are among 0.98-0.99, which results in decreased overall efficiency.

(2)  When deleting "average labor hour": The efficiency scores of P6, P8, and P10 are
reduced by 1%, 1% and 5% respectively. Because plant PP4’s efficiency decreases
significantly only in 3 months, it can explore whether the labor hour is excessive
in the period.

(3) When deleting "average cost of goods sold": P2’s efficiency values are reduced by
about 15%. Meanwhile, P4’s efficiency decreases to 0.98 significantly only in one
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month, and the rest months are not affected. Similarly, P5’s efficiency decreases
significantly only in 6 months. Thus, the average cost of goods sold has a
significant impact on efficiency score.

(4) When deleting "production output": P2’s efficiency values are reduced by about
50%, P6 was about 30%, P7 was about 77%, P8 was about 10%, P9 was about 30 %,
and P10 was about 40%. Moreover, P3’s efficiency decreases significantly only in 9
months, which are among 0.93-0.97. Hence, the production output also has a
significant impact on efficiency score.

(5) When deleting "average OEE": P4’s efficiency decreases significantly in 2 months,
which are among 0.98-0.99. Its efficiency scores are not affected for the rest of
months. So the average OEE is the advantage to enhance the overall efficiency.

(6) When deleting "production cycle time": P4’s efficiency decreases to 0.98
significantly in one month, and the rest are not affected. So the production cycle
time is the advantage to enhance the overall efficiency.

(7)  When deleting "production ratio": P4’s efficiency decreases to 0.99 significantly in
2 months, and the rest are not affected. So the production ratio is the advantage to
enhance the overall efficiency.

Therefore when deleting average employee number, labor hour and production output,
more than half of factories are affected (P2, P6, P7, P8, P9 and P10) and their efficiency scores
decrease. Accordingly, these three variables are advantages enhancing the overall efficiency.

4.4 Malmquist Analysis

Finally, Malmquist productivity measure was used by this study to compare the efficiency
value of each factory at different times. Table 3 shows the result of total factor productivity
change (TFPC), technical efficiency change (TEC), and technical change (TC) in assembly
factories.

Factory TFPC, TEC, TC
P1 TFPC 1, TEC 1}, TC 1}
P2 TFPC 1}, TEC 1}, TC 1
P3 TFPC 1, TEC 1, TC 1}
P4 TFPC 1, TEC 1} , TC 1}
P5 TFPC 1}, TEC 1}, TC 1
P6 TFPC [l , TEC || , TC ||
P7 TFPC 1f, TEC 1}, TC 1}
P8 TFPC |l , TEC 1, TC ||
P9 TFPC ||, TEC || , TC ||
P10 TFPC || , TEC || , TC 1

Table 3. The Malmquist Productivity Measure results of each assembly factory
Note: T represents progress; | represents backward

According to the results of Table 3, plants P1, P2, P3, P4, P5, and P7 have TFPC sustained
progress, showing an improvement in productivity. On the other hand, plants 6, P8, P9
and P10 show a backward trend, which means the recession in productivity. Moreover,
plants P1, P2, P3, P4, P5, P7 and P8 have enhancing changes in technical efficiency, showing
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an improvement in technical efficiency. But plants P6, P9 and P10 have recession in technical
efficiency with no improvement in TEC. Besides, plants P1, P2, P3, P4, P5, P7 and P10 have
enhancing technical changes, showing an improvement in production technology. However,
plants P6, P8, P9 and P10 have recession in production technology with no improvement
in TC.

4.5 Summary
This study conducted efficiency analysis, returns to scale analysis, analysis of slacks
variable, sensitivity analysis and Malmquist productivity index analysis to assess the
efficiency of 10 semiconductor assembly factories. The results are summarized as follows:
(1)  Efficiency analysis: Plants P2, P3, P4, P5, and P7 have efficiency in 24 months. But
plants P1, P6, P8, P9, and P10 have scale inefficiency in 24 months. Besides, plants
P8 and P10 have a total of five months with technical and scale inefficiency.
(2)  Analysis of slacks variable and returns to scale: plants P2, P3, P4, P5 and P7 have
achieved returns to scale while plants P1, 6, P8, P9 and P10 are DRS.
(3) Sensitivity analysis: when deleting "production output", plants P2, P6, P7, P8, P9
and P10 have significantly decreased efficiency scores.
(4) Malmquist productivity index analysis: plants P1, P2, P3, P4, P5, and P7 have
continued progress in TFPC, showing an improvement in productivity. But plants
P6, P8, P9 and P10 have backward trend, which means the productivity has
recession.

5. Conclusions

According to our empirical test in a semiconductor assembly house, this study found that
the applications of DEA method could improve the shortcomings of single performance
measurements with the considerations of influential inputs and outputs during the
manufacturing processes. DEA approach also proves to provide constructive suggestions to
enhance resource allocation. For example in our case company, the managers can reduce the
corresponding resource if the employee number or labor hour is found over-allocated from
DEA results. Together with the Malmquist productivity measure, engineers are able to
assess the patterns of productivity change after strategy shifts. This also helps management
to evaluate whether or not such shifts are making progress. As for future studies, the same
research methods and input elements could be used to assess the efficiency among different
semiconductor assembly plants for the other company. Robustness of DEA approach for
semiconductor assembly house can be verified then. More important factors may be
included in DEA models to enhance its practicability for semiconductor assembly house.
Models other than CCR and BCC can be explored to extend the explanation power of DEA
approach.
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