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1. Introduction

The normal blood glucose concentration level in the human body varies in a narrow range
(70 - 110 ml/dL). If for some reasons the human body is unable to control the normal
glucose-insulin interaction (e.g. the glucose concentration level is constantly out of the above
mentioned range), diabetes is diagnosed. The phenomena can be explained by several
causes, most important ones are stress, obesity, malnutrition and lack of exercise.

The consequences of diabetes are mostly long-term; among others, diabetes increases the
risk of cardiovascular diseases, neuropathy and retinopathy (Fonyo & Ligeti, 2008).
Consequently, diabetes mellitus is a serious metabolic disease, which should be artificially
regulated. This metabolic disorder was lethal until 1921 when Frederick G. Banting and
Charles B. Best discovered the insulin. Nowadays the life quality of diabetic patients can be
enhanced though the disease is still lifelong.

The newest statistics of the World Health Organization (WHO) predate an increase of adult
diabetes population from 4% (in 2000, meaning 171 million people) to 5,4% (366 million
worldwide) by the year 2030 (Wild et al., 2004). This warns that diabetes could be the
“disease of the future”, especially in the developing countries (due to stress and unhealthy
lifestyle).

Type I (also known as insulin dependent diabetes mellitus (IDDM)) is one of the four
classified types of this disease (Type II, gestational diabetes and other types, like genetic
deflections are the other three categories of diabetes), and is characterized by complete
pancreatic -cell insufficiency (Fonyo & Ligeti, 2008). As a result, the only treatment of Type
I diabetic patients is based on insulin injection (subcutaneous or intravenous), usually
administered in an open-loop manner.

Due to the alarming facts of diabetes, the scientific community proposed to improve the
treatment of diabetes by investigating the applicability of an external controller. In many
biomedical systems, external controller provides the necessary input, because the human
body could not ensure it. The outer control might be partially or fully automated. The self-
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regulation has several strict requirements, but once it has been designed it permits not only
to facilitate the patient’s life suffering from the disease, but also to optimize (if necessary)
the amount of the used dosage.
However, blood-glucose control is one of the most difficult control problems to be solved in
biomedical engineering. One of the main reasons is that patients are extremely diverse in
their dynamics and in addition their characteristics are time varying. Due to the inexistence
of an outer control loop, replacing the partially or totally deficient blood-glucose-control
system of the human body, patients are regulating their glucose level manually. Based on
the measured glucose levels (obtained from extracted blood samples), they often decide on
their own what is the necessary insulin dosage to be injected. Although this process is
supervised by doctors (diabetologists), mishandled situations often appear. Hyper-
(deviation over the basal glucose level) and hypoglycaemia (deviation under the basal
glucose level) are both dangerous cases, but on short term the latter is more dangerous,
leading for example to coma.
Starting from the 1960s lot of researchers have investigated the problem of the glucose-
insulin interaction and control. The closed-loop glucose regulation, as it was several times
formulated (Parker et al., 2000), (Hernjak & Doyle, 2005), (Ruiz-Velazques et al., 2004),
requires three components:

e glucose sensor;

e insulin pump;

e a control algorithm, which based on the glucose measurements, is able to

determine the necessary insulin dosage.

1.1 Modelling diabetes mellitus

To design an appropriate control, an adequate model is necessary. The mathematical model
of a biological system, developed to investigate the physiological process underling a
recorded response, always requires a trade off between the mathematical and the
physiological guided choices. In the last decades several models appeared for Type I
diabetes patients (Chee & Tyrone, 2007).

The mostly used and also the simplest one proved to be the minimal model of Bergman
(Bergman et al., 1979) for Type I diabetes patients under intensive care, and its extension, the
three-state minimal model (Bergman et al., 1981).

However, the simplicity of the model proved to be its disadvantage too, as it is very
sensitive to parameters variance, the plasma insulin concentration must be known as a
function of time and in its formulation a lot of components of the glucose-insulin interaction
were neglected. Therefore, extensions of this minimal model have been proposed (Hipszer,
2001), (Dalla Man et al., 2002), (Benett & Gourley, 2003), (Lin et al., 2004), (Fernandez et al.,
2004), (Morris et al., 2004), (de Gaetano & Arino, 2000), (Chbat & Roy, 2005), (Van Herpe et
al., 2006) trying to capture the changes in patient dynamics of the glucose-insulin
interaction, particularly with respect to insulin sensitivity or the time delay between the
injection and absorption. Other approximations proposed extensions based on the meal
composition (Roy & Parker, 2006a), (Roy & Parker, 2006b), (Dalla Man et al., 2006a) , (Dalla
Man et al., 2006b).

Beside the Bergman-model other more general, but more complicated models appeared in
the literature (Cobelli et al., 1982), (Sorensen, 1985), (Tomaseth et al., 1996), (Hovorka et al.,
2002), (Fabietti et al., 2006).
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1.2 The Sorensen-model

The most complex diabetic model proved to be the 19th order Sorensen-model (Sorensen,
1985) (the current work focuses on a modification of it, developed by (Parker et al., 2000)),
which is based on the earlier model of (Guyton et al., 1978). Even if the Sorensen-model
describes in a very exact way the human blood glucose dynamics, due to its complexity it
was rarely used in research problems.

The model was created with a great simplification: glucose and insulin subsystems are
disconnected in the basal post absorptive state, which can be fulfilled with no pancreatic
insulin secretion. Nomenclature and equations can be found in the Appendix of the current
book chapter.

The Sorensen-model can be divided in six compartments (brain, heart and lungs, liver, gut,
kidney, periphery), and its compartmental representation is illustrated by Fig. 1.

) " Brain ¢
T Arterial Glu¢ose
Venous blood measuremeft, G,°
- —> Heart/Lungs > "
Insulin
infusion, ',
Hepatic Artery
< Liver < Gut <
Portal Vein
Glucose meal
isturbance,|T" ..,
< Kidney <

Periphery

Fig. 1. Compartmental representation of the Sorensen model (Parker et al., 2000).

Transportation is realized with blood circulation assuming that glucose and insulin
concentrations of the blood flow leaving the compartment are equal to the concentrations of
the compartment. The compartments can be divided into capillary and tissue
subcompartments, since glucose and insulin from the blood flow entering the compartment
are either utilized or transported by diffusion. In compartments with small time constant or
with no absorption the division into subcompartments is unnecessary.

1.3 Control of diabetes mellitus

Regarding the applied control strategies for diabetes mellitus, the palette is very wide
(Parker et al., 2001).

Starting from classical control strategies (PID control (Chee et al., 2003), cascade control
(Ortis-Vargas & Puebla, 2006)), to soft-computing techniques (fuzzy methods (Ibbini, 2006),
neural networks (Mougiakakou et al., 2006), neuro-fuzzy methods (Dazzi et al., 2001)),
adaptive (Lin et al., 2004), model predictive (MPC) (Hernjak & Doyle, 2005), (Hovorka et al.,
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2004), or even robust H,, control were already applied (Parker et al., 2000), (Ruiz-Velazques
et al., 2004), (Kovacs et al., 2006), (Kovacs & Palancz, 2007), (Kovacs et al., 2008).

Most of the applied control methods were focused on the Bergman minimal model (and so
the applicability of the designed controllers was limited due to excessive sensitivity of the
model parameters). On the other hand, for the Sorensen-model, only linear control methods
were applied (H. (Parker et al., 2000), (Ruiz-Velazques et al., 2004), MPC (Parker et al.,
1999)). An acceptable compromise between the model’s complexity and the developed
control algorithm could be the parametrically varying system description (Shamma &
Athans, 1991), identification (Lee, 1997), optimal control (Wu et al., 2000), (Balas, 2002) and
diagnosis (Kulcsar, 2005).

1.4 The aim of the current work

The main contribution of the present work is to give a possible solution for nonlinear and
optimal automated glucose control synthesis.

Considering the high-complexity nonlinear Sorensen-model a nonlinear model-based
methodology, the LPV (Linear Parameter Varying) technique is used to develop open-loop
model and robust controller design based on H., concepts. The results are continuously
compared with those obtained by (Parker et al., 2000) where a linear model based robust
control algorithm was used (see section 1.5).

The validity of the Sorensen model is caught inside a polytopic region and the model is built
up by a linear combination of the linearized models derived in each polytopic point
(covering the physiologic boundaries of the glucose-insulin interaction of the Sorensen-
model).

Finally, using induced L;-norm minimization technique, a robust controller is developed for
insulin delivery in Type I diabetic patients. The robust control was developed taking input
and output multiplicative uncertainties with two additional uncertainties from those used
by (Parker et al., 2000). Comparative results are given and closed-loop simulation scenarios
illustrate the applicability of the robust LPV control techniques.

1.5 Brief review of the article published by (Parker et al., 2000)

As in the current chapter a continuous comparison of the obtained results will be done with
those obtained by (Parker et al., 2000), we considered useful to briefly summarize the
mentioned article.

Although the first application of the H., theory on the field of diabetic control was that of
(Kienitz & Yoneyama, 1993), the publication of (Parker et al., 2000) can be considered a
pioneer work in applying the H. method for glucose-insulin control of Type I diabetic
patients using the fundamental nonlinear Sorensen-model.

In (Parker et al., 2000) uncertainty in the nonlinear model was characterized by up to +40%
variation in eight physiological parameters and by sensitivity analysis it was identified that
three-parameter set have the most significant effect on glucose and insulin dynamics.
Controller performance was designed to track the normoglycemic set point (81.1 mg/dL) of
the Sorensen-model in response to a 50 g meal disturbance (using the six hour meal
disturbance function of (Lehmann & Deutsch, 1992)). By this way, glucose concentration
was maintained within £3.3 mg/dL of set point.
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The results were compared to the results of (Kienitz & Yoneyama, 1993), who developed an
H., controller based on a third order linear diabetic patient model. Performance of (Kienitz
& Yoneyama, 1993)’s controller in response to a meal disturbance was quantitatively similar
to the nominal controller obtained by (Parker et al., 2000). However, the uncertainty-derived
controller of (Parker et al., 2000) was tuned to handle significantly more uncertainty than
that of (Kienitz & Yoneyama, 1993).

On the other hand, (Parker et al., 2000) underlined that a significant loss in performance
appeared applying the potential uncertainty in the model in comparison to the nominal
case. This could be mostly exemplified by the near physiologically dangerous
hypoglycaemic episode, typically characterized as blood glucose values below 60 mg/dL
(see Fig. 9 and Fig. 10 of (Parker et al., 2000) also captured by Fig. 2 of the current work).
Therefore, our goal was dual: applying nonlinear model-based LPV control methodology to
design robust controller for Type I diabetic patients and to design a robust controller by
taking into account two additional uncertainties from those used in (Parker et al., 2000),

namely sensor noise and worst case design for meal disturbance presented in (Lehmann &
Deutsch, 1992) (60 g carbohydrate).
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Fig. 2. Results obtained by (Parker et al., 2000) (taking from their work).

2. LPV modelling using polytopic description

The chapter suggests using Linear Parameter concepts with optimal and robust control
scheme in order to show a candidate for diabetes Type I closed-loop control. First, the most
important control related definition of such a system class is given. Solution of the robust
control synthesis by Linear Matrix Inequalities (LMI) is briefly summarized.

2.1 LPV system definition

Linear Parameter Varying (LPV) system is a class of nonlinear systems, where the parameter
could be an arbitrary time varying, piecewise-continuous and vector valued function
denoted by p(t), defined on a compact set ®. In order to evaluate the system, the parameter

trajectory is requested to be known either by measurement or by computation. A formal
definition of the parameter varying systems is given below.

www.intechopen.com



204 Biomedical Engineering

Definition 1. For a compact ? R’, the parameter variation set F, denotes the set of all
piecewise continuous functions mapping R* (time) into @ with a finite number of

discontinuities in any interval. The compact set ? c R® along with the continuous

functions A: R° 5> R™™,B:R® - R™, C:R° > R™", D:R° 5> R™™ represent an
nth order LPV system whose dynamics evolve as:
X(t) = A(p)x(t) + B(p)u(t) )
y()=ClpIx(t) + D(p)u(t) b
with p(t) e Fe (Wu et al., 2000).
As a result, it can be seen that in the LPV model, by choosing parameter variables, the
system’s nonlinearity can be hidden. This methodology is used on different control
solutions, like (Balas, 2002), which gave also a solution of the problem.
There are different descriptions of the LPV systems (Kulcsar, 2005). In the affine description
possibility, a part of the x(t) states are equal with the p(t) parameters. However, due to the
complexity of the Sorensen model, this representation is impossible to be developed.
Polytopic representation could be another description of the LPV systems. In this case, the
validity of the model is caught inside a polytopic region and the model is built up by a
linear combination of the linearized models derived in each polytopic point

s —| A1 Bi |y kulesar, 2005):
(% = C. D ) (Kulcsar, ):

J J
Z(t)c{El,...,Zz}z{Z‘iaiZi R ZO’Ziai =1} )
i= i=

Hence, the LPV system is given by the complex combination of the positive coefficients and
the system X-s. The polytopic LPV model can be thought as a set of linear models on a
vertex (a convex envelope of LTI systems), where the grid points of the description are LTI
systems. The generation of a polytopic model is the derivation around an operating point of
the general nonlinear state-space representation. The LPV polytopic model is valid only in a
restricted domain, characterized by the range of the polytope (Kulcsar, 2005).

Therefore, the correct definition of the polytopic region (which is capable to describe the
whole working area of the system) is a key point in this methodology.

2.2 Induced L, performance objective of LPV systems region

For a given compact set ® = R® and a continuous bounded matrix function A: R® — R ™"
which describes the x(t) =A(p(t))x(t) LPV system (p(t) € @) and for a V Lyapunov function
candidate, it can be written that the time derivative of V(x) (for Vpe @ along the LPV
system trajectories) is (Tan, 1997):

S Vx(0)=x" (OAT ()P + AR (o) ®

Defintion 2. Function A is quadratically stable over ®if there existsa Pe R™", P=PT >0
positive definite matrix, such that for Vpe ®(Wu et al., 2000):

AT (p(t))P +PA(p(t)) <0 (4)
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It can be seen that the quadratic stability is a strong form of the robust stability with respect
to time varying parameters as it is true for quick changes of the p(t) parameter trajectory and
for its definition it is enough a single quadratic Lyapunov-function.

Defintion 3. For a quadratically stable LPV system 2, and for zero initial conditions, the
induced Ly-norm of an LPV system is defined as follows (Tan, 1997):

G =sup su ||e||2
|Gell, p sup (5)
peP |l 0 Il

el,

As a result,

Gp || , represents the largest disturbance to error over the set of all causal linear
operators described by Zg.
Corollary 1. (Tan, 1997) Given the LPV system Z, and y > 0 a positive scalar, if there exists
anX € R™™ X=XT >0such that for all pe e
AT(P)X+XA(p)  XB(p) v C(p)
L=|  B'(p)X -1 v 'DT(p)|<0 6)
vICe)  vDe) -l

then:

1. The function A is quadratically stable over ®.

2. There exists a <y such that |Gpl, <B.
The matrix inequality (6) can be rewritten in the more familiar Riccati inequality by taking
Schur components (Tan, 1997):

AT (p)X+XA(p)+12CT (p)C(p) + [XB(p)+ v 2CT (p)D(p)) -
(=720 (D)) (BT ()X +772DT (p)C(p))< 0

As a result, the aim of the induced L, performance minimization is to find m)%ny , with
Lyz <0, X>0and y >0 constraints, where Lyz can be derived from (6):
AT (p)X+XA(p) XB(p) C'(p)

L= BT (p)X -1 0 |<0 8)
C(p) 0 —y7

3. Results

Open- and closed-loop LPV results are shown to describe the Sorensen-model. First, a
polytopic gridding method is provided, second a robust control design is performed
subjected to the uncertain open-loop LPV system and additional frequency weightings.

3.1 Covering the Sorensen-model with a polytopic region
In case of the 19th order Sorensen model (Fig. 1) two inputs: I'mear (meal disturbance), I'rvi
(injected insulin amount), and one output, the capillary heart-lungs glucose concentration,

G% can be delimited. However, we have considered also the peripheral insulin

concentration in the capillaries, II(; as an additionally output.
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Due to the high complexity of the Sorensen-model it was hard to investigate the global
stability of the system (the Lyapunov function is a real function with 19 variables).
Therefore, a solution could be to cover the working region with a set of linear systems and
in this way to investigate the local stability of them.

Choosing the polytopic points we have restricted to the physiological meanings of the

variables. The first point was the normoglycaemic point (glucose concentration y =Gﬁ =

81.1 mg/dL and calculated insulin concentration II(; init = 26.6554 mU/L), while the others

were deflections from this point (given below in %):
e  glucose concentrations: 25%, 50%, 75%, 100%, 150%, 200%;

e insulin concentrations: 0%, 25%, 50%, 100%, 150%, 200%.

The glucagon and the additional values were kept at their normoglycaemic value.

In the points of the so generated polytopic region (36 points) we have determined one by
one a linearized model and we have analyzed the stability, observability and controllability
properties of them. Each system proved to be stable, and partially observable and
controllable (the rank of the respective matrices were all 15 and 14 respectively) (Kovacs,
2008). Finally, we have simulated the so developed polytopic LPV system of the Sorensen
model, and we have compared the results with those obtained by (Parker et al., 2000). After
comparing the results it can be seen (Fig. 3) that the LPV model is approximating with an
acceptable error the nonlinear system. However, it can be also observed that without an
insulin injection the glucose concentration reaches an unacceptable value for a diabetic
patient. Moreover, for the considered polytope the LPV system is stepping out from the
defined region being unable to handle the uncovered region.

Glucose Concentration (mg/dL)
220 T T T

180 b

160 « 4
4
2 1 1 \ N
140 /2N ' N B
[
120 4 1 4
/4 ! !
100 4 ! 1 .
4 1 1
80 | I | | | |
50 100 150 200 250 300 350 400 450 500
Time (min.)

Insulin Concentration (mU/L)
26.6554 T T T

26.6554 - B

26.6554 :}*‘\ 1

26.6554 - b

Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500
Time (min.)

Fig. 3. The simulation of the nonlinear Sorensen model (continuous) and the 36 points
polytope region (dashed).
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Therefore, we had to extend the glucose concentration region of the considered polytope
considering other grid points too, while the insulin concentration grid remained the same:

e  glucose concentrations: 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400%;

e insulin concentrations: 0%, 25%, 50%, 100%, 150%, 200%.
Using the newly generated polytopic region (48 points) and after the same investigation of
each linear model (obtaining the same results: each system proved to be stable and partially
observable and controllable) it can be seen that the LPV model remains inside the
considered polytopic region (Fig. 4) and approximates with an acceptable error the
nonlinear system (Kovacs, 2008).
For meal disturbance we have used the same six hour meal disturbance function of

(Lehmann & Deutsch, 1992) (Fig. 5), filtered with a % first order lag used by (Parker
s+

et al., 2000), while the insulin input was considered zero.
It can be seen, that in absence of control the open-loop simulation is going up to a very high
glucose concentration value, unacceptable for a Type I diabetic patient.

3.2 LPV based robust control of the Sorensen-model

In case of robust control design, the results presented in (Parker et al., 2000) showed that a
near hypoglycaemic situation appears for the considered uncertainties (Fig. 2). In case of a
diabetic patient this could be also a dangerous situation (not only hyperglycaemia).

The aim of the control design is to minimize the meal disturbance level over the
performance output for all possible variation of the parameter within the polytope F.

Glucose Concentration (mg/dL)
220 T T T
.
[N
200 / B
\
L AY 4
180 \
4 AN
160 /4 \ B
(4 \
140 (4 S b
(4 S
L ’ X 4
120 A
/4
100 v 4
4
80 Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500
Time (min.)
Insulin Concentration (mU/L)
26.6554 T T T
26.6554 - 4
26.6554 B
26.6554 - 4
Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500
Time (min.)

Fig. 4. The simulation of the nonlinear Sorensen model (solid) and the considered polytopic
region (dashed).
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Meal disturbance
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Fig. 5. The glucose emptying function (Lehmann & Deutsch, 1992).

©)

G o
min||G|| = min sup sup

K K- pe, o [d]
where d denotes the meal disturbance input and z describes the glucose variation. Priory
information is injected to the controller throughout the augmentation of the nominal plant
with extra dynamics, called weighting functions.
Therefore, the starting point of the control design was the appropriate choice of the
weighting functions. Firstly, we have reproduced the results obtained by (Parker et al., 2000)
with the dangerous near hypoglycemic episode, but using the LPV methodology (on the
polytopic region presented in the previous section). Consequently, the weighting functions
used were the followings:

5% +0.475+0.015
s2+0.29s+0.022
1.63s% +0.21s +0.007

e  The multiplicative uncertainty of the insulin input, W; =

e  The multiplicative uncertainty of the glucose input, Wy, =

s +0.525 +0.010
N\ | % s+0.25
e  The performance weighting function, Wye¢ = m,
e  The disturbance (glucose) input weighting function, W, = ﬁ

However, as we mentioned above, we have additionally taken into account sensor noise too
(neglected in (Parker et al., 2000), by considering it a 1/10000 value). We have considered
that for insulin measurements a 5% error, while for glucose measurements a 2% error is
tolerable (values taken from clinical experience).

As a result, the considered closed-loop interconnection of system can be illustrated by Fig. 6,
while the obtained results obtained on the original nonlinear Sorensen-model can be seen in
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Fig. 7. By the reproduced results of (Parker et al., 2000) we have proved that the obtained
controller (designed for the created LPV model) works correctly.

Now, we have redesigned the control problem, to minimize the negative effects obtained by
(Parker et al., 2000). Moreover, for meal disturbances we focused on the worst case of the
(Lehmann & Deutsch, 1992) absorption taking into account a 60 g carbohydrate intake (in
comparison with the 50 g carbohydrate considered by (Parker et al., 2000)).

To avoid the hypoglycaemic situation and take into account the two additional uncertainties
mentioned above, we have extended the control loop with a weighting function for the
control signal and an output uncertainty block (Fig. 8).

W, A
I,=r J\ u y,=glucose W Zy
A d i | Sorensen LTI e
[ew=d W, ,? model Y2
W, A, insulin|
W, R
insulin N
K‘ « é‘ Wnl o,

Fig. 6. Considered closed-loop interconnection of the reproduced situation of (Parker et al.,
2000) extended with additionally considered sensor noise weighting functions.

Insulin control input (mU/min)
30 T T T

20 b

10 T

- 1 0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Glucose Concentration (mg/dL)

-
N - I I I I I

50 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Insulin Concentration (mU/L)
T T T

20 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Time (min.)

Fig. 7. The LPV based robust controller with induced Lr-norm minimization guarantee,
using the same weighting functions as in (Parker et al.,, 2000): in case of the original
nonlinear Sorensen model (solid) and the considered polytopic region (dashed) controller.
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Sorensen LPV

N
) polytopic model | ¥2_

insulin K L

Fig. 8. The augmented system structure using the additional restrictions from those
published in (Parker et al., 2000).

As a result, regarding the weighting functions used in (Parker et al., 2000), we have
modified only the multiplicative uncertainty weighting functions (Wim, W) and the
performance weighting function Wyerr, while these were chosen only from engineering point
of view. Now physiological aspects were taken also into account. The frequency response of
the weighting functions can be seen in Fig. 9.

During the robust control design, a y = 1.0096 solution was obtained. It can be seen (Fig. 10)
that the hypoglycaemic situation is avoided and the glucose level is kept inside the normal
80-120 mg/dL range. Testing the controller on the original nonlinear Sorensen-model results
are good too. Although in this case the glucose results are stepping out the normal range
(160 mg/dL) this is acceptable (and similar to the healthy subjects).
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Fig. 9. Weighting functions used for the LPV-based induced L,-norm minimization (those
which have been modified from (Parker et al., 2000)).
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Fig. 10. The LPV based robust controller (for the case of the considered additional
uncertainties) with induced L>-norm minimization guarantee in case of the original
nonlinear Sorensen model (solid) and the considered polytopic region (dashed).

4. Conclusions

In the current work a nonlinear model-based LPV control method was applied to design a
robust controller for the high complexity Sorensen-model. The used methodology is more
general than the classical linear H,, method as it deals directly with the nonlinear model
itself. From the different descriptions of the LPV systems, polytopic representation was
used, where the validity of the model was captured inside a polytopic region. In this way
the model was built up by a linear combination of the linearized models derived in each
considered polytopic point.

Using induced L-norm minimization technique, a robust controller was developed for
insulin delivery in Type I diabetic patients. Considering the normoglycaemic set point (81.1
mg/dL), a polytopic set was created over the physiologic boundaries of the glucose-insulin
interaction of the Sorensen-model.

The robust control was developed taking into account input and output multiplicative
uncertainties, sensor noise and worst case meal disturbance (as additional restrictions from
those applied in (Parker et al., 2000)). The obtained results showed that glucose level can be
kept inside a normal range, avoiding hypoglycaemic episode (which was not possible with
the control formalism applied in (Parker et al., 2000)). By the given comparative results and
closed-loop simulation scenarios it was illustrated the applicability of the robust LPV control
techniques.

Parameter dependency of the considered weighting functions could be considered in the
future, which gives additional design freedom.
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7. Appendix

7.1 Nomenclature and constants used in the Sorensen-model
In the current work the same nomenclature was used as it can be found in (Parker et al.,
2000). The notations of the indexes used in the equations given below are:

e A -hepatic artery

e B-brain

e  BU - brain uptake

e C-capillary space

e G-glucose

e H-heartand lungs

e HGP - hepatic glucose production

e HGU - hepatic glucose uptake

e [I-insulin

e IHGP - insulin effect on HGP

e IHGU - insulin effect on HGU

e IVI-intravenous insulin infusion

e K- kidney

e KC - kidney clearance

e KE - kidney excretion

e L-liver

e LC-liver clearance

e N -glucagon

e NHGP - glucagon effect on HGP

e P - periphery (muscle / adipose tissue).

e PC- peripheral clearance

e PGU - peripheral glucose uptake

e PIR - pancreatic insulin release

e PNC - pancreatic glucagon clearance

¢ PNR - pancreatic glucagon release (normalized).

e RBCU - red blood cell uptake

e S -gut(stomach / intestine).

e  SIA - insulin absorption into blood stream from subcutaneous depot

e SU - gut uptake

e T -tissue space
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while the model variables notations are:
e A - auxiliary equation state (dimensionless).

e B - fractional clearance (I, dimensionless; N, L/ min).
e G- glucose concentration (mg/dL).

e ]-insulin concentration (mU/L).
e N -glucagon concentration (normalized, dimensionless).

e Q- vascular plasma flow rate (L/min).
e q-vascular blood flow rate (dL/min).

e T -transcapillary diffusion time constant (min).
e V-volume (L).
e v -volume (dL).
e I'-metabolic source or sink rate (mg/min or mU/min).
The values of the used constants can be seen in Table 1.

[dL] [L] [dL/min] [L/min] [L/min] [min]
V% =35 VBC =0.265 gp = 59 QB =0.45 FPNC =091 TB =21
vy =45 Vi =0.985 qu =43.7 Qy =3.12 Fic=04 TS =5.0
vi=138 | v§=0945 | qs=101 | Qg=0.72 Fgc =03 Tp =20
v§ =112 V& =114 qr =12.6 Qp =09 Fpc =0.15
ve =251 | V¢ =0505 | qa =25 Q=018
v =66 V§ =0735 | qx =101 | Qg =072
vs =104 | V£ =6.3 qp =15.1 Qp =1.05
Vb =674 VN =993 1
Table 1. Parameter values for the Sorensen-model (Parker et al., 2000).
7.2 Equations of the Sorensen-model
The equations of the Sorensen-model can be structured in three parts:
e  Glucose equations;
e Insulin equations;
e  Glucagons production;
The eight equations of the glucose part are given below:
T
: v
S S o SR ()
VB TV
: 1 T
GT -GS _gT) L _tsu AD
B ( B ~Gg )TB ol (A-2)
. 1
G :(Gqu +GiqL +Gkak +Gpap —Ghiqn _FRBCU)V—C (A-3)
H
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Gg:(GIEI S )9S . Imear _Tsu

O RSN TS (A-4)
~C _(~C C gy L L r
Gr :(GHqA +Ggqs _GLqL) = +—oot  —HGU (A-5)
Vi, A\ Vi
C I
€] (€ e Ll < (A-6)
VK VK
oI
e C
GS —(GH —Gp)q—c (cham GP) VP (A7)
T v
I;
(GP GPF ol (A-8)
v VT
where for simplification kg = G% T—B and kg :GE T—B notations can be introduced.
B B
The seven insulin equations are:
Qg
I§ =I5 - 1§ ;
(51538 (A9
i e
Iy = [(5Qp + 11 Qr +1kQk +1pQp ~15Qy + vy v (A-10)
H
Q
i§ = (15 -1§ )22 (A-11)
4
. 1 T I;
i€ = (15Q, +15Q5 ~1£Qy J—+ e _ 1 (A-12)
Vo Vb Vi
Qk _Ikc
ig =I5 -1 A-13
K= (H Ve VS (A-13)
Qp c 1) Ve
i5 =I5 -15 15 -1 A-14
(H VS (P P)TPV (A-14)
. I I;
i =(Ip IPH élA I (A-15)
Tp  Vp

The remaining four equations compose the remaining states of the Sorensen model: the
glucagon and three additional (dimensionless) variables. The use of the latter three variables
is to highlight the glucagons dependent dynamics of the glycogen (synthesis or
glycogenolyzes) which is also dependent by the actual blood glucose and insulin level:

. F
N = ([pyg - N)—NE (A-16)
VN
A —i 1.2088 —1.138 tanh| 1.669 IE —-0.8885 |- A A-17
IHGP =5z & . TR [HGP (A-17)
1| 2.7tanh(0.388N) -1
Antcp = 65{ (2 ) _ANHGP} (A-18)
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. 1 15
Alcu = 2_5[2 tanh[0.549 21L43J - AIHGU] (A-19)

It can be observed, that in the different equations different I'; parameters appear. These
correspond for the different metabolic source and sinks:

Igy =70 (A-20)
I'rpcy =10 (A-21)
Iy =20 (A-22)
C
aC

Fhicu = 20A piGp| 56648 + 5.6589tanh: 2.4375) —L-~1.48 (A-24)

71+ 71tanh[0.011(GS -~ 460, if GE <460 %
Tkg = m (A-25)

0.872G$ — 300 Jif GS > 460d—ig

35G] Ip
I'pgu = 68l 7.035 + 6.51623 tanh4 0.33827 T30 5.82113 (A-26)
I'ic =Fic (IEIQA +1§Qs +FP1R) (A-27)
I'pr =0 (A-28)
Tkc = FrclRQxk (A-29)
I'pe = II];

P 1-Fpc 1 1 (A-30)

Fpce Qp Tlla Vg

C
I'pnr = [1.3102 -0.61016 tanh{1.0571[ 1;?5 - 0.46981JH .

C
.1 2.9285 - 2.095tanh{ 4.18 G —0.6191
91.89

(A-31)
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