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1. Introduction

In this chapter, we introduce different traffic prediction techniques and discuss the process of
evaluating channel availability through predicting traffic pattern of primary users for cogni-
tive radios. When cognitive and non-cognitive users share the licensed spectrum, compared
with secondary users (cognitive users), primary users have higher priority in using licensed
channels. Therefore, whenever a primary user is detected, secondary users must vacate the
relevant channels or decrease their transmitted power to reduce the interference on primary
users. However, in some situations, due to the activities of primary users, secondary users
may need to switch to other available channels, terminate communication, or reduce the trans-
mitted power frequently. This leads to temporal connection loss of secondary users. In addi-
tion, if secondary users can not vacate a channel in a timely manner, it would interfere with
primary users. To reduce the temporal connection loss and interference on primary users,
secondary users should avoid using the channels which would be claimed by primary users
with a high probability within a given time period. A solution to this problem is to enable
secondary users to evaluate the channel availability through predicting the traffic pattern of
primary users. This chapter discusses the methods of evaluating the probability of channel
availability for secondary users, and examines the probability that there is a successful sec-
ondary user’s transmission at one time instance. In addition, the cooperative prediction is
briefly introduced. Finally, the applications of traffic pattern prediction technique to spectrum
sharing are discussed.

2. Traffic Model

Traffic data patterns can be classified as (Haykin, 2005): 1) deterministic patterns: for exam-
ple, each primary user (e.g., TV transmitter) is assigned a fixed time slot for transmission, and
when it is switched off, the frequency band is vacated; 2) stochastic patterns: for example,
the arrival times of data packets are modeled as a Poisson process, while the service times are
modeled as exponentially distributed, depending on whether the data are of packet-switched
or circuit-switched. Note that, in common channel signaling network, the exponential distri-
bution drastically underestimates the proportion of short calls that do not last longer than the
mean holding time (Bolotin, 1994). In general, the traffic stochastic parameters vary slowly.
Hence, they can be estimated using historical data. The traffic model built on historical data
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enables secondary users to predict the future traffic pattern of primary users (Li & Zekavat,
2008).
An overview of traffic modeling is provided in (Frost & Melamed, 1994). It discusses Markov
modulated traffic models, autoregressive traffic models and self-similar traffic models, etc. In
addition, the authors in (Adas, 1997) discuss different traffic models in telecommunication
networks.

2.1 Traffic Model for Voice Communication

A speech process can be modeled as a two-state Markov chain which alternates between talk
spurt and silent periods (Li, 1990); (Gruber, 1981). The authors in (Hong & Rappaport, 1986)
propose a traffic model for cellular mobile radio telephone systems. The basic system model in
(Hong & Rappaport, 1986) assumes that the new call origination rate is uniformly distributed
over the mobile service area, and the channel holding time is approximated to a negative
exponential distribution.
Considering a one-dimensional mobile system with cells in series (e.g., in highways), the au-
thors in (Pavlidou, 1994) uses two-dimensional state diagrams to analyze the traffic in the
mixed media cellular system. It assumes four Poisson arrival streams are entering each cell,
which are originating new voice calls, originating new data packets, hand-off voice calls and
hand-off data packets. The authors in (Leung et al., 1994) also consider the circumstance of
a one-way, semi-infinite highway. With the assumption that there are an infinite number of
channels available, they present a deterministic fluid model and a stochastic traffic model for
a wireless network along the highway.

2.2 Traffic Model for Video Data

The authors in (Dawood & Ghanbari, 1999) provide a summary for traffic models of video
data. (Lucantoni et al., 1994) proposes to model a single video source as a Markov renewal
process whose states represent different bit rates. Some other models including Markov Mod-
ulated Fluid Flow (MMFF) model (Maglaris et al., 1988), Markov Modulated Poisson Process
(MMPP) (Skelly, 1993), and AutoRegressive AR(1) stochastic model (Maglaris et al., 1988) are
proposed to address the basic characteristics of the variable bit rate traffic. The MMFF and
MMPP are suitable for queueing analysis of packet switched networks. The AR(1) stochastic
model primarily characterizes the inter-frame source bit-rate variations and correlation.
For variable bit-rate traffic, the authors in (Knightly & Zhang, 1997) introduce a new deter-
ministic traffic model called deterministic bounding interval-length dependent (D-BIND) to
capture the multiplexing properties of bursty streams. For a large-scale satellite network simu-
lation, (Ryu, 1999) proposes: 1) a discrete autoregressive process for MBone (“multicast back-
bone”) video source modeling; 2) the superposition of fractal renewal processes (Sup-FRP)
model for Web request arrivals, and, 3) a generalized shot-noise-driven Poisson point process
(GSNDP) for aggregate traffic flow modeling.

2.3 Traffic Model for General Packet Data

Based on an analysis of Internet protocols for data communication, (Anderlind & Zander,
1997) proposes a simple model for future data traffic in wireless radio networks. Model pa-
rameters are selected to describe traffic from the Worldwide Web (WWW) access and from
distributed file systems. A multilayer Markov model is considered in (Filipiak, 1992) for ar-
rivals of calls, bursts, and packets to fast packet switching system, where the multilayer refers
to call layer, packet layer and burst layer.
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3. Traffic Prediction Techniques

Different methods and models are proposed to forecast the traffic of different networks. Gen-
erally, network traffic has a mix of self-similarity, Short Range and Long Range Dependencies
(SRD and LRD) (e.g., (Kleinrock, 1993); (Paxon & Floyd, 1995); (Leland et al., 1994); (Jiang et
al., 2001)). There exist concentrated periods of low activity and high activity (i.e., burstiness)
in the network traffic (Feng, 2006).
An accurate predictor needs to capture the traffic characteristics such as SRD and LRD, self-
similarity and nonstationarity (Sadek & Khotanzad, 2004a). The prediction models can he
categorized as stationary and non-stationary ones (Adas, 1997). The stationary models in-
clude traditional models such as Poisson, Markov and autoregressive (AR), and self-similar
models such as fractional autoregressive integrated moving average (FARIMA). Nonstation-
ary models include artificial neural network (ANN) such as fuzzy neural network (FNN).
These models can be applied to predict different types of traffic data in Ethernet, Internet, etc.
(Sadek et al., 2003); (Shu et al., 1999); (Hall & Mars, 2000). In the following subsections, some
prediction techniques are introduced including ARIMA based traffic forecasting, application
of neural network in traffic forecasting, least mean square based traffic forecasting, etc.

3.1 ARIMA based Traffic Forecasting

Traditional models, such as autoregressive (AR) and autoregressive moving average (ARMA),
can be used to predict the high-speed network traffic data (Adas, 1997); (Sang & Li, 2002), and
they can capture the short range dependent (SRD) characteristic of traffic. For example, con-
sidering the traffic data from a regional emergency communication center, (Chen & Trajkovic,
2004) classifies network users into user clusters, and then predicts the network traffic using the
SARIMA (seasonal autoregressive integrated moving-average) model. SARIMA is discussed
in detail in (Brockwell & Davis, 2002). For a campus-wide wireless network (IEEE 802.11 in-
frastructure), (Papadopouli, 2005) uses the Yule-Walker method of ARIMA model to forecast
the traffic at each wireless access point (AP) in an hourly timescale.
If a time series is non-stationary, but the first difference of the time series is stationary, ARIMA
models can be used to characterize the dynamics of such a process. (Basu, 1996) indicates that
appropriately differenced time-series generated from Internet traffic traces can be modeled as
Auto-Regressive-Moving-Average (ARMA) processes. (Krithikaivasan et al., 2004) also pro-
poses to use the ARIMA models to predict network traffic. Although ARIMA models can be
used to model a class of non-stationary data, however, they cannot be applied to predict the
network traffic which possesses the Long Range Dependent (LRD) characteristics.
In ARIMA models, the difference parameter d is restricted to integer values. In Fractional
Autoregressive Integrated Moving Average models (FARIMA), this difference parameter can
be a fraction. FARIMA model has the ability to capture both SRD and LRD characteristics of
traffic (Corradi et al., 2001); (Shu et al., 1999). (Shu et al., 1999) also proposes using fractional
ARIMA (FARIMA) to capture the self-similarity of network traffic. However, FARIMA model
is time-consuming (Feng, 2006). (Sadek & Khotanzad, 2004a) discusses a two-stage predictor.
It combines two different models, namely FARIMA and FNN. FARIMA captures the self-
similarity, and FNN captures the non-stationarity. The combination of FARIMA and FNN
enhances the prediction accuracy.
The authors in (Papagiannaki et al., 2005) model the evolution of IP backbone traffic at large
time scales for long-term forecasting of Internet traffic. The aggregate demand between any
two adjacent points is modeled as a multiple linear regression model. Short-term (e.g., sec-
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onds or minutes) forecasting of Internet traffic is addressed in (Basu, 1999); (Sang, 2000); (Pa-
padopouli et al., 2006).
The authors in (Randhawa & Hardy, 1998) model the VBR sources as AutoRegressive AR(1)
Modulated Deterministic Arrival process which characterizes the inter-frame as well as the
intra-frame bit rate variations, and they model the call arrival process as conventional birth-
death Markov Process. The future traffic is predicted using a combination of linear prediction
and transient state analysis of birth-death Markov Process.

3.2 Application of Neural Network in Traffic Forecasting

The authors in (Zhao et al., 2004) propose two neural network models for traffic forecasting
in two situations. One addresses the forecasting of hourly traffic of the next day based on
past observations, and the other focuses on the peak load prediction of the next day. Based on
Time Series Forecasting (TSF), (Cortez et al., 2006) uses a Neural Network Ensemble (NNE) to
predict the TCP/IP traffic.
Neural network based traffic prediction approach is complicated to implement. The accu-
racy and applicability of the neural network approach in traffic prediction is limited (Hall &
Mars, 2000). Artificial Neural Network (ANN) can capture the non-linear nature of network
traffic and the relationship between the output and input theoretically (Hansegawa et al.,
2001); (Khotanzad & Sadek, 2003); (Lobejko, 1996), however, it might suffer from over-fitting
(Doulamis et al., 2003).
The machine learning technique called support vector machine (SVM) can be applied to pat-
tern recognition and other applications such as regression estimation. (Feng, 2006) employs
the SVM to forecast the traffic in WLANs. It studies the issues of one-step-ahead prediction
and multi-step-ahead prediction without any assumption on the statistical property of actual
WLAN traffic.

3.3 Least Mean Square based Traffic Forecasting

Normalized Least Mean Square (NLMS) based prediction approaches are proposed for on-
line variable bit-rate video traffic prediction. They do not require any prior knowledge of the
video statistics (Adas, 1998). The authors in (Liu & Mao, 2005) propose a time-domain NLMS
based prediction scheme, and a wavelet-domain NLMS based adaptive prediction scheme for
video traffic prediction which exploits the redundant information in the wavelet transform
coefficients for more accurate prediction (traffic is decomposed into wavelet coefficients and
scaling coefficients at different timescales).

3.4 Other Traffic Forecasting Algorithms

The authors in (Kohandani et al., 2006) present a new forecasting technique called extended
structural model (ESM) which is derived from the basic structural model (BSM). This tech-
nique replaces the constant parameters in BSM with variables and use the steepest descent
search algorithm to find the values for these variables to minimize the mean absolute percent-
age error (MAPE).
Based on classical queueing theory, (Filipiak & Chemouil, 1987) derives discrete-time stochas-
tic models and propose methods based on those models to forecast the number of congested
trunk groups. The authors in (Liang, 2002) show that the ad hoc wireless network traffic is
self-similar, and they apply a fuzzy logic system to ad hoc wireless network traffic forecast-
ing. Fuzzy logic systems (FLSs) have been widely used in time-series forecasting (e.g., (Liang
& Mendel, 2000)).
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Traffic
prediction
techniques

Advantage Disadvantage Applications

ARIMA Can capture the short
range dependent (SRD)
characteristic; can model
a class of non-stationary
data.

Cannot capture the Long
Range Dependent (LRD)
characteristic; the differ-
ence parameter d is re-
stricted to integer values.

WLAN, Internet
traffic, etc.

FARIMA Can capture both SRD
and LRD characteristics;
can capture the self-
similarity; the difference
parameter d can be a
fraction.

Time-consuming Ad hoc wireless
networks; Ether-
net, etc.

Neutral
Network
based

Can capture the non-
stationarity; can capture
the non-linear nature of
network traffic.

Complicated to imple-
ment; the accuracy and
applicability is limited.

Internet traffic
(video traffic),
etc.

Least Mean
Square
based

Do not require any prior
knowledge of the traffic
statistics.

Slow convergence with
the time-domain NLMS
based algorithms; High
complexity with the
wavelet-domain NLMS
based algorithms.

Internet traffic
(video traffic),
etc.

Table 1. Comparison of traffic prediction techniques.

The authors in (Sadek & Khotanzad, 2004b) present a parameter estimation procedure for the
k-factor GARMA model (a generalized form of FARIMA). They use an adaptive prediction
scheme to enable the model to capture the non-stationary characteristic and deal with any
possible growth in the future traffic. The results indicate that the performance of the k-factor
GARMA model outperforms the traditional AR model. GARMA models can be used to model
a time series with SRD and LRD characteristics, and they also can model the periodicity of a
time series with fewer parameters than ARMA models. The authors in (Ramachandran &
Bhethanabotla, 2000) use the GARMA framework to measure the periodicities of Ethernet
traffic.
The advantages and disadvantages of some traffic prediction techniques are compared in Ta-
ble 1.

4. Probability of Channel Availability

Currently, most of the spectrum is assigned to GSM and CDMA networks (Brodersen, 2004).
For CDMA networks (e.g., CDMA 2000, UMTS), the code division access makes the coexis-
tence of primary users and secondary users difficult unless FDMA-CDMA systems are used
(Pezeshk & Zekavat, 2003). In that case, secondary users may use the available spectrum only
if the entire CDMA channels are available. Here, it is assumed that secondary users can find
the idle channels for communication which are licensed to GSM networks.
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4.1 Channels in GSM Networks

GSM uses TDMA techniques to provide multiple access for mobile users (Rappaport, 2002).
In GSM, the available forward and reverse frequency bands are divided into 200kHz wide
channels called ARFCNs (Absolute Radio Frequency Band Numbers). ARFCN is time shared
between 8 subscribers using TDMA (there are eight time slots per TDMA frame). The com-
bination of a time slot number and an ARFCN constitutes a physical channel for both the
forward and reverse link. Each physical channel in a GSM system can be mapped into dif-
ferent logical channels at different times. There are two types of GSM logical channels, called
traffic channels (TCHs) and control channels (CCHs).
In GSM systems, there are control messages transmitted over control channels between sub-
scribers and base stations even if no call is in progress. There are three main control channels:
the broadcast channel (BCH), the common control channel (CCCH), and the dedicated con-
trol channel (DCCH). The BCH and CCCH forward control channels are allocated time slot 0
(TS0). In the same frame, the time slot 1, TS1, through 7, TS7, still can carry regular traffic. The
DCCH may exist in any time slot and on any ARFCN except TS0 of the BCH ARFCN. How-
ever, there are three types of DCCHs in GSM: (i) the stand-alone dedicated control channels
(SDCCHs) which can be considered as intermediate and temporary channels for accepting a
call from the BCH and holding the traffic while waiting for the base stations to allocate a TCH
channel; (ii) the Slow, and, (iii) the Fast Associated Control Channels (SACCHs and FACCHs)
which are used for supervisory data transmission between mobiles and base stations during
a call. In summary, for the three control channels, BCH and CCCH only use TS0 in each frame
and DCCHs are call related. Therefore, if there is no call in progress, secondary user can find
an available channel among TS1-TS7 to use.
To detect an unused physical channel, a secondary user needs to tune to a forward channel
(ARFCN) and synchronize with the base station. For a TDMA frame, a secondary user can
detect whether the time slots TS1-TS7 are used or not by analyzing the data bursts. Here,
secondary users are assumed to have the capability to remove the effect of dummy burst
which are used as filler information for unused time slots on the forward link.

4.2 Channel Availability Evaluation

Generally, multiple channels are licensed to primary users. Secondary users can select any
idle channel for communication. However, once a secondary user detects the appearance of
primary users, it should vacate the channel immediately to allow primary users to continue
using that channel. Therefore, the activities of secondary users do not affect the traffic distri-
bution of primary users. Primary users keep their normal activities regardless of the existence
of secondary users. Here, the number of channels licensed to primary users is assumed to be
constant. In addition, with a fair scheduling policy, primary users utilize all licensed channel
equally.
Traffic pattern prediction enables secondary users to estimate the channel utilization in a near
future. For voice communications, two crucial factors in the traffic pattern are call arrival
rate and call holding time. To estimate the utilization of one channel, secondary users can
predict or estimate the call arrival rate and call holding time of primary users that use this
channel. Then, according to the prediction and/or estimation results, secondary users are
able to evaluate the probability that the channel would be available for a given time period.
By comparing the evaluated probability with some threshold, secondary users can decide
whether to use this channel.

www.intechopen.com
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Fig. 1. Call arrival process.

In general, the traffic of voice communication in traditional wireless networks is periodic with
a specific period T, e.g., T = 24 hours (one day), and it follows similar pattern in each period
(Shu et al., 2003). An example of the call arrival process is shown in Fig. 1.
The call arrivals of primary users can be considered to follow non-homogeneous Poisson pro-
cess {A(t), t ≥ 0} (Snyder & Miller, 1991). The rate parameter for the process {A(t)} is λ(t).
λ(t) may change over time. The expected call arrival rate between the time t1 and t2 is:

λt1,t2 =
∫ t2

t1

λ(t)dt. (1)

Thus, the number of call arrivals within the time interval (t, t + τ] follows a Poisson distribu-
tion with the parameter λt,t+τ , i.e.,

P {(A(t + τ) −A(t)) = k} =
e−λt,t+τ (λt,t+τ)k

k!
, k = 0, 1, · · · (2)

Evenly dividing one traffic period into 24 time intervals (tn, tn+1] (n = 0, 1, · · · , 23), then, the
time duration Td (Td = tn+1 − tn) for one time interval is one hour. For call arrival rate, a
common metric employed in the telecommunication industry is the hourly number of calls
(Chen & Trajkovic, 2004). Thus, the rate parameter λ(t) can be assumed to maintain constant

value λn
Td

in each time interval (tn, tn+1], i.e.,

λ(t) =
λn

Td
, t ∈ (tn, tn+1] (3)

where, λn is the total number of call arrivals in the time interval (tn, tn+1].
Considering tn < t < t + τ ≤ tn+1, i.e., t and t + τ are within the same time interval (tn, tn+1],
the expected call arrival rate within τ is:

λt,t+τ =
λn

Td
τ. (4)
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Fig. 2. Three cases for channel availability evaluation.

Similarly, using (1) and (3), λt,t+τ can be obtained when t and t + τ are within different time
intervals or within different periods.
When a secondary user finds an idle channel and intends to start transmission over this chan-
nel, first, it predicts the number of primary user call arrivals in the current time interval

(tn, tn+1]. Using (4), the secondary user obtains the call arrival rate of primary users, λn
Td

τch,
within its oncoming call holding time τch (the call holding time of its next call). Then, the
secondary user evaluates the probability, Pna, that no primary user would occupy the channel
within the call holding time τch. According to (2), Pna corresponds to:

Pna =
e
− λn

Td
τch ( λn

Td
τch)

0

0!
= e

− λn
Td

τch . (5)

The oncoming call holding time τch for a secondary user is a random variable and it is hard to
predict. τch in (5) can be replaced with the average call holding time T of the secondary user.
For a secondary user, T can be calculated based on the cumulative total call holding time Ta

and the total number of calls Nc within a time duration, i.e., T = Ta
Nc

.
To evaluate the probability that a channel is available for a given time period, secondary users
should consider three scenarios discussed in the following.
Case 1 and 2 (see Fig. 2): Primary users end transmission at time t1, and a secondary user
starts transmission at t2, tn < t1 ≤ t2 ≤ tn+1.
In these two cases, the secondary user only needs to evaluate the probability Pi that no primary
user arrives within T, i = 1, 2. According to (5), Pi corresponds to:

Pi = e
− λn

Td
T

, i = 1, 2. (6)

Case 3 (see Fig. 2): One primary user starts transmission over a channel at time t0, and it ends
transmission at t2. A secondary user intends to start transmission at t1 over this channel (no
other channels are available), tn < t0 < t1 < t2 ≤ tn+1, i.e., at time t1, the primary user call
is still in progress. In this case, the secondary user is assumed to be capable of suspending its
call for some time duration Tw (Tw > 0). Otherwise, the call of secondary users would drop
(see (Li & Zekavat, 2009) for details).
In summary, to evaluate the probability that the channel would be available within T, sec-
ondary users should be able to predict the number of primary user call arrivals in the corre-
sponding time interval. In addition, secondary users should be able to obtain the PDF of call
holding time distribution of primary users (for Case 3).

4.3 Call Arrival Prediction Algorithms

In Section 4.2, the rate parameter λ(t) for the process {A(t)} is assumed to be constant, λn
Td

, in

the time interval (tn, tn+1] (Td = tn+1 − tn, n = 0, 1, · · · , 23), and λn is the total number of call
arrivals in the time interval (tn, tn+1]. Therefore, to estimate the call arrival rate of primary
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users within a given time period, secondary users need to predict the number of call arrivals in
the corresponding time interval. Denoting the time interval (tn, tn+1] in the (m + 1)th period
as (tn + mT, tn+1 + mT], and the corresponding number of call arrivals in this time interval
as λn+mT , the set of observations of the number of call arrivals in different time intervals
of different periods can be considered as a discrete-time series {λt} (t = 0, 1, · · · ). Thus,
secondary users can predict the call arrivals of primary users by using the known observations
of the number of primary user call arrivals in the past. Here, we use SARIMA model as
an example to discuss one-step prediction of the number of call arrivals in a time interval,
i.e., predicting the number of call arrivals λl+1 given the known observations of call arrivals
λi, i ∈ {1 · · · l}.
{λt} is a seasonal ARIMA (p, d, q) × (P, D, Q)s process with period s if the differenced series
Yt = (1 − B)d(1 − Bs)Dλt is a causal ARMA process defined by:

(1 − φ1B − · · · − φpBp)
(

1 − Φ1Bs − · · · − ΦP(Bs)P
)

Yt

=(1 + θ1B + · · ·+ θqBq)
(

1 + Θ1Bs + · · · + ΘQ(Bs)Q
)

Zt,
(7)

where, p and P are the non-seasonal and seasonal autoregressive orders, respectively; q and
Q are the non-seasonal and seasonal moving average orders, respectively, and d and D are the
numbers of the regular and seasonal differences required. In addition, φ1, · · · , φp, Φ1, · · · , ΦP,
θ1, · · · , θq, Θ1, · · · , ΘQ are coefficient parameters. B is the backward operation, i.e., Bλt =

λt−1, and Zt ∼ N(0, σ2) (Brockwell & Davis, 2002).
With the simulated field data of {λt}, the autocorrelation of {Yt} with different d and D is
calculated and it is found that d = 1 and D = 1 make the process {Yt} stationary. With period
s = 24, the differenced observation Yt corresponds to:

Yt = (1 − B)(1 − B24)λt = λt − λt−1 − λt−24 + λt−25. (8)

Rearranging (8),

λt = Yt + λt−1 + λt−24 − λt−25. (9)

Considering h-step prediction, and setting t = l + h:

λl+h = Yl+h + λl+h−1 + λl+h−24 − λl+h−25. (10)

Using Pl to denote the best linear predictor, according to (10),

Plλl+h = PlYl+h + Plλl+h−1 + Plλl+h−24 − Plλl+h−25. (11)

After calculating PlYl+h of Yl+h, the prediction Plλl+h of λl+h can be computed recursively by
noting that Plλl+1−j = λl+1−j for j ≥ 1. For one-step prediction (h = 1), according to (11),
Plλl+1 corresponds to:

Plλl+1 = PlYl+1 + λl + λl−23 − λl−24. (12)

The linear prediction of ARMA process {Yt} (PlYl+h) can be implemented by the innovations
algorithm (Brockwell & Davis, 2002).
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Some algorithms discussed in Section 3 can also be used to implement the call arrival pre-
diction. For other traffic types in various applications such as image and video, different
algorithms can be selected to forecast the future traffic.
If the current time is within the time interval (tn+1, tn+2], given the predicted result λ̂n+1, for
Case 1 and 2 discussed in Section 4.2, the probability Pi that a channel would be available to
the secondary user corresponds to:

Pi = e−
λ̂n+1
3600 T , i = 1, 2, (13)

where, λ̂n+1 is the predicted result of λn+1, and T is the average call holding time of the
secondary user.

4.4 Decision of Channel Availability

Introducing traffic prediction techniques to cognitive radio systems would impact the commu-
nication performance of both primary and secondary users. To maintain a trade-off between
performance measurements including channel switching rate and call blocking rate of sec-
ondary users, interference on primary users and spectrum reuse efficiency, secondary users
can set a threshold Pth (Pth ∈ [0, 1]) to determine whether to use a channel. If the probability
Pi (i = 1, 2) is not less than this threshold, i.e.,

Pi ≥ Pth, (14)

then, a secondary user can proceed to use the channel. Otherwise, it would abandon using
the channel.
The probability threshold Pth in (14) is determined by the requirements on performance mea-
surements, whereas performance measurements are affected by the probabilities of false alarm
and missed detection. Here, false alarm refers to the condition that a secondary user judges
that primary users would appear whereas, actually, no primary user appears; missed detec-
tion refers to the condition that a secondary user judges that no primary user would appear
whereas, actually, primary users appear.
To balance the performance in terms of the call blocking rate of secondary users, spectrum
reuse efficiency and the interference on primary users, the probability threshold should be
selected such that the occurrence rate of false alarm is equal to that of missed detection (Li &
Zekavat, 2009).
Defining Pavg as:

Pavg =
∑ Pi

N
, (15)

where, ∑ Pi is the summation of the evaluated probabilities of channel availability over all
N decisions (assuming, for one channel, a secondary user makes N decisions on channel
availability).
Based on the discussion in (Li & Zekavat, 2009),

P{Pi ≥ Pth} = Pavg. (16)

Considering Pi is uniformly distributed between (1 − α)Pavg and (1 + α)Pavg (0 ≤ α ≤ 1, α is
used to vary the range), according to (16),

Pth =

(

∑ Pi

N

) (

1 + α − 2α

(

∑ Pi

N

))

, 0 ≤ α ≤ 1. (17)
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where, ∑ Pi is introduced in (15).
Taking advantage of the intelligence of cognitive radio, secondary users can dynamically se-
lect an appropriate α based on the evaluation results of probability of channel availability.

If Pi is assumed to be uniformly distributed between P
(max)
i and P

(min)
i , and the PDF is

1

P
(max)
i −P

(min)
i

, secondary users can record the P
(max)
i and P

(min)
i for each time interval. Then,

according to (16), Pth corresponds to:

Pth = P
(max)
i −

∑ Pi

N

(

P
(max)
i − P

(min)
i

)

. (18)

Within a time interval, for one channel, the secondary user can set the threshold Pth according
to (17) or (18) by using the past evaluated probability results. Note that, within a time interval,
the selection of Pth is impacted by the number of primary user call arrivals. Therefore, in
different time intervals, Pth should be set dynamically. The impact of traffic prediction on
communication performance is evaluated in (Li & Zekavat, 2009) based on simulations.

5. Probability of secondary users’ successful transmissions

Before starting a transmission, a secondary user needs to check the channel availability. Here,
if a channel is available, it means that currently the channel is idle, and the probability that the
channel would not be occupied by primary users within T (T is the average call holding time
of the secondary user) is not less than the probability threshold. Thus, at time t, the probability
Pa that at least one channel is available to secondary users corresponds to (considering total
m channels are licensed to primary users):

Pa = 1 −
m

∏
k=1

[

1 − P
(k)
c · P{P

(k)
i ≥ P

(k)
th }

]

, (19)

where, P
(k)
c is the probability that channel k is idle at time t; P

(k)
i is the evaluated probability

that channel k would not be occupied by primary users within T, and P
(k)
th is the probability

threshold set for channel k. When the hourly number of call arrivals, λn, increases, P
(k)
c would

decrease. If, at time t, a secondary user has a transmission request, then, the probability Pbr

that this request would be blocked corresponds to:

Pbr = 1 − Pa =
m

∏
k=1

[

1 − P
(k)
c · P{P

(k)
i ≥ P

(k)
th }

]

. (20)

To examine the probability that there is a successful secondary user’s transmission at time t, Pb

is assumed to be the probability that there is a secondary user’s transmission request at time
t. Then, the probability Ps that, at time t, there is a successful secondary user’s transmission
corresponds to:

Ps = Pa · Pb =

{

1 −
m

∏
k=1

[

1 − P
(k)
c · P{P

(k)
i ≥ P

(k)
th }

]

}

· Pb. (21)

Generally, the occupancy of the channels is correlated. Here, for simplicity, Pc is assumed

equal for all channels, i.e., P
(1)
c = P

(2)
c = · · · = P

(m)
c . With another assumption that P{P

(k)
i ≥
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Fig. 3. Call blocking probability of a Secondary User (SU).

P
(k)
th } = 0.5, according to (20), the call blocking probability of a secondary user, Pbr, with

respect to different Pc is sketched in Fig. 3. It can be observed that, (a) when Pc increases,
i.e., λn decreases, Pbr decreases, and, (b) when the number of available channels increases, Pbr

decreases.
According to (21), the probability Ps with respect to different Pb and Pc is sketched in Fig. 4
(m = 8). The probability Ps is low when either Pb or Pc is low (if the competition among
secondary users in using the channel is considered, Ps would be lower). This is due to the
fact that, when Pb is low, at time t, even if channels are available, nonetheless, secondary
users may not have transmission requests; when Pc is low, i.e., λn is high, the transmission
requests from secondary users would mostly be blocked (this can be illustrated by Fig. 5). In
other words, requesting channels from secondary users and channels becoming available do
not occur simultaneously. This implies that, in some situations, even if channels which are
licensed to primary users are underutilized statistically, it is still hard for secondary users to
obtain available channels because channel access by primary users and channel request from
secondary users are both random processes.

6. Cooperative Prediction

To improve the accuracy of call arrival prediction, a secondary user may collect the prediction
results of primary users’ call arrivals from other secondary users, and obtain the average value
of the predicted call arrivals. This is called cooperative prediction. Secondary users which are
involved in the cooperative prediction should be able to monitor the same channel(s). Fur-
thermore, a common channel (mostly, with low bandwidth) is required for those secondary
users to share the prediction results. After collecting M prediction results of λn+1 from other
M secondary users, the secondary user may calculate the average value λn+1 to evaluate the
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Fig. 4. Probability that there is a successful secondary user’s transmission at time t.
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Fig. 5. Channel utilization and secondary users’ channel requests.

probability of channel availability. λn+1 can be calculated as:

λn+1 =
∑
M+1
i=1 λ̂

(i)
n+1

M + 1
, (22)

where, λ̂
(i)
n+1 is the prediction result of λn+1 from secondary user i.

If the average call holding time T is the same for those involved secondary users, an-
other cooperation technique can be employed (Unnikrishnan & Veeravalli, 2008); (Aalo &
Viswanathan, 1992). Considering two hypotheses H1 and H0:

{

H1 : Pi ≥ Pth

H0 : Pi < Pth,
(23)

for secondary user k, the decision Uk corresponds to:

Uk =

{

1, if H1 is true
−1. if H0 is true

(24)
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Fig. 6. Cooperative prediction (SU: Secondary User, PU: Primary User).

After receiving decisions in the form of Ui from other K secondary users, one secondary user
can calculate the summation of all Ui’s. If the summation result is greater than 0, i.e.,

K+1

∑
i=1

Ui > 0, (25)

then, the secondary user can proceed to use the channel. Otherwise, it should abandon using
the channel. Fig. 6 illustrates the whole process, in which w1, · · · , wK are the weights that can
be simply considered as one or tuned based on field data.

7. Traffic Prediction based Spectrum Sharing

Cognitive Radio (CR) techniques enable the inter-vendor and user-central spectrum sharing
(Zekavat & Li, 2005); (Li & Zekavat, 2007). The approach of finding available spectrum based
on traffic pattern prediction can be applied to different cognitive radio based spectrum sharing
techniques.

7.1 Spectrum Sharing across Multiple Service Providers

In business zones, for an infrastructure (e.g., base station) of a service provider, when the num-
ber of active users is greater than the maximal number of users that it can accommodate (i.e.,
the infrastructure is in overloaded status due to channel scarcity), the incoming users would
be blocked. However, at the same time, nearby infrastructures of other service providers
might be in the underloaded status. Available channels licensed to these service providers
or other organizations can be used by the overloaded infrastructure (assuming multiple ser-
vice providers coexist in the same area). The difference in traffic load across multiple service
providers might be due to the diversity of services that service providers offer to their cus-
tomers, e.g., mobile communication, wireless Internet for laptops, etc.
Generally, there are two approaches for the overloaded infrastructure to find available chan-
nels which are licensed to other service providers: (a) the overloaded infrastructure asks
neighboring service providers for available channels; (b) the overloaded infrastructure is
equipped with CR, and it senses the available channels within its coverage area. However,
if the cell radii of service providers involved are different, and/or the infrastructures of differ-
ent service providers are not located at the same positions, then, both approaches could lead
to co-channel interference.
To reduce the co-channel interference and remove the need of equipping CR in each infras-
tructure of different service providers, a CR network consisting of multiple fixed CR nodes
can be deployed to support the spectrum sharing. These CR nodes are distributed regularly
within the area of interest, and each CR node is a dedicated node that senses the surrounding
environment and monitors the channel usage within its sensing range. Those channels might
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Fig. 7. A CR spectrum management network coexists with multiple cell based wireless net-
works.

be licensed to different service providers. To avoid co-channel interference, CR nodes which
monitor the channel usage in the cell of interest and the corresponding co-channel cells coop-
erate to provide channel availability information for the overloaded infrastructures of service
providers. CR nodes are connected together via wire or they communicate wirelessly to form
a network. The CR network can be called a spectrum management network, and coexists with
the wireless networks operated by different service providers (see Fig. 7). Thus, when one or
more infrastructures of a service provider are overloaded, they request the channel availabil-
ity information from those surrounding CR nodes. Then, overladed infrastructures process
the information to select the optimum channels based on the channel associated metrics such
as interference level and the probability of channel being available for a certain time duration.
A CR node would determine channel i is available if: 1) The instantaneous RF (Radio Fre-

quency) energy (plus noise) in this channel, I
(i)
int, is less than the tolerable interference limit,

I
(i)
tol , of this channel, i.e., I

(i)
int < I

(i)
tol , and, 2) The probability P(i) that this channel would be

available (not occupied by its licensed users) for a given time period is not less than a thresh-

old P
(i)
th , i.e., P(i) ≥ P

(i)
th . P(i) is evaluated by CR nodes using the discussed traffic pattern

prediction technique. Thus, it reduces the probability that the selected channels are claimed
by their licensed users when these channels are being used by the overloaded infrastructure.

8. Conclusion

In this chapter, traffic models and traffic prediction techniques which can be implemented
in secondary (cognitive) users are discussed. Methods are introduced for secondary users to
evaluate the probability of channel being available for a given time period in different sit-
uations. Comparing the evaluated probability of channel availability with a threshold, sec-
ondary users can determine whether to use a channel. The threshold maintains a trade-off
between the channel switching rate and call blocking rate of secondary users, the interference
on primary users and spectrum reuse efficiency.
In addition, the probability that there is a successful secondary user’s transmission at one time
instance is examined, and cooperative prediction techniques are briefly introduced. Finally,
the application of the traffic pattern prediction technique in spectrum sharing is discussed.
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