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1. Introduction

In this chapter, we are interested in inducing a grammar that accepts a regular language
(Hopcroft & Ullman, 1969) given a finite number of positive and negative examples drawn
from that language. Learning regular languages is equivalent to the problem of learning
Deterministic Finite Automata (DFA). Both problems have been extensively studied in the
literature and it has been proved that learning DFA or regular languages is a hard task by a
number of criteria (Pitt & Warmuth, 1993). Note, that induced DFA should not only be
consistent with the training set, but also DFA should proper estimate membership function
for unseen examples.

The approaches to learning DFA or equivalent regular languages (RL) base mainly on
evolutionary algorithms (Dupont, 1996), (Luke et al., 1999), (Lucas & Reynolds, 2005),
recurrent neural network (Giles et al., 1990), (Waltrous & Kuhn, 1992) or combination of
these two methods (Angeline et al., 1994). While speaking about DFA /regular grammar
induction, one cannot help mentioning one of the best known algorithm for learning DFA -
EDSM (Cicchello & Kremer, 2002), which relies on heuristic compressing an initially large
DFA down to a smaller one, while preserving perfect classification before and after each
compression.

In this chapter we examine RL induction using Grammar-based Classifier System (GCS) - a
new model of Learning Classifier System (LCS). GCS (Unold, 2005a), (Unold & Cielecki,
2005) represents the knowledge about solved problem in Chomsky Normal Form (CNF)
productions. GCS was applied with success to natural language processing (Unold, 2007a),
biological promoter regions (Unold, 2007b), and toy grammar (Unold, 2005b). In spite of
intensive research into classifier systems in recent years (Lucas & Reynolds, 2005) there is
still a slight number of attempts at inferring grammars using LCS. Although there are some
approaches to handle with context-free grammar (Bianchi, 1996), (Cyre, 2002), (Unold,
2005a), there is no one work on inducing regular languages with LCS. This article describes
GCS approach to the problem of inferring regular languages.

The generic architecture of learning classifier system is presented in the second paragraph.
The third section contains description of GCS preceded by short introduction to context-free
grammars. The fourth paragraph shows some selected experimental results in RL grammar
induction. The chapter is concluded with a summary.
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2. Learning Classifier System

A Learning Classifier System, introduced by Holland (1976), learns by interacting with an
environment from which it receives feedback in the form of numerical reward. Learning is
achieved by trying to maximize the amount of the reward received. There are many models
of LCS and many ways of defining what a Learning Classifier System is. All LCS models,
more or less, comprise four main components (see Fig. 1): (i) a finite population of
condition-action rules (classifiers), that represent the current knowledge of a system; (ii) the
performance component, which governs the interaction with the environment; (iii) the
reinforcement component, called credit assignment component), which distributes the
reward received from the environment to the classifiers accountable for the rewards
obtained; (iv) the discovery component responsible for discovering better rules and
improving existing ones through a genetic algorithm (GA).
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Fig. 1. The generic architecture of Learning Classifier System (Holmes et al., 2002)

Classifiers have two associated measures: the prediction and the fitness. Prediction
estimates the classifier utility in terms of the amount of reward that the system will receive if
the classifier is used. Fitness estimates the quality of the information about the problem that
the classifier conveys, and it is exploited by the discovery component to guided evolution. A
high fitness means that the classifier conveys good information about the problem and
therefore it should be reproduced more trough the genetic algorithm. A low fitness means
that the classifier conveys little or no good information about the problem and therefore
should reproduce less.

On each discrete time step ¢, the LCS receives as input the current state of the environment s;
and builds a match set containing the classifiers in the population, whose condition matches
the current state. Then, the system evaluates the utility of the actions appearing in the match
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set; an action at is selected from those in the match set according to a certain criterion, and
sent to the environment to be performed. Depending on the current state s; and on the
consequences of action at, the system eventually receives a reward r; The reinforcement
component distributes a reward r; among the classifiers accountable of the incoming
rewards. This can be either implemented with an algorithm specifically designed for the
Learning Classifier Systems (e.g. bucket brigade algorithm (Holland, 1986)) or with an
algorithm inspired by traditional reinforcement learning methods (e.g., the modification of
Q-learning (Wilson, 1995)). On a regular basis, the discovery component (genetic algorithm)
randomly selects, with the probability proportional to their fitness, two classifiers from the
population. It applies crossover and mutation generating two new classifiers.

The environment defines the target task. For instance, in autonomous robotics the
environment corresponds roughly to the robot’s physical surroundings and the goal of
learning is to learn a certain behaviour (Katagami & Yamada, 2000). In classification
problems, the environment trains a set of pre-classified examples; each example is described
by a vector of attributes and a class label; the goal of learning is to evolve rules that can be
used to classify previously unseen examples with high accuracy (Holmes et al., 2002) (Unold
& Dabrowski, 2003). In computational economics, the environment represents a market and
the goal of learning is to make profits (Judd & Tesfatsion, 2005).

For many years, the research on LCS was done on Holland’s classifier system. All
implementations shared more or less the same features which can be summarized as
follows: (i) some form of a bucket brigade algorithm was used to distribute the rewards, (ii)
evolution was triggered by the strength parameters of classifiers, (iii) the internal message
list was used to keep track of past input (Lanzi & Riolo, 2000).

During the last years new models of Holland’s system have been developed. Among others,
two models seem particularly worth mentioning. The XCS classifier system (Wilson, 1995)
uses Q-learning to distribute the reward to classifiers, instead of bucket brigade algorithm;
the genetic algorithm acts in environmental niches instead of on the whole population; and
most importantly, the fitness of classifiers is based in the accuracy of classifier predictions,
instead of the prediction itself. Stolzmann’s ACS (Stolzmann, 2000) differs greatly from
other LCS models in that ACS learns not only how to perform a certain task, but also an
internal model of the dynamics of the task. In ACS classifiers are not simple condition-action
rules but they are extended by an effect part, which is used to anticipate the environmental
state.

3. Grammar-based Classifier System

GCS (Unold, 2005a) (Unold & Cielecki, 2005) operates similarly to the classic LCS but differs
from them in (i) representation of classifiers population, (ii) scheme of classifiers” matching
to the environmental state, (iii) methods of exploring new classifiers (see Fig. 2).

The population of classifiers has a form of a context-free grammar rule set in a Chomsky
Normal Form (population P in Fig. 2). Actually, this is not a limitation, because every CFG
can be transformed into equivalent CNF. Chomsky Normal Form allows only for
production rules, in the form of A—a or A—»BC, where A, B, C are the non-terminal symbols
and a is a terminal symbol. The first rule is an instance of terminal rewriting rule. Terminal
rules are not affected by the GA, and are generated automatically as the system meets an
unknown (new) terminal symbol. The left hand side of the rule plays a role of the classifier’s
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action while the right hand side - a classifier’s condition. The system evolves only one
grammar according to the so-called Michigan approach. In this approach, each individual
classifier - or grammar rule in GCS - is subject of the genetic algorithm’s operations. All
classifiers (rules) form a population of evolving individuals. In each cycle a fitness
calculating algorithm evaluates a value (an adaptation) of each classifier and a discovery
component operates only on single classifiers.

The automatic learning CFG is realized with grammar induction from the set of sentences.
According to this technique, the system learns using a training set that in this case consists
of sentences both syntactically correct and incorrect. Grammar which accepts correct
sentences and rejects incorrect ones is able to classify sentences unseen so far from a test set.
Cocke-Younger-Kasami (CYK) parser, which operates in @(n3) time (Younger, 1967), is used
to parse sentences from the corpus.

sentence a a b b
1| a2, ¢ |a cC B B |
2 S S B
3 C ?
4
CYK parser
Detectors D Match Set M Action Set A
AB, CB, SB || (EffectorsE)
i i S — AB
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B - b < _
c e ring
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S — AC
<
C - SB AG
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Fig. 2. The environment of Grammar-based Classifier System

The environment of a classifier system is substituted by an array of CYK parser (CYK parser
module in Fig. 2). The classifier system matches the rules according to the current
environmental state (state of parsing, Matching Set M in Fig. 2) and generates an action (or
set of actions in GCS, effectors E in Fig. 2), pushing the parsing process toward the complete
derivation of the analyzed sentence.
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The discovery component in GCS is extended in comparison with a standard LCS. In some
cases, a “covering” procedure may occur, adding some useful rules to the system. It adds
productions that allow continuing of parsing in the current state of the system. This feature
utilizes for instance the fact that accepting 2-length sentences requires separate, designated
rule in grammar in CNF.

Apart from a “covering”, a genetic algorithm also explores the space, searching for new,
better rules. The first GCS implementation used a simple rule fitness calculation algorithm
which appreciated the ones commonly used in correct recognitions. Later implementations
introduced the “fertility” technique, which made the rule fitness dependant on the amount
of the descendant rules (in the sentence derivation tree) (Unold, 2005b). In both techniques
classifiers used in parsing positive examples gain highest fitness values, unused classifiers
are placed in the middle, while the classifiers that parse negative examples gain lowest
possible fitness values.

GCS uses a mutation of GA that chooses two parents in each cycle to produce two offspring.
The selection step uses the roulette wheel selection. After selection a classical crossover or
mutation can occur. The offspring that are created replace existing classifiers based on their
similarity using crowding technique, which preserves diversity in the population and
extends preservation of the dependencies between rules by replacing classifiers by the
similar ones.

4. Regular Language Induction

4.1 Experimental testbed
The datasets most commonly used in DFA learning is Tomita sets (Tomita, 1982). The
definition of Tomita languages is as follows:
L1: a¥,
L2: (ab)*,
L3: (b|aa)*(a*| (abb(bb|a)*))
any sentence without an odd number of consecutive a’s after an odd number of
consecutive b’s,
L4: a*((b|bb)aa*)*(b | bb|a*)
any sentence over the alphabet 4,b without more than two consecutive a’s,
L5: ((aa | bb)*((ba | ab)(bb | aa)*(ba | ab)(bb | aa)*)*(aa | bb)*
any sentence with an even number of a’s and an even number of b’s,
Lé: ((b(ba)*(a | bb)) | (a(ab)*(b|aa)))*
any sentence such that the number of a’s differs from the number of b's by 0
modulo 3,
L7: b*a *b*a*.

By the way, it is worth mentioning that the L3 language given in (Luke et al., 1999)
comprises improper, i.e. not according to the definition, two sentences baaabbaaba oraz
aabaaabbaab. The same work gives incorrect definition of L5 language, permitting sentences
which contain odd number of symbols a and b.

Grammatical (grammar) inference methods that employ DFAs as models can be divided
into two broad classes: passive and active learning methods (Bongard & Lipson, 2005). In
passive methods, a set of training data is known before learning. In active learning
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approaches, the algorithm has some influence over which training data is labeled by the
target DFA for model construction.

Passive methods, and to this class belongs GCS, usually make some assumption about the
training data. In (Pitt, 1989), (Porat & Feldman, 1991), (Dupont, 1996), (Lang et al., 1998) a
learning data was selected at random from sample data, in (Pao & Carr, 1978), (Parekh &
Honavar, 1996) a learning data consisted of a structurally complete set, (Oncina & Garcia,
1992) assume a characteristic sample; and (Angluin, 1981) assumes a live complete set. Luke
et al. (1999) and Lucas & Reynolds (2005) used equal amounts of positive and negative
training examples when inferring the Tomita languages, so a learning set was balanced as in
(Tomita, 1982), (Angeline, 1997), (Waltrous & Kuhn, 1992). In passive methods once the
sample data has been generated and labeled, learning is then conducted.

In this chapter Grammar-based Classifier System, a method which employs evolutionary
computation for search, will be compared against the evolutionary method proposed by
Lucas & Reynolds (2005), and Luke et al. (1999). (Lucas & Reynolds, 2005), as well as (Luke
et al., 1999) present one of the best-known results in the area of DFA /regular language
induction. All of compared evolutionary methods will assume the same training and test
sets. Some comparisons will be made also to EDSM method (Cicchello & Kremer, 2002), the
current most powerful passive approach to DFAs inference.

Table 1 shows the details of applied data sets: number of all learning examples | U |, number
of positive learning examples | U+ |, number of negative learning examples |U-|, number
of all test examples |T |, number of positive test examples | T+ |, and number of negative
test examples |T-|. Note, that test sets are not balanced, and contain much more negative
sentences than positive once.

Lang. | [u-| |u-| || | T [T
L1 16 8 8 65 534 15 65519
L2 15 5 10 65 534 7 65 527
L3 24 12 12 65 534 9447 56 087
L4 19 10 9 65534 23247 42287
L5 21 9 12 65534 10922 54612
L6 21 9 12 65534 21844 43690
L7 20 12 8 65 534 2515 63 019

Table 1. Learning and test data sets.

4.2 Experiments

A comparison set of experiments with GCS was performed on the above Tomita corpora.
Fifty independent experiments were performed, evolution on each training corpus ran for
5,000 generations, with the following genetic parameters: number of non-terminal symbols
19, number of terminal symbols 7, crossover probability 0.2, mutation probability 0.8,
population consisted of maximal 40 classifiers where 30 of them were created randomly in
the first generation, crowding factor 18, crowding size 3.

In the first attempt GCS was compared to the approach presented in (Luke et al., 1999)
(denoted by GP). GP applies gene regulation to evolve deterministic finite-state automata. In
this approach genes are states in the automaton, and a gene-regulation-like mechanism
determines state transitions. Each gene has Boolean value indicating whether or not it was
an accepting state. The main results are summarized in Table 1. For each learning corpus,
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the table shows the target language, and three sets of results. The first indicator nSuccess is
the number of runs with success gained by GCS within 50 experiments and compared
approach presented in (Luke et al., 1999). The second one nEvals indicates the average
number of generations needed to reach the 100% fitness, and the last one nGen is the
percentage of all unseen strings correctly classified.

nSuccess nEvals nGen
Lang. GP GCS GP GCS GP GCS
L1 31/50 50/50 30 2 88.4 100
L2 7/50 50/50 1010 2 84.0 100
L3 1/50 1/50 12 450 666 66.3 100
L4 3/50 24/50 7870 2455 65.3 100
L5 0/50 50/50 13 670 201 68.7 92.4
L6 47/50 49/50 2580 1471 95.9 96.9
L7 1/50 11/50 11320 2902 67.7 92.0

Table 2. Comparison of GCS with GP approach (Luke et al., 1999).

For compared methods induction of L3 language appeared to be hard task. Both in GP and
in GCS only the one run over 50 successfully finished. But GP found the solution in 12450
iterations, whereas GCS in only 666 steps. For the same language GCS correctly classified all
of the unseen examples, while GP achieved 66%. As to an indicator nGen, GP was not able
correctly classified unseen strings for any language from the tested corpora, while GCS
induced a grammar fully general to the language in 4 cases. It is interesting to compare the
results of induction for L5 language. GP approach could not find the proper grammar (DFA)
for any run, while GCS found the solution in all runs, on average in 201 steps. While
learning L1 and L2 languages, GP found the proper grammars not in all runs, whereas for
GCS this task appeared to be trivial (100% nGen, 50/50 nSuccess, and nEvals 2 steps).

Table 3 shows the cost of induction (an indicator nEvlas) for the methods Plain, Smart, and
nSmart taken from (Lucas & Reynolds, 2005), GP approach, and GCS.

Lang. Plain Smart  nSmart GP GCS
L1 107 25 15 30 2
L2 186 37 40 1010 2
L3 1809 237 833 12 450 666
L4 1453 177 654 7870 2455
L5 1059 195 734 13 670 201
L6 734 93 82 2580 1471
L7 1243 188 1377 11 320 2902

Table 3. Cost of induction (nEvals) for different evolutionary methods.

Lucas and Reynolds (Lucas & Reynolds, 2005) used different method to evolving DFA. In
contrary to (Luke et al., 1999), only transition matrix was evolved, supported by a simple
deterministic procedure to optimally assign state labels. This approach is based on
evolutionary strategy (1+1). Three versions of induction algorithm were prepared: an
approach in which both the transition matrix and the state label vector evolve (Plain), so-
called Smart method evolving only the transition matrix and the number of the states was
fixed and equal to 10, and finally nSmart method in which the number of the DFA states is
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equal to the size of minimal automata. Recall that both GP and GCS belong to the so-called
variable size methods, whereas Plain, Smart, and nSmart approaches represent the fixed-
size structure methods. In general, the second group of methods gains better results.

GCS obtained the best results for the L1 and L2 languages among comparable methods. The
result 201 steps for L5 is comparable with the best result of 195 reached by nSmart.
Although GCS reached similar result for language L3 as the best method (666 for GCS, and
237 for Smart), it is hard to compare for this language these methods, because of low value
of nSuccess for GCS - only one run over 50 finished with success (see table 2). For the
languages L4, L6, and L7 fixed-size structured methods achieved better results than
variable-size methods.

Lang. Smart nSmart EDSM GP GCS

L1 81.8 100 524 88.4 100
L2 88.8 95.5 91.8 84 100
L3 71.8 90.8 86.1 66.3 100
L4 61.1 100 100 65.3 100
L5 65.9 100 100 68.7 924
L6 61.9 100 100 95.9 96.9
L7 62.6 82.9 71.9 67.7 92

Table 4. Percentage of all unseen strings correctly classified (nGen) for different methods.

Table 4 shows the percentage of all unseen strings correctly classified (an indicator nGen)
for the methods Smart, nSmart, EDSM, GP, and GCS. Recall that the EDSM, as a heuristic
and non-evolutionary method, was single-time executed during learning phase. Model GCS
achieved the best results from all tested approaches for L1, L2, L3, and L7 languages. For the
language L4 the same 100% accuracy was obtained by proposed method, nSmart, and
EDSM. For the L5 and L6 languages GCS obtained the second result, higher than 90%.

5. Summary

Our experiments attempted to apply a Grammar-based Classifier System to evolutionary
computation in evolving an inductive mechanism for the regular language set. Near-optimal
and/or better than reported in the literature solutions were obtained. Moreover,
performance of GCS was compared to the Evidence Driven State Merging algorithm, one of
the most powerful known DFA learning algorithms. GCS with its ability of generalizations
outperforms EDSM, as well as other significant evolutionary method.
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