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Mathematical modeling of the Internet survey

Getka-Wilczyriska Elzbieta
Warsaw School of Economics
Poland

1. Introduction

Recently statistical research as for as sampling selection can be divided into representative
surveys based on the probability sample and surveys based on the non-probability sample,
e.g. the Internet surveys. After choosing the kind of the sample selection next stage of the
survey is data gathering. In all surveys, the data is collected using an immediate interview, a
telephone interview or a post and in recent years an interview over the Internet (Internet,
2001, Dillman, 2000).

Surveys over the Internet (Internet mediated research: online surveys, Internet surveys, Web
surveys (Vehovar, 2007)) are in a process of intensive development and key of characteristic
of it is their diversity. Collecting data through the Internet surveys is useful either for mar-
keting and other private research societies either statistical agencies. The first graphic
browser (NCSA Mosaic) was released in 1992, with Netscape Navigator following in 1994
and Internet explore in 1995. The first publishes papers on Web surveys appeared in 1996.
Since then, there has been a virtual increasing tendency of interest in the Internet generally,
and World Wide Web specifically, as a tool of data collection (www.WebSM.org). A special
portal WebSM - Web survey methodology web site is a website dedicated to the methodol-
ogy of Web surveys. It supported by EU since 2002 and it includes bibliography lists and
software database.

Generally, difference between these researches rely on following aspects. In representative
surveys based on the probability sample the frame of sampling is known, respondents are
drawn to the sample by a statistician in accordance with sampling design (sampling scheme)
and the methods of theory sampling are applied to data analysis (Bracha, 1996; Kordos,
1982; Tille, 2006; Sarndal et al., 1992; Steczkowski, 1988; Wywiat, 1992). If in these surveys an
electronic questionnaire is used, it is only one of modes of data collection and then the cor-
rect use of this data collection tool requires the suitable survey methodology (Biffignandi &
Pratesi, 2000).

The Internet survey has several advantages, such as low costs of collecting information, the
speed of the data transmission and a possibility to monitor it. Moreover, the computerized
nature of Web surveys facilitates conducting experiments. The usage of the electronic ques-
tionnaire in the Internet survey makes the interview more efficient, lowers the workload of
the respondents and controls the responds’ quality.

But the basic problem in the surveys over the Internet is concerned with collecting data sets
according to classical methods of the sampling theory. In the Internet surveys drawing the
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sample is not possible and respondents are not randomly selected to the sample, but they
participate in the survey with a subjective decision and they form an uncontrolled sample
(the Internet sample). The methods of the sampling theory can not be used immediately for
the data from such the sample because the probability inclusions are not known and statis-
tics are calculated usually on the basis Internet data refer usually to the population surveyed
(Getka-Wilczyniska, 2003). In theory and practice of Internet survey two approaches to deal-
ing with this problem are identified (Couper & Miller, 2008). The first - the design based ap-
proach, attempts to build probability - based Internet panels by using other methods for
sampling and recruitment and - if it is necessary- providing Internet access to those without.
This approach is applied e.g. by Knowledge Networks in the USA and CentERdata’s MESS
panel in the Netherlands. The second - the model based approach begins with a volunteer
or opt - in panel of Internet users, and attempts to correct for representation biases using e.g.
propensity score adjustment (Lee, 2006) or some other weighting method for assessing Web
panel quality (Callegaro & Disogra, 2008, Toeppoel et.al., 2008). In both approaches usually
are used methodology of sampling theory to data analysis. Other an interesting proposition
is an application of a dynamic theory of decision making and the decision field theory to
theoretical explanation of survey behavior (Galesic, 2006).

In this study are proposed certain conceptions of modelling of the Internet survey as a ran-
dom experiment or a life testing experiment by using notions and methods of the stochastic
processes and the reliability theory (Kingman, 2002; Kopocinski, 1973; Barlow & Proschan,
1965 (1996), 1975; Sotowiew, 1983). Generally this approach is presented in following way.
At the first, the process of the Internet data collection is considered as a process of register-
ing questionnaires on the server at fixed interval of the time, the time of the survey con-
ducted. An events appear in the Internet survey are interpreted as the moment of an arrival,
a birth, a death of the population elements or a waiting time for these events. In this case the
random size of the uncontrolled sample (Internet sample, a random set of the moments in
which questionnaires - from respondents who participate in the Internet survey - are rec-
orded on the server) is defined as a counting process by using Poisson processes (Getka-
Wilczyniska, 2004 (in Polish), 2005, 2008).

At the second, the Internet survey is considered as a life test of the population surveyed by
using the notions and methods of the reliability theory, (Getka-Wilczyrska, 2007). In this
case the events which appear in the Internet survey are interpreted as the moment of failure,
renew or functioning time of the population elements, when the population is treated as a
coherent system of finite number of elements or as the lifetime of the population elements,
when the length of the population lifetime is considered. The length of the population life-
time is defined by using the structure function of the population and the reliability function
of the length of the population lifetime is defined for the series, parallel and partial structure
of the population. Then the basic characteristics of the reliability function are described, cal-
culated and estimated by using path and cut method (Barlow & Proschan, 1965).

More interesting is the life testing experiment, if different models of elements” dependence
are considered, e.g. dependence on initial parameters of the population (the system), exter-
nal conditions, as well as on the states of other elements. In this study is described a general
model of functioning of the population (the system), when exist the dependence of the relia-
bility of one element on the states of the other elements, (Sotowiew, 1983). Then the changes
in time of the population states (the system states) are determined by multidimensional sto-
chastic process which is chosen in such a way that the state of the population can be
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explicitly defined in each moment (whether the population is in the state of life or in the
state of death). As an example are considered the particularly cases of stochastic processes -
a general death process (when the rate of the state change of the element depend only on the
states of the elements) and a pure death process (when in the general death process the ele-
ments of the population are symmetrical), (Sotowiew, 1983). In an aspect of the Internet sur-
vey three characteristics are important: the time until the first change of state of the popula-
tion, the length of the lifetime of the population per one change of the state and the residual
time of the population lifetime.

2. Assumptions

We generally assume, that Internet survey begins at the moment t=0, when the electronic
questionnaire is put on the website and the survey is conducted for the time T>0.

A set {ul, uz,...,} denotes the population of potential respondents. For each n>1, the
population of n wunits is surveyed and the respondent sent the questionnaires
independently.

By X j=12,..,n,n>1, we denote a moment of questionnaire record on the server after an

initial moment t=0, from each respondent uy,t=12,.,n, n>1, belonging to the
population of the size n>1, who took part in the survey as j- th.

The moment of the questionnaire record is an event that can be interpreted
- as the moment of arrival or the respondent, who took part in the survey as j-th,

when the size of the uncontrolled sample is defined,
- as the moment of failure or renew of j-th element of the population, when the

population is treated as a coherent system,
- as the waiting time for the j-th questionnaire record after the initial moment t=0

equal the length of lifetime of j-th element of the population until the moment
t>0
- the moment of death or birth of the j-th element of the population, when the

length of the population lifetime is considered.
Theoretically, four cases which describe the relation between the time of the survey
conducting , T >0, and the size of the uncontrolled sample can be considered.
In the first case, the registering the questionnaires ends at the moment T >0 specified in
advance, independently of the questionnaires’” number recorded. The size of the
uncontrolled sample is then a random value in the interval [0, T] and depends on the length
of time of the survey and on a selection procedure applied in the survey (if it is used in the
survey). An extreme situation occurs when no data was collected (an arrival set is empty or
the questionnaire, which arrived were rejected by the selection procedure used in the
survey).
In the second case the sample size is specified in advance and the survey ends when the
assumed number of responses has arrived, independently of the length of time of the survey
(a random value in this case). An extreme situation occurs when the length of time of the
survey is infinite.
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In the third case, both the length of time of the survey and the sample size are specified in
advance and the survey ends in earlier of the assumed moments.

In the fourth case, the final moment of the survey is not specified in advance. The process of
registering questionnaires lasts at the moment when the collected data set meets the
demands of the survey organizers.

3. The random size of an uncontrolled sample

If the process of Internet data collection is considered as a process of registering
questionnaires on the server in a fixed interval of the time T >0 (the time of the survey
conducting) then the size of the uncontrolled sample at the moment t >0 equals the total
number arrivals until the moment t>0 and is defined as a counting process - Bernoulli,
Poisson or compound Poisson process (Kingman, 2001).

In this part of the study paper we describe the two cases, the first and the second of the
dependence between the time of the survey conducting and the size of the Internet sample
(Getka-Wilczyriska, 2008).

3.1 The size of the uncontrolled sample as Bernoulli process
Definition 2.1. For fixed n>1 the size of uncontrolled sample until the moment t>0 is
given by

N(t)= card {I<k<n: X, e[0,t]f
and is equal to a sum
N(t)=Nq(t)+...+Nn(t),
where
0 if Xyp>t

, X, k=1,2,.,n, n>1,
1 xest’ K oo

Nk<t>={

are independent random variables with uniform distribution over [0,T], T>0, Xk-1 < Xk
for j21, Xo=0 and at the initial moment t =0 no arrivals occur.
The value of the random variable N(t),t >0 equals the total number of arrivals until the
moment t>0 and the process {N(t), t >0} can be described in a following way. Each of n
respondents, independently of others send only one questionnaire with the probability 1 in
the interval [0,T] for T>0 (the time of the survey conducted). The probability of sending
the questionnaire by the certain respondent in the interval of the length A c [0, T] is equal to

|
ratio — .

T

In this way, each respondent generates a stream consisted of only one arrival. A summary
stream obtained by summing these streams is called a bound Bernoulli stream, that is, it
consists of finite number of events.

To complete the definition of the counting process it remains to compute the distribution of
N(t) and the joint distribution of N(t1),N(t2),...,.N(tn) for any non-negative tg,t,..., tn -
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Let
P (t) = PIN(t) =k}, k=1,..,n

be the probability of event, that at the moment t > 0 the total number of arrivals N(t) equals

k.
Since the probability of arrival of the given respondent in the interval [0,t]c [0, T] is equal

ot . . .
to ratio — and the arrivals came independently, hence the total number of arrivals N(t) at

the moment t >0 is random variable with Bernoulli distribution

-3 (-5

If the intervals Aq,.., A, are disjoint pairs and the interval [0, T]=A1U...UA, is a sum of
A1,--» An , then for any non-negative integers ki,...,.k, suchthat kj+...+k,=n holds

n!

k kn
kl!...kn! pllpn 7

P{N(A1) =K1 ees N(An) = kn} =

Al

where N(A;) is the number of arrivals which occur in the interval A;, pi:? for

i=1,..,n,and | is the length of the interval A;=ti—tj_1,i=1,..,n.

3.2 The size of the uncontrolled sample as Poisson process
Definition 2.2. For fixed n>1 the size of uncontrolled sample until the moment t>0 is

given by
N'(t) = card {n: X, € [O,t]}z max{n 20:8, < t} ,

where Xi,Xp,..., denote as before the successive moments of questionnaires record,
Xx-1 <Xk for k>1 and X3=0,
(Ye)p.; is a sequence of independent and identically distributed random variables
Yk = Xk — Xk-1 with exponential distribution

G(t)=1-e™,t>0, A>0 and Yy =Xk —Xk_1 for k>1

n
denotes k — th spacing between k —th and (k —1)—th arrivals, S, = > Yx is a random va-
k=1

riable with Erlang distribution given by

-1 i
P(Sngt):l—nz @e_“ for t>0and A >0,
i=0 1

Then
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P{N'(t)=k}=P{N'(t)<n +1}-P{N'(t)<n}=P{Sp,1 > t}- P{S, > t}z(%)ne—%t ,t>0),

the total number of arrivals until the moment t >0, is a random variable with Poisson dis-
tribution with the parameter A >0 and {N'(t) t> 0} is Poisson process.
Moreover, if in the Poisson process (stream) in the interval [0,T], T>0, n arrivals occur,
then process (stream) of arrivals in this interval is the Bernoulli process (stream), (Kingman,
2001). This fact is shown below.
If 0<t<T and 0<k<n, then
P{N'(t)=k,N'(T)-N'(t)=n-k} P{N'(t)=kP{N'(T-t)=n -k}

P{N'(t)=n} P{N'(T)=n}

(At) ¥ (A(T-t) ¥ o MT-1)
k! (n—-Kk)

(ki!)n e—x(T—t)

P{N'(t)= KN'(T)=n}= [ZJ{%}k@ —%jn_k .

If the intervals Aq,..., An are disjoint pairs and [0, T]=A1U...U A, then for any nonnegative

P{N'(t)=k|N'(T)=n}=

Hence

integers kq,...,kn such that k;+...+k,=n holds

_Px N'(A1)=kq,.., N'(Ap)=kn} illj[lP{N'(Ai) = ki}

P{N'(A7) =Ky, N'(A ) =k [N'(T) =}

P{N'(T)=n} ~ P{N'(T)=n)}
H(?L|Ai|)kie_}‘|Ai|
_i=1
n
(AT) 0T
n!
Therefore
n!
P{N'(A1)= K1, N'(An) = kn|[N'(T) =n}= ————pki_ pkn_
Kyl k!

3.3 The size of the uncontrolled sample with a selection procedure as compound
Poisson process

In the Internet surveys the electronic questionnaire is available to all Internet users and a
part of the registered arrivals came from respondents who do not necessarily belong to the
surveyed population.

In this case only the arrivals of these respondents whose questionnaires qualified for the
data set based on the selection procedure are included in the sample. By this assumption
and the assumptions made in case 2 the size of the uncontrolled sample is defined as a
compound Poisson process (Kingman 2001).
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Definition 3.3. For fixed n>1 the size of uncontrolled sample until the moment t>0 is
given by Y(t)=SN'(t),
where

N' (t)z card {n: X, € [0, t]}z max{n 20:5,< t} » SN'(t) = Ni(:%j ,
=1

a sequence (Unm:l of independent and identically distributed random variables and the
Poisson process {N'(t):t>0} are independent.

The arrivals X, ,n=1,2..., are selected for the uncontrolled sample in the following way (the
sequence of arrivals X;,,,n=1,2...is thinned): the arrival t,,n=1,2...., is omitted with the
probability p, p€[0,1] (independently of the process taking place), if the respondent does
not belong to the population and the arrival X,,n=1,2..., is left with the probability 1-p,

otherwise.

The random variable U; is equal to 1, if the arrival X; remains, and 0, if the arrival X; is
omitted.

The probability p, p €[0,1] is defined by the procedure of selection used in the survey and
consequently, process {Y(t),t 20} is compound Poisson process with expected number of

the arrivals A(1-p).

4. Length of the population lifetime

In the remaining part of this study we assume that the population of n units for n>1 is
treated as a finite coherent system of n components (Barlow & Proschan, 1965) and the
Internet survey begins at time t =0 and it is conducted for the time T,T >0 . In this case the

process of Internet data collection can be considered as a random experiment or a life testing
experiment in which the basic characteristics of length of the population lifetime are
analysed by using the methods of reliability theory (Barlow & Proschan, 1965 (1996), 1975;
Kopocinski, 1973, Solowiew, 1983).

We assume that a non-negative independent random variables Xy, k=1,2..,n,n>1 with

distribution function

Fr(t)=P(Xy <t), for t>0, k=1,2,..,n, n>1,
and probability density function

f()=F.(t) and Fk<t>=§fk<xmx

are interpreted as the length of lifetime of k-th element of the population until the moment
t > 0 or the moment of death of k-th element of the population until the moment t >0 or the
waiting time of arrival of k-th element of the population until the moment t > 0.
The probability

Fr(t)=1-Fg(t) for t>0, k=12,.,n, n>1
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is the reliability function of the length of lifetime of k-th element at the moment t > 0, (the re-
liability of the k-th element in short) and equal to the probability of the length of lifetime of
k-th element at least t > 0 or the probability of event that k-th respondent is in the state of life
atleast t > 0.

The conditional probability density function

}Lk(t):ﬁ‘—(t) for t>0, k=1,2,..,n, n>1

E(t)

is called arrival or failure rate of k -th element of the population, (Kopocinski, 1973).

The elements of the population are not renewed - each record of questionnaires decreases
the size of the population in one and the element which arrived is not replaced by a new
one. This way of selection is called random sampling without replacement.

The length of the population lifetime and is defined by using the structure function of the
population as follows (Sotowiew, 1983).

4.1 States of elements of the population
The state of i -th elements of the population (as the system) is defined by the values of the
binary function

0 if i-thelementisin the state of life ori-th element did not arrive until the moment t

Yilt)= o .. . . .
1( ) {1 if i-thelement isin the state of death ori - th element arrive until the moment t

where Y:[0,0)x{1,2,..,n}—{0,1} and Y(t,i)=Y;(t) for ie{l,..,n}, te[0,).
Then the state of all elements of the population of sizen , for n>1, is determined by n -
dimension vector Y(t)=(Y1(t), Y2(t),... Yn(t)" and we assume that at the initial moment

t=0 all elements of the population of sizen, for n>1, are in the states of life. This
assumption means that at the moment t =0 no arrivals occurred.

4.2 States of the population
The state of the population of the sizen, for n>1, at the moment t>0 is defined by the
values of the binary function

()= 0 if the population is in state of life (the survey (test) is conducted) at the moment t
P11 ifthe popualtion is in the state of death (the survey (test) ended) until the moment t

and at each moment t >0 it depends on the states of the elements through the values of the
function ¢ (t)=(Y1(t)..., Yn(t)= o(Y(t)).

In the process of Internet data collection treated as a life test of the population of sizen , for
n>1, the population can be found at the moment t>0 in the state of life during the
conducting of the survey in following cases.
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In the first case, at the moment 0<t<T where T is the time of the survey conducting
specified in advance and the number of death (arrivals) in interval of the length t>0is a
random value but it is less than the size of the population. Otherwise, until the moment T
specified in advance.

In the second case, until the moment t>0, in which the number of death (arrivals) is equal
to the size of the sample specified in advance (it is equals or less than the size of the
population) and the time of the survey conducting T is not specified in advance.

In the third case, until the earlier of the time of the survey conducting T and the moment
t >0, when the number of death (arrivals) is equal to the sample size, where both the length
of time of the survey T and the sample size are specified in advance.

In the fourth case, until the moment t >0, when the collected data set (it can be a subset of
the population or the population surveyed) meets the demands of the survey organizers and
the final moment of the survey is not specified in advance.

4.3 Properties of the structure function
The structure function ¢(Y) is increasing, if for any two vectors X(l) and X(z) is satisfied

the condition:
it YO YO then ofy®)<oly®),

where X(l) < X(z) ,if forall i=1,..,n, Ygl) < Ygz) .
This property of the structure function introduce a partial order in a set of the binary vectors

and means that additional death of the element can not change the state of the population
from the state of death to the state of life.

The function ¢(Y(t)) define a division of a set E= {X: Y:Y" > {0,1}“} of all n - dimension

and binary vectors which describe the state of the population to two sets:

E.= {X (Y (t)= O}, a set of states of life of the population and
E_=1{Y : (Y (t))=1}, a set of states of death of the population.

If the structure function is increasing, then the division of the set £ to two sets E, and E_
is called a monotonic structure (Barlow & Proschan, 1965).

4.4 Length of the population lifetime
Let us denote by X the length of the population lifetime and

X =inf{t: o(Y(t))=1}.

F(t)=P(X<t)
is the probability of ending of the survey (test) until the moment t>0 or the probability of

the event that the population is in the state of death until the moment t>0
and

Then
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F(t)=P(X>t)
is the probability of the conducting survey (test) at least t >0, the probability of the event
that the population is in the state of life at least t >0 or the reliability function of the X, the
length of the population lifetime at the moment t >0, (the reliability of the population in
short).

4.5 Calculation of the reliability of the length of the population lifetime
The formula which expresses the relation between X, the reliability of the length of the
population lifetime and Xy, k=1,2...,,n, n > 1 reliabilities of elements at the moment t>0 is

given by

E(t)=_ p(Y(t),

Y(t)eE,
where

p(X(t)= ITFL Y OR(),

(there is adopted the convention (00=1) is a probability of event that the population is in the
state Y .

If Xx,k=1,2..,n,n>1 are non-negative independent random variables, the elements are
not renewed and the function ¢(e) is increasing, then the reliability function of the length of

the population lifetime F(t) is increasing respectively to each coordinate of the reliability
function of the length of the element lifetime F(t).

Thus an upper or a lower bound on the reliability of X, the length of the population lifetime
may be obtained from the upper or lower bounds on the reliabilities of the elements.

When the number of the states is large (the number of all states is equal to 2") and the
function ¢(Y) is very complicated, then a formulae given above is not efficient and the other
methods of calculation are applied e.g. the method of path and cut (Barlow & Proschan,

1975; Koutras et al.,2003 ) or the recurrence method of Markov chain or generally, the
Markov methods (Sotowiew, 1983).

5. Basic structures of the population

5.1 Length of the population lifetime for the series structure

The population (as the system) of n - elements for n >1is called a series structure, when the
population is in the state of life if and only if each element is in the state of life.

In this case, the change of the state of any element causes the change of the population state.
The length of the population lifetime is equal to the waiting time of the first death and the
size of the uncontrolled sample equals zero for the first death. Then the basic characteristics
of the reliability function of the series structure are given as follows.
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From definition of the series structure follows that the length of the population lifetime is
equal
X1in= min(X1 s X2 eer Xn)

and the probability of it (duration of the survey) at least t >0 is equal to
— n__
Ft)=TTFi(t).
1=
From inequality (Hardy, et. al, 1934)

n n n n 1 n 2
1- XFi<[1(1-F;))<1- YFi+ YFiFj<1- XFi+=| XF;
i=1 =1 i=1 i< i=1  2\i=1

2

1 n
<= .
2(1?11:1}

The change rate of the population equals the sum of the change rate of the elements

it follows that

F(t)- ilﬁ

()= _% __ [ln ﬁ(t)]'z _él[lnﬁi(’f)} = _él ;ii’((tt))

The expected time of the length of the population lifetime is equal to

E(X)= [F(t)t.
0

= Sst).
i=1

5.2 Length of the population lifetime for the parallel structure

The population (as the system) of n - elements for n>1is called a parallel structure, when
the population is in the state of death if and only if all elements are in the state of death.

In this case, the change of the state of the population (death of the population) takes places
only if changes of all population elements occur - all elements of the population died and
the size of the uncontrolled sample is equal to the size of the population (all elements of the
populations arrived).

From definition of the parallel structure follows that the length of the population lifetime is
equal to

Xn,n =max(X1, X2 .-, Xn)
and the probability of the length of the population lifetime (duration of the survey) at least
t>0 is equal to

F(t)= [TFi(t) or F(t)=F3(t)

i=1

and the expected time of the length of the population lifetime is equal to

E(X)= °(};[1 —F(t)Ht or B(X)= z’h — 1 (Rt , when i (t) = Fo(t), i=1,2,..,n .
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5.3 Length of the population lifetime for the partial structure

The population (as the system) of n - elements for n>1is called a partial structure if all
elements of the population are identical and the population is in the state of life if at least
m elements of the population are in the state of life (that is, at most n—m death occur) and
the size of the uncontrolled sample equals n—m .

The reliability function of the length of the population lifetime is equal to

F(t)=1-P(Xn-msin<t)= 3

k=m

N

6. Estimate of the reliability of the length of the population lifetime - the
method of path and cut

In this method are defined notions of minimal path minimal cut that used to estimate the
reliability function of the length of the population lifetime, (Barlow & Proschan, 1965).

Definition 6.1. The set of elements A = {u,...,ux} of the population of the size n, n>1, is
called a minimal path if all the elements of this set are in the state of life (the population is in
the state of life, the survey is being conducted) and no subset of the set 4 has this property.

From the monotonic property of the structure function, the set A = {uy,..., ux} is a minimal
path if and only if Y € E,, where e is a vector in which coordinates ii,...,ix take on the

value zero and the remaining coordinates take on the value one, with any state greater than
Y belonging to E_ .

Therefore, every minimal path determines a bordering state of the life of the population in
which the occur of death of any element causes a change of the state of the population into
the state of death one (ending of the survey (test)).

In term of the size of the uncontrolled sample, it means, that the number of arrivals is equal
to the number of elements of the minimal path is smaller per one than the size of the sample
assumed in the survey.

Let {A1, As,..., Am} be a sets of all minimal paths with the corresponding bordering states

X(l), X(z)’m’ X(m) ]

As is an event in which all elements of the minimal path Agare in the state of life. Since

Ei= rLIj Ag, (Solowiew, 1983), the reliability function of the length of the population lifetime
s=1

is calculated from the formula

F(t)= P( rllesj = EP(Ai)Jr ZP(Ai Aj)+ sz(Ai AjAk)+ A (CD)™HP(A1 A2 Am)
s= i=1 i,j i<j<

The number of the elements of the sum on the right is equal to 2™ —1 and the probability of

any event which is given by A; A;,...A;, , where ij<ij,...<ix is equal to
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P(Aj, Ajy Ay )= Fy, (OF,, (1) F, (),
where s1, sp,. s1 are different indices of elements of the minimal paths (that is, in the case
of the elements belonging to overlapping parts of different paths, each element is calculated
only once).
In the order to lower the number of calculation are introduced the following notions.
The two minimal paths are called crossing, when they have at least one common element.
The two minimal paths are called relevant, if there exists a chain of crossing paths which
connects them.
The relevant relation is the equivalent relation which divides a set of all minimal paths into
classes of relevant minimal paths.
Let {Al--- Ak1}' {Ak1+1--- Akz}‘“' be the successive classes of the relevant minimal paths.

Because

F(t)=1- ﬁ(t):P(ﬁXij ,

i=1

m — J—

(the symbol []A; means an intersection of sets A; for i=1,..., m ) and the events belonging
i=1

to different classes are independent, then

ki — ko —
F(t)Z P(H Ai jP(-l:IlAkﬁ—l] ..... .

i=1
A dual notion of the minimal path is a minimal cut (a critical set).

Definition 6.2. A set of elements B = (jl' Jo rever ]1) is called a minimal cut, if all elements of this

set are in the state of death (the population is in the state of death, the survey (test) ended)
and no subset of the set B has this property.

In this case we are interesting in those cut set in which the number of elements is equal to
the size of the uncontrolled sample specified in advance (all elements belonging to the set
B arrived).

If {B1,B2,.., Bs} is a set of all the minimal cuts, then the probability of an event that the

survey (test) ends until the moment 7= 0 is equal to

F(t)=P( LSJBiJ= SP(B;)+ YP(BiB)+ ¥ P(BiB;Bi)+..+ +(-1)™ " P(ByBy...Bm)=

i=1 i=1 i<j i<j<k

=51-5S2+S3+...+ (—1)s+1ss

From this formula the estimation of the length of the population lifetime (during the survey)
as the estimation of the reliability function of the population can be obtained.

In this case the number of elements in the successive minimal cuts is interpreted as the
possible sample sizes which can be collected in the survey on condition that the survey ends
after collection of the sample of the assumed size.

From proof of this formula for the non-crossing minimal cuts holds
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2
St

83
gy<=L, gy<=L,

2 6

and so on, and in the case of the crossing minimal cuts the partial sums maintain an order
Sk =0(s?).
Moreover, for any k,
S1=Sp+...—Sok <F(t)<S1—So+...— Spi + Sy -

Thus there exists the possibility of the estimation of the probability of length of the popula-
tion lifetime with assumed precision because partial sums on the right of the last formula
are the interchangeable upper and the lower bounds of the reliability function.

7. Reliability of the length of the population lifetime — Markov methods

So far we have assumed that the length of the lifetime of the population elements (the wait-
ing time for arrival) are independent distributed random variables. In literature devoted to
research of reliability of the system of order n considered dependence on initial parameters
of the system, external conditions, as well as on the states of other elements. Let us consider
the last dependence.

7.1 Model of dependence of the element of the population

In the most general way, if no dependence of initial parameters exists and there is no de-
pendence of the lifetimes of the elements on the common external conditions, then the only
type of dependence is the dependence of the reliability of one element on the states of the
other elements. This dependence is described as follows (Sotowiew, 1983).

Let the states of the population of n - elements for n >1are defined by the binary vector

Y(t) = (Y (t), Yo (t)s Yn (£)"
and by T is denoted a realisation of the process Y(x) in interval [0,t] .
If the realisation Ty of the process Y(x) is determined until the moment t, then the transi-
tion probability in the time At to the state Y equals
MT¢, Y)At + o(At) (7.1.1)

There are can be considered the following cases:

1) at the same time the change of the states of a few elements occur,

2) in each moment the change of the state of only one element occurs (failure, arrival).

If case 2 is considered, then the process Y(t) is described by the arrival (failure) rates of the

elements and 2;(I';) is the conditional arrival (failure) rate of the i -th element, on condition
that the realisation of the process is determined until the moment t .
If the arrival (failure) rate of the element given by formulae 2;(I'¢)=Ai[t, Y(t)] , depends

only on the moment t and the state of the process in this moment then the process Y(t) is

non-homogeneous Markov process with a finite number of states.
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If the arrival (failure) rate of the element does not depends on time, but depends only on the
states of the elements 2;(t,Y)=2;(Y), then such a homogeneous Markov process is a gen-

eralised pure death process.
If in the generalised pure death process the elements of the population are symmetrical,
then all arrival (failure) rates of elements are equal to 2;(Y)=A(Y) and the arrival (failure)

rate of the population not depend on the vector Y, but depends only on the number of

states changes (arrivals, failures) of the elements A(Y)= AlY

, where |Y] = 5 Y2 . The proc-
k=1

ess ||X(t)
with the rate (n—1)A(i) is a pure death process.

, in which the transition from the state ||X||=i is possible only to the state i+1

The pure death process describes functioning of the non-renewable the system consisting of
identical elements while the generalised one describes functioning of the system consisting
of different elements. It seems to me that the application of the Markov methods for the re-
search of the length of the population lifetime when the population is treated as a system of
n, n>1 elements is natural.

Namely - changes in time of the population states (as the system of n, n>1 elements) are
determined by multidimensional stochastic process. This process is chosen in such a way
that when we investigate the reliability of the population and we know the state of the proc-
ess, we can in each moment explicitly define the state of the population (whether the system
is functioning or failed, whether the population is in the state of life or death).

Bellow is presented a general model of functioning of that population (as the system of n,
n>1 elements), (Sotowiew, 1983).

7.2 General model functioning of the population
Let &(t) denote the stochastic process chosen in the way described above.

A set E of this process states decomposed into two disjoined subsets E=E, UE_ .
If &(t)e E,, then the population is in state of life at the moment t and if &(t)e E_, then the

population is in state of death at the moment t.
The transition of the process from the set E. to the set E_ is called death of the population,

and a reverse transition from the set E_ to the set E, is called a renewal of the population.
The process observed in time changes the state E, into the state E_ and reverse.
Let

20,21 s Zk s A0 Z0, Z1 yeves Zi oo

denote successive intervals respectively, in which the population is in the state of life or
death.
If there exists a stationary distribution for the process &(t), which describes the functioning

of the renewable population, then there exist limits 7} _f 7 Zi—7".

A random variable

Zo - is called the time until the first change of the state of the population

Z' - is called the length of the lifetime of the population per one change of the state
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Z(t)- is the lifetime of the population from the moment t until the first moment after the
change of the state of the population, residual time of the population lifetime.
As before, if there exists a stationary distribution for the process &(t), then there exists the

P
limit Z(t) -7 .
Distributions of random variables 7,7}, ZL,Z(t),Z',Z",Z and their an expected values
E(Z'O), E(Z'k), E(Zx), B(Z(t)), B(Z'), E(Z"), E(Z)) are basic characteristics of the reliabil-

ity function.

One of the simpler type of the processes used in the reliability calculations is the class of
Markov processes with a finite or uncountable number of states. In this sense the pure death
or general death process could be a model describing the changes of the population states.

In aspect of Internet survey three characteristics are important:
Zo - the time until the first change of the state of the population,

Z' - the length of the lifetime of the population per one change of the state,
Z(t)- the lifetime of the population from the moment t until the first moment after the

change of the state of the population, residual time of lifetime of the population.

Below the probability distribution of these random values and their the expected values are
derived.

7.3 Formulae of characteristics of Markov process
Assume that the process &(t) is a homogeneous Markov process with a finite number of the

states which is assigned 1,2,...,N .
Let the set E, = {0,1,2,..., n} denote a set of the functioning states of the system (life states of
the population) and E_={k+1,k+2,..,n} a set of the failed states of the system (a set of

death states of the population which is interpreted as break between repeated surveys).
The Markov process is analysed in following steps.

1. The Markov process has two properties which are equivalent to the definition the Markov
process:

- the interval in which the process finds itself in the state i, does not depend on the process
taking place outside the interval and it has exponential distribution

P{ti > t}= e_M,it , where 7\ai,i = _Z)\ai,j ,
j#i
- a sequence of the states through which the process passes is the homogenous Markov

M

chain with transition probabilities r; ;=— . At the same time, if A; =0, then the state i

ii
is called an absorbing state, because when the process has entered the state, it will remain in
it forever. In this case we assume that n; ;=0.
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2. Solution of the Kolmogorov equations

Let
p; (t)=P{E(t)=1}.

The probabilities of the states p; (t) satisfy the Kolmogorov equations

o N -
p;(t)= ‘Zoki,jpi(t)/ j=0,1,.,N (7.3.1)
1=
These equations are rewritten in a matrix form
p()=p(t)A,

where p(t)=|py ()., p,, (t)] is the vector of the states probabilities, A = [Ki,jJ is the matrix of

the transition rate with the properties:
a) all elements of the matrix A = b\i,jj satisfy the condition 2; >0,

N
b) Zki,j =0.
=0

After assuming the initial distribution of the process p; (0)= p;o the system of the Kolmo-

gorov equations (7.3.1) has the explicit solution

Pi (O) =Pio-
The system of the Kolmogorov equations (7.3.1) is solved by means of Laplace transform.
Let

ai ()= gp (t)dt .

Taking the properties of Laplace transform is obtained

N .
~Pjot Zaj(Z) = Zoai(Z)M,j, j=0,1,2..,N,
1=

and from the Cramer’s formulae the solution of the system is given by

a1(z)=2i2) (7.3.2)

A(z)

, the determinant in the numerator is calculated from the determi-

where A(z)= ”Z Oi,j — M

nant in the denominator by the replacement of the i- th line with the line of the initial prob-
abilities Pjo 8ij is a Kronecker’s symbol. After inversion of the Laplace transform the for-

mulae of the probability of the process states is obtained.
3. Conditions of existing of the stationary distribution of the process.
Two states are called communicating, if there exist such indices iy,...,ix as well as j,..., j;,

that Miyr Mg e Mg j > 0 and Ajjjyr Mgy reeer i > 0. We also assume that each state commu-

nicates with itself.
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The communication relation is an equivalence relation and introduce the decomposition of
the set of the states into the classes of communicating states A1,..., A -

The class Agfollows the class A, , if there exist the states i€ A, and je Ag such that
}\‘i,j >0.

A class is called ergodic, if it is not followed by any class. By compliance with or satisfaction
of these conditions the proposition holds:

The stationary distribution of the process, lim p; (t)L) p; , which is independent of the
t—>w

initial distribution exists if and only if there exists exactly one ergodic class, whereas the sta-
tionary probabilities satisfy the system of equations:

N . n
'Zopiki,j =0, j=012,.,N, _lei =1 (7.3.3)
1= 1=

4. Basic characteristics of the reliability function

Let A be a set of the states and let i A .
The transition time to the set A is defined as a random variable

xi(A)=inflt£(t) e A] £0)= ).

Its probability distribution is obtained by means of Laplace transform

9;(z)=Elexp(-zX; (A))].
From the formula of the total probability for the expected value

_ 7\‘ . ;\‘.,. 7\‘.’.
(Pi(Z)z ii 5 YL 3 i,j (Pj(z)
Z—Aii\jeA —Ai,i  jeA,j#i —Mii
is computed in the following way.
In the state i the process is for the time & which is the random variable with exponential
—Aii

distribution and Laplace transform y
Z=Nii

, next, from this state it passes with the prob-

ability Yo to the state j-
i
If jeA, thenX;(A)=¢;, and if jgA, then X;(A)=&;+ Xj(A) and both components are in-
dependent.
The solutions of the equations system

3 {e81,- 2 hojl2) =24(4)

je

igANi(A)= X i (7.3.4)
jeA
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are rational functions and after inversing them the probability distribution of the random
variable X;(A) is obtained.

Differentiating the equation system (7.3.4) as regards to z and substituting z=0, the ex-
pected transition times

E(Xi (A))=~¢; (0)
are obtained and they are satisfying the equations system

> A ElXj(A))+1=0,igA.
jeA

Let qi,j(A) denote probability of an event, that in the moment of the first entrance of the

process to the set A, the process will enter the state je A, on condition that at initial mo-

ment the process was in the state i¢ A .
In the analogical way as above are obtained the forward equations for these probabilities

M Ak
- (z)= + X . (A).
ql’J( ) —M,i  keA k=i —Adi qk’J( )

Transforming the equations we have

Shi ki (A)=-%ij, ieA jeA (7.3.5)
keA

5. Transcription of the characteristics from the point 4 by means of X;(A)and the probabil-
ity q;;(A).
Let at the initial moment &(0)=0, that is at the initial moment all the elements of the system

are functioning (all the elements of the population are in the state of life).
Then

Zo=Xo(E-)-
The probability qq;(E-)is computed from the equations system of (7.3.5) and from the

formula of the total probability is derived

Piz; St}:j P Qo (B P (EL)< ]

Probability of the event that in the moment of the first renewal the process enters the state
k e E; from the formula of the total probability is equal to

Z}é qO,j(E—)q]',k(E+) .
jeE-

If these probabilities are known, then the probability distribution 7; and the probabilities of
entrance to given states at the moment of the second failure (at the moment of the second
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change of the population state) can be computed. This in turn makes it possible to compute
the probability distribution Z, and so on.

To compute the stationary distributions of the random variables 7 and Z' let us introduce
the following probabilities:

- q;(E;) - probability of an event that in the moment of the renewal of the population (as the
system) in stationary conditions the process enters the state i €E, ,

- q;(E-) - probability of an event that in the moment of the death of the population (the fail-

ure of the system) in stationary conditions the process enters the state i€ E_.
q;(E,) is the probability of the event that in the time dt the process will pass from the set

E_ to the state i € E, on condition that in this time the process passed from the set E_ to the
set E, .
Formally, it is transcribed by formulas

2 ijLi

jeE_
q;(E.)=—2—— (7.3.6)
i + Z Z p]7\,],1
ieE, jeE-

and analogically

2 PikAii

(F)=—"tE 7.3.6
a ( ) DI ijLi ( )

ieE-jeE,
where p; are the stationary probabilities of the process.

The probability distributions of the random variables 7, Z and Z - residual time of the
system life are given by

Pz <tf= S q;(B.)P{x; (B-) <t} (7.3.7)
1€E,

Pz stl= ZaEIPh (E:) <t (738)

P{Z > t}: | > pPiXi (E4)> t) (7.3.9)

The expected values of the basic reliability characteristics are given by

E(Z0)=E(Xo(E_) ,
E(Z)= Sa,E B0 (E)),

1€E,
E(Z")i Za(EJEOG(E.),
E(Z)= iglépiE(Xi (E-)),
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8. The pure death process

The pure death process is a homogenous Markov process &(t) with the space of states
0,1,2,...n,..., for which

Lij=2i=0 aswellas 2;;=0 forj#i+1.
That is, the pure death process passes successively through the states 0 >1—>2—..n— ..
and in the state k it is for the time ty with exponential distribution

P{ty > t}= e txt

and next it passes to the state k+1 with the probability one.
Let E, = {O,l,Z,...,n} be a set of the functioning states of the system (the set of the states of

the life of the population), E_={n+1,n+2,...} is a set of the failed states of the system (the
set of the states of death of the population), and £(0)=0 .

Because the pure death process describes behaviour of the non- renewable system, we as-
sume that a basic characteristic of the pure death process is the time until the first failure of
the system (the time until the first change of the state of the population, the time until the
first of death of the population)

Zo=Xo(E-).
And as before

Xi(A)=infl: (1)< Al €0)=if and  Elexp(-2Xi(E)]=0:(2)
are introduced.
Then the equations system (7.3.4) takes on the form

{— i1 (2)+ (z+2i)e;(z)=0,i<n
(Z + kn)(Pn (Z) =X\n

from which it follows that

AoMAn
Z+ ko)(Z + }\«n) ’

9o(z)= E(e_zrb): (

_ n e—?»kt

F(t)= P{Zb > t}= AOAT-An 2

k=0 A W' (= k) 8.1)

where w(x)= (x+ 1o)X+ Aq)--(X + ).

Because the time until the first moment of the failure of the system (the time until the first
change of the state of the population, the time until the first death of the population) is a
sum of the random variables

Zo=Ep+E& +..+E
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hence the expected time until the first failure of the system (the time until the first change of
the state of the population, the time until the first death of the population) is equal to

N (8.2)

9. The general pure death process

The general pure death process is a homogeneous Markov process &(t) with the number of
states E = {X: Y:Y" > {0,1}“}, where Y =(Y1,....Yn)', Yi=0 or Y;=1, for which only im-
mediate transitions in the form

X = (Yl seer Yio1 ,0, Yitlreer Yn) - X'= (Yl,..., Yi-1 ,1,Yi+1,..., Yn), i=1,..,n,
with the transition rates 2;(Y) are possible.
Such a transition denotes a change of the state of one element of the population and can be
interpreted in the research of the population lifetime as a failure, an arrival or a death of the
i-th element.
By the previous denotations E, is a set of the states of life of the population (a set of the

functioning states of the system), E_ is a set of the states of death of the population (a set of

the failed states of the system).
We assume that in the initial moment all the elements are in the state of life that is Y(0)=0.

The notion of the way = is defined as class of the realisation of the process Y(t) with an as-

sumed sequence of the states, through which the process passes. This sequence begins from
the state at the initial moment zero and ends with the state at the moment of the change of
the state of the system (the failure of the system, the death of the population)

r= (Y, y@), _ ym),

Y0=(00,.,0), Y¥eE, for k<m, y(meE_.

Each transition from a state to a state described by the way TEZ(X(O),Y(l),...,Y(m)) is the

change of the state of the system element (which is the failure of the system element or arri-
val or death of the element of the population of the sizen, n>1).
Summary rate is defined then as

MY)= %Xi@) ,

where ;(Y)=0, if in the state Y i -th element is already failed (i -th element of the popula-

tion has arrived).
Then from the properties of the Markov process

Pi(X)z 7;3(%)
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is the probability of the event that the process passes from the state
Y =(Y1, Yi-1,0, Yis+1,- Yn) to the state Y'=(Y1,..., Yi—1,1, Yis1,-- Yn), that is i -th element

changes its state (fails, arrives or dies).
Let jx denote the number of the element changing the state (failing, arriving or dying)

when it passes from the state Y{(&-1) to the state y (k) during the passage of the way = .
Then from the formula of the total probability the probability of the change of the system
state (failure of the system, death of the population) equals

F(t)=Plzio < t}= ZF(rh(x) (9.1)

where sum is calculated for all the possible ways =,

p(ﬂ:) =Py (e(O))piz (e(l)) P;., (e(m))

is the passage probability of the way =n, and F(t|n) is the conditional probability of the
change of state of the system (failure of the system, death of the population) on the condi-
tion of the passage of the way = .

Since in each state X(k) the process remains for the time with the exponential distribution
with the parameter X(X(k)), hence the conditional process Y(t) on the condition of the pas-

sage of the way n is the pure death process with transition rates being given by X(X(k)) .
Substituting to the form (9.1) the expression (8.1) the probability of the first death of the

population (the first failure of the system) is obtained.
The expected time of the first death of the population (the first failure of the system) from
the equality (8.2) is derived and equals

. 1 1
E(Zo)=%p(rc) 7L(X(O))+...+k(x(m_l)) .

10. Conclusions

In this study the process of Internet data collection is interpreted and analysed as a random
experiment or the life test of population surveyed by using the notions and methods of the
probability and reliability theories. A random set of respondents who participate in Internet
survey is called the uncontrolled sample and defined as the counting process by using Pois-
son processes. The proposed approach allows to study some stochastic properties of the
process of the Internet data collection, the calculation and the estimate of the basic character-
istics by the assumed assumptions. Moreover, the Markov methods are applied to descrip-
tion of a life testing experiment in which the basic characteristics of a reliability of the length
of the population lifetime are derived, when the finite population is interpreted as a system
with the monotonic structure function and the changes of the population states are de-
scribed through the death and the general death processes.
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