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1. Introduction

“People have always been fascinated by the exquisite precision and flexibility of the human
hand. When hand meets object, we confront the overlapping worlds of sensorimotor and
cognitive functions” (Castiello, 2005). In the last few decades, the problem of grasping and
manipulation of unknown objects in a fully automatic way has gained increasing
importance, due mainly to the wide-spread use of service and rehabilitation robotics (Casals
& Merchan, 1999), (Martens & Ruchel, 2001), (Ivlev & Martens, 2005). The grasping task has
been studied from a psychological, biological and engineering focus but is still unresolved.
There exist different solutions for certain cases; however there is still no general valid
solution.

Automatic grasping of unknown objects from a single-view is a difficult problem because
the pose and shape of the object are unknown and the possible hand configurations to
realize a stable grasp are numerous. We propose a new strategy for modelling and grasping
unknown objects based on 3D reconstruction. The system consists of a laser-range scanner, a
simulation environment, a 7 DOF robot arm and a multi-fingered robot hand. The object to
be grasped is scanned by a laser-range scanner from only one single-view and reconstructed
in simulation. During the scanning process the system gets important information about the
object structure, shape, place, size, and orientation of the object. We present a method for
segmentation of a 2.5D point cloud into parts, assembly of rotationally symmetric parts into
objects, and calculation of grasping points and poses. The algorithm checks potential
collisions between the gripper, the object to be grasped, all surrounding objects and the table
top. The experimental results demonstrate the effectiveness of the proposed method to
grasp a wide range of objects.

The outline of the proposed work is as follows: Section 2 introduces our robotic system and
its components. Section 3 describes the segmentation of 2.5D point clouds into parts, the
assembly of parts into objects and details the merging of clipped rotationally symmetric
objects. Section 4 details the calculation of grasping points for rotationally symmetric objects
and optimal hand poses for arbitrary objects to grasp and manipulate an object without
collision. Section 5 shows the achieved results and Section 6 finally concludes the work.
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20 CONTEMPORARY ROBOTICS - Challenges and Solutions

1.1 Problem Statement and Contribution

The goal of this work is to show a robust way of calculating possible grasps for unknown
objects despite of noise, outliers and shadows. From a single-view two shadows appear: one
from the camera and another one from the laser which can be caused by specular or
reflective surfaces. We calculate collision free hand poses with a 3D model of the used
gripper to grasp the objects, as illustrated in Fig. 1. That means that occluded objects can not
be analyzed or grasped.

2

Fig. 1. Detected grasping points and hand poses. The green points display the grasping
points for rotationally symmetric objects. The red points show an alternative grasp along the
top rim. The illustrated hand poses show a possible grasp for the remaining graspable
objects!.

The problem of automatic 2.5D reconstruction to get practical grasping points and poses
consists of several challenges. One of these concerns that an object might be detected as
several disconnected parts, due to missing sensor data from shadows or poor surface
reflectance. From a single-view the rear side of an object is not visible due to self occlusions,
and the front side may be occluded by other objects. The algorithm was developed for
arbitrary objects in different poses, on top of each other or side by side with a special focus
on rotationally symmetric objects. If objects can not be separated because they are stacked
one of each other they are considered as one object. If the algorithm detects rotationally
symmetric parts (hypothesizing that the parts belong to the same object) this parts are
merged, because this object class can be robustly identified and allows a cylindrical grasp as
well as a tip grasp along the top rim (Schulz et al., 2005). For all other objects the algorithm
calculates a tip grasp based on the top surface. To evaluate the multi-step solution
procedure, we use 18 different objects presented in Fig. 2.

1 All images are best viewed in colour!
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Fig. 2. 18 different objects were selected to evaluate the grasp pomt and grasp pose detection
algorithm, from left: 1. Coffee Cup (small), 2. Saucer, 3. Coffee Cup (big), 4. Cube, 5
Geometric Primitive, 6. Spray-on Glue, 7. Salt Shaker (cube), 8. Salt Shaker (cylinder), 9.
Dextrose, 10. Melba Toast, 11. Amicelli, 12. Mozart, 13. Latella, 14. Aerosol Can, 15. Fabric
Softener, 16. C-3PO, 17. Cat, 18. Penguin.

1.2 Related Work
In the last few decades the problem of grasping novel objects in a fully automatic way has
gained increasing importance in machine vision. (Fagg & Arbib, 1998) developed the FARS
model, which focuses especially on the action-execution step. Nevertheless, no robotic
application has been yet developed following this path. (Aarno et al., 2007) presented an
idea that the robot should, like a human infant, learn about objects by interacting with them,
forming representations of the objects and their categories.

(Saxena et al., 2008) developed a learning algorithm that predicts the grasp position of an
object directly as a function of its image. Their algorithm focuses on the task of identifying
grasping points that are trained with labelled synthetic images of a different number of
objects.

(Kragic & Bjorkman, 2006) developed a vision-guided grasping system. Their approach was
based on integrated monocular and binocular cues from five cameras to provide robust 3D
object information. The system was applicable to well-textured, unknown objects. A three
fingered hand equipped with tactile sensors was used to grasp the object in an interactive
manner. (Bone et al., 2008) presented a combination of online silhouette and structured-light
3D object modelling with online grasp planning and execution with parallel-jaw grippers.
Their algorithm analyzes the solid model, generates a robust force closure grasp and
outputs the required gripper pose for grasping the object. They consider the complete 3D
model of one object, which will be segmented into single parts. After the segmentation step
each single part is fitted with a simple geometric model. A learning step is finally needed in
order to find the object component that humans choose to grasp it.

(Stansfield, 1991) presented a system for grasping 3D objects with unknown geometry using
a Salisbury robotic hand, whereby every object was placed on a motorized and rotated table
under a laser scanner to generate a set of 3D points. These were combined to form a 3D
model. (Wang & Jiang, 2005) developed a framework of automatic grasping of unknown
objects by using a laser-range scanner and a simulation environment. (Boughorbel et al.,
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22 CONTEMPORARY ROBOTICS - Challenges and Solutions

2007) aid industrial bin picking tasks and developed a system that provides accurate 3D
models of parts and objects in the bin to realize precise grasping operations, but their
superquadrics based object modelling approach can only be used for rotationally symmetric
objects. (Richtsfeld & Zillich, 2008) published a method to calculate possible grasping points
for unknown objects with the help of the flat top surfaces of the objects based on a laser-
range scanner system. However there exist different approaches for grasping quasi planar
objects, (Sanz et al., 1999). (Huebner et al., 2008) developed a method to envelop given 3D
data points into primitive box shapes by a fit-and-split-algorithm with an efficient minimum
volume bounding box. These box shapes give efficient clues for planning grasps on arbitrary
objects. Another 3D model based work is presented by (El-Khoury et al., 2007).

(Ekvall & Kragic, 2007) analyzed the problem of automatic grasp generation and planning
for robotic hands where shape primitives are used in synergy to provide a basis for a grasp
evaluation process when the exact pose of the object is not available. The presented
algorithm calculates the approach vector based on the sensory input and in addition tactile
information that finally results in a stable grasp. (Miller et al., 2004) developed an interactive
grasp simulator “Grasplt!” for different hands, hand configurations and objects. The method
evaluates the grasps formed by these hands. At the beginning this work uses shape
primitives, by modelling an object as a sphere, cylinder, cone or box (Miller et al., 2003).
Their system uses a set of rules to generate possible grasp positions. This grasp planning
system “Grasplt!” is used by (Xue et al., 2008). They use the grasp planning system for an
initial grasp by combining hand pre-shapes and automatically generated approach
directions. Their approach is based on a fixed relative position and orientation between the
robotic hand and the object, all the contact points between the fingers and the object are
efficiently found. A search process tries to improve the grasp quality by moving the fingers
to its neighboured joint positions and uses the corresponding contact points to the joint
position to evaluate the grasp quality and the local maximum grasp quality is located. (Borst
et al., 2003) show that it is not necessary in every case to generate optimal grasp positions,
however they reduce the number of candidate grasps by randomly generating hand
configuration dependent on the object surface. Their approach works well if the goal is to
find a fairly good grasp as fast as possible and suitable. (Goldfeder et al., 2007) presented a
grasp planner which considers the full range of parameters of a real hand and an arbitrary
object, including physical and material properties as well as environmental obstacles and
forces.

(Recatala et al., 2008) created a framework for the development of robotic applications on
the synthesis and execution of grasps. (Li et al., 2007) presented a data driven approach to
realize a grasp synthesis. Their algorithm uses a database of captured human grasps to find
out the best grasp by matching hand shape to object shape.

Summarizing to the best knowledge of the authors in contrast to the state of the art
reviewed above our algorithm works only with 2.5D point clouds from a single-view. We do
not operate on a motorized and rotated table, which is unrealistic for real world use. The
segmentation and merging step identifies different objects in the same table scene. The
presented algorithm works on arbitrary objects and calculates especially for rotationally
symmetric objects grasping points. For all other objects the presented method calculates
possible grasping poses based on the top surfaces with a 3D model of the gripper. The
algorithm checks potential collision with all surrounding objects. In most cases the shape
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information recovered from a single-view is too limited (missing rear side of the objects)
that we do not attend to calculate force-closure grasps.

2. System Design and Architecture

The system consists of a pan/tilt-mounted red-light laser, a scanning camera and a seven
degrees of freedom robot arm from AMTEC robotics?, which is equipped with a human like
prosthesis hand from OttoBock3, see Fig. 3a.

I S L, |
Fig. 3. a Overview of the system components and their interrelations. b Visualization of the
experimental setup by a simulation tool, which is suitable to calculate the trajectory of the
robot arm. The closed rear side of the objects on the table by an approximation of 2.5D to 3D
is clearly visible.

First, the laser-range system scans the table scene and delivers a 2.5D point cloud. A high
resolution sensor is needed in order to detect a reasonable number of points of the objects
with sufficient accuracy. We use a red-light LASIRIS laser from StockerYale* with 635nm

2 http:/ /www.amtec-robotics.de/
3 http:/ /www.ottobock.de/
4 http:/ /www.stockeryale.com/index.htm
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and a MAPP2500 CCD-camera from SICK-IVP5 mounted on a PowerCube Wrist from
AMTEC robotics.

The prosthesis hand has three active fingers: the thumb, the index finger, and the middle
finger; the last two fingers are just for cosmetic reasons. The integrated tactile sensors are
used to detect the sliding of objects to initialize a readjustment of the pressure of the fingers.
It is thought that people will accept this type of gripper rather than an industrial gripper,
due to the form and the optical characteristics. The virtual centre between the fingertip of
the thumb, the index and the last finger is defined as tool centre point (TCP). The seventh
degree of freedom of the robot arm is a rotational axis of the whole hand and is required to
enable complex object grasping and manipulation and to allow for some flexibility for
avoiding obstacles. There is a defined pose between the AMTEC robot arm and the scanning
unit. A commercial path planning tool by AMROSES? calculates a collision free path to grasp
the object. Before the robot arm delivers the object, the user can check the calculated
trajectory in a simulation sequence, see Fig. 3b. Then the robot arm executes the off-line

programmed trajectory. The algorithm is implemented in C++ using the Visualization Tool
Kit (VTK)7.

2.1 Algorithm Overview
The grasping algorithm consists of six main steps, see Fig. 4:
e Raw Data Pre-Processing: The raw data points are pre-processed with a smoothing filter
to reduce noise to reduce noise.
¢ Range Image Segmentation: This step identifies different objects on the table or parts of
an object based on a 3D DeLaunay triangulation.
e Pairwise Matching: Find high curvature points, which indicate the top rim of an object
part, fit a circle to these points, and merge rotationally symmetric objects.
e Approximation of 2.5D Objects to 3D Objects: This step is only important to detect
potential collisions by the path planning tool.
-Rotationally Symmetric Objects: Add additional points by using the main axis
information.
-Arbitrary Objects: The non-visible range will be closed with planes, normal to the
table plane.
e Grasp Point and Pose Detection:
-Grasp Point Detection: Rotationally Symmetric Objects.
-Grasp Pose Detection: Arbitrary Objects.
e Collision Detection: Considering all surrounding objects and the table surface as
obstacles, to evaluate the calculated hand pose.

5 http:/ /www.sickivp.se/sickivp/de.html
6 http:/ /www.amrose.dk/
7 Freely available open source software, http:/ /public.kitware.com/ vtk
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Fig. 4. Overview of the presented grasping algorithm.
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3. Range Image Segmentation

The range image segmentation starts by detecting the surface of the table with a RANSAC
(Fischler et al. 1981) based plane fit (Stiene et al., 2002). We define an object or part as a set of
points with distances between neighbors. For that we build a kd-tree (Bentley, 1975) and
calculate the minimum duyin, maximum, dm., and average distance d. between all
neighboring points as input information for the mesh generation step. (Arya et al., 1998).
The segmentation of the 2.5D point cloud is achieved with the help of a 3D mesh generation
based on the triangles calculated by a 3D DeLaunay triangulation (O’'Rourke, 1998). Then all
segments of the mesh are extracted by a connectivity filter (Belmonte et al., 2004). This step
segments the mesh into different components (objects or parts). An additional cut
refinement was not arranged. The result may contain an over- or an under segmentation
depending on the overlap of the objects as illustrated in Fig. 5.

6

Fig. 5. Results after the first segmentation step. Object no. 1 is cut into two parts and objects
no. 5 and 7 are overlapping. The not perfectly segmented objects are red encircled
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After the object segmentation step the algorithm finds the top surfaces of all objects using a
RANSAC based plane fit and generates a 2D DeLaunay triangulation, with this 2D surface
information the top rim points and top feature edges of every object can be detected, as
illustrated in Fig. 6. For the top surface detection the algorithm uses a pre-processing step to
find out all vertices8 of the object with a normal vector in x-direction bigger than in y- or z-
direction, n[x] > n[y] and n[x] > n[z], the x-direction is normal to the table plane. The normal
vectors of all vertices are calculated with the faces (triangles) of the generated mesh.

ﬁP
ai 1
, A
14 3

Fig. 6. Results after the merging step. The wrongly segmented rotationally symmetric parts
of object no. 1 are successfully merged to one object. The blue points represent the top rim of
the objects.

3.1 Pairwise Matching

We developed a matching method, which is specifically for rotationally symmetric objects,
because this objects can be stable segmented, detected and merged in a point cloud with
unknown objects. To detect the top rim circle of rotationally symmetric objects a RANSAC
based circle fit (Jiang & Cheng, 2005) with a range tolerance of 2mm is used.

Several tests have shown that this threshold provides good results for our currently used
laser-range scanner. For an explicit description, the data points are defined as (pxi, Pyi, Pzi)
and (cx, cy, ;) is the circle’s centre with a radius r. The error must be smaller than a defined
threshold:

Jp-4-1s: d

This operation will be repeated for every point of the top rim. The run with the maximum
number n of included points wins.

(rllp-d-+|=2] “

n=

8 In geometry, a vertex is a special kind of point which describes the corners or intersections
of geometric shapes and a polygon is a set of faces.
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If more than 80% of the rim points of both parts (rotationally symmetric parts) lie on the
same circle, the points of both parts are examined more closely with the fit. For that we
calculate the distances of all points of both parts to the rotation axis, see Equ. 3, the yellow
lines represent the rotation axis, see Fig. 1, object no. 3. If more than 80% of all points of both
parts agree, both parts are merged to one object, see Fig. 6, object no. 1.

a=(5-epc ®)

3.2 Approximation of 3D Objects

This step is important to detect potential collisions by the path planning tool from AMROSE.
In order to avoid wrong paths and collisions with other objects, due to missing model
information, because in 2.5D point clouds every object is seen from only one view, but the
path planning tool needs full information to calculate a collision free path. During the
matching step the algorithm detected potential rotationally symmetric objects and merged
clipped parts. With this information, the algorithm rotates only points along the axis by 360°
in 5° steps, which fulfil the necessary rotation constraint. This means that only points will be
rotated, which have a corresponding point on the opposite side of the rotation axis (Fig. 5,
object no. 1) or build a circle with the neighbouring points along the rotation axis, as
illustrated in Fig. 1, object no. 3 and Fig. 7, object no. 1. By this relatively simple constraint
object parts such as handles or objects close to the rotationally symmetric object will not be
rotated. For all other arbitrary objects, every point will be projected to the table plane and
with a 2D DeLaunay triangulation the rim points can be detected. These points correspond
with the rim points of the visible surfaces. So, the non-visible surfaces can be closed, these
surfaces will be filled with points between the corresponding rim points, as illustrated in
Fig. 7. Filling the non-visible range with vertical planes may lead to incorrect results,
especially when the rear side of the objects is far from vertical, but this step is only to detect
potential collisions by the path planning tool.

b
1"‘-\-5_" "..;*f

Fig. 7. Detection of grasping points and hand poses. The green points illustrate the
computed grasping points for rotationally symmetric objects. The red points show an

www.intechopen.com



28 CONTEMPORARY ROBOTICS - Challenges and Solutions

alternative grasp along the top rim, thereby one grasping point is enough for an open object.
The illustrated hand poses show a possible grasp for the remaining graspable objects.

4. Grasp Point and Pose Detection

The algorithm for grasp point detection is limited to rotationally symmetric objects and the
grasp poses will be calculated for arbitrary objects. After the segmentation step we find out
if the object is open or closed, for that we fit a sphere into the top surface. If there is no point
of the object in this sphere we consider the object is opened. Then the grasping points of all
cylindrical objects can be calculated. For every rotationally symmetric object we calculate
two grasping points along the rim in the middle of the object (green coloured points, as
illustrated in Fig. 8, object no. 1 and no. 6). If the path planner is not able to detect a possible
grasp, the algorithm calculates alternative grasping points along the top rim of the object
near the strongest curvature, as illustrated in Fig. 8, object no. 6 as red points. If it is an open
object one grasping point is enough to realize a stable grasp near the top rim, as illustrated
in Fig. 8 object no. 1. The grasping points should be calculated in such a way that they are
next to the robot arm, which is mounted on the opposite side of the laser-range scanner. The
algorithm detects the strongest curvature along the top rim with a Gaussian curvature filter
(Porteous, 1994).

Fig. 8. Detection of grasping points and hand poses. The computed grasping points for
rotationally symmetric objects. The red points show an alternative grasp along the top rim,
thereby one grasping point is enough for an open object. The illustrated hand poses show a
possible grasp for the remaining graspable objects.

To successfully grasp an object it is not always sufficient to locally find the best grasping

pose. The algorithm should calculate an optimal grasping pose to realize a good grasp
without collision as fast as possible. In general, conventional multidimensional “brut force”
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search methods are not practical to solve this problem. (Li et al., 2007) show a practical
shape matching algorithm, where a reduced number of 38 contact points are considered.
Most shape matching algorithms need an optimization step through that the searched
optimum can be efficiently computed.

At the beginning the internal centre and the principal axis of the top surface are calculated
with a transformation that fits and transforms a sphere inside, see Fig. 9b the blue top
surfaces. After the transformation, this sphere has an elliptical form in alignment of the top
surface points, hereby also the principal axis is founded. The algorithm transforms the
rotation axis of the gripper (defined by the fingertip of the thumb, the index finger, and the
last finger, as illustrated in Fig. 9a) along the principal axis of the top surface and the centre
(calculated with the fingertips) of the hand c, will be translated to the centre of the top
surface ciop, Whereby ¢y = ciop results. The hand will be rotated, so the normal vector of the
hand aligns in reverse direction with the normal vector of the top surface. Afterwards the
hand is shifted along the normal vectors up to a possible collision with the grasping object.

i

D

Fig. 9. Detection of grasping poses. a The rotation axis of the hand must be aligned with the
principal axis of the top surface. b First grasping result: The hand was transformed and
rotated along the principal axis of the top surface. After this step the algorithm checks
potential collisions with all surrounding objects.

4.1 Collision Detection

The calculated grasping pose will be checked for a potential collision with the remaining
objects and the table, as illustrated in Fig. 8. The algorithm determines if it is possible to
grasp the object with an obb-tree. This method verifies possible points of the objects inside
the hand by the calculated pose. If the algorithm detects a potential collision, the calculated
pose will not be accepted.

www.intechopen.com



30 CONTEMPORARY ROBOTICS - Challenges and Solutions

5. Experiments and Results

We evaluated the detected grasping points and poses directly on the objects with an
AMTEC robot arm and gripper. The object segmentation, merging, grasp point, pose
detection, and collision detection is performed on a PC with 3.2GHz dual core processor and
takes an average time of 35sec., depending on the number of the surrounding objects on the
table, see Tab.1. The algorithm is implemented in C++ using the Visualization Tool Kit
(VIK). Testing of 5 different point clouds for every object in different combination with
other objects, the algorithm shows positive results. A remaining problem is that in some
cases, interesting parts of shiny objects are not visible for the laser-range scanner, hence our
algorithm is neither able to calculate correct grasping points nor the pose of the object.
Another problem is that the quality of the point cloud is sometimes not good enough to
guarantee a successful grasp, as illustrated in Fig. 10. The success of our grasping point and
grasping pose algorithm depends on the ambient light, object surface properties, laser-beam
reflectance, and absorption of the objects. For object no. 2 (saucer) the algorithm cannot
detect possible grasping points or a possible grasping pose, because of shadows of the laser-
range scanner and occlusion with the coffee cup, as illustrated in Fig. 1. In addition this
object is nearly impossible to grasp with the used gripper. The algorithm cannot calculate
possible grasping poses for object no. 16 (C-3PO), because of inadequate scan data. Finally
the used gripper was not able to grasp object no. 15 (fabric softener), because of a slip effect.
For all tested objects we achieved an average grasp rate of 71.11%.

In our work, we demonstrate that our grasping point and pose detection algorithm with a
3D model of the used gripper for unknown objects, performs practical grasps, as illustrated
Tab. 2.

Calculation Steps Time[sec]
Plane Fit 1.4sec
Mesh Generation 11sec
Mesh Segmentation 0.7sec
Top Surface Detection 0.9sec
Merging Rotationally Symmetric Objects 2.0sec
Approximation of 3D Objects 6sec
Grasp Point Detection 3.5sec
Grasp Pose Detection 6.5sec
Collision Detection 10sec
Sum 35sec

Table 1. Duration of Every Calculation Step.

No. Objects Rate[%)]
1 Coffee Cup (small) 100%

2 Saucer 0%

3 Coffee Cup (big) 60%

4 Cube 100%

5 Geometric Primitive 100%

6 Spray on Glue 100%

7 Salt Shaker (cube) 100%

8 Salt Shaker (cylinder) 100%

9 Dextrose 80%

www.intechopen.com



Robotic Grasping of Unknown Objects

31

10 Melba Toast 100%
11 Amicelli 80%

12 Mozart 60%

13 Latella 100%
14 Aerosol Can 80%

15 Fabric Softener 0%

16 C-3PO 0%

17 Cat 20%

18 Penguin 100%
Overall 71.11%

Table 2. Grasping rate of different, unknown objects (each object was tested 5 times).

Fig. 10. Examples of detection results.
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7. Conclusion and Future Work

We present a method for automatic grasping of unknown objects with a prosthesis hand, by
incorporating a laser-range scanner which shows a high reliability. The approach for object
grasping is well suited for use in related applications under different conditions and can be
applied to a reasonable set of objects.

From a single-view the rear side of an object is not visible due to self occlusions, and the
front side may be occluded by other objects. The algorithm was developed for arbitrary
objects in different poses, on top of each other or side by side with a special focus on
rotationally symmetric objects. If objects can not be separated because they are stacked one
of each other they are considered as one object. If the algorithm detects rotationally
symmetric parts this parts are merged, because this object class can be robustly identified
and allows a cylindrical grasp as well as a tip grasp along the top rim. For all other objects
the algorithm calculates a tip grasp based on the top surface, also for on top of each other
arranged objects.

In the near future we plan to use a deformable hand model to reduce the opening angle of
the hand, so we can model the closing of a gripper in the collision detection step. We will
also use geometric hashing (Wolfson, 1997) for the matching step in order to be able to unite
faster, several parts of the point cloud.
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