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Artificial Intelligence Methods
in Fault Tolerant Control

Luis E. Garza Castafién and Adriana Vargas Martinez
Instituto Tecnoldgico y de Estudios Superiores de Monterrey (ITESM)
Monterrey, México

1. Introduction to Fault Tolerant Control

An increasing demand on products quality, system reliability, and plant availability has
allowed that engineers and scientists give more attention to the design of methods and
systems that can handle certain types of faults. In addition, the global crisis creates more
competition between industries and plant shutdowns are not an option because they cause
production losses and consequently lack of presence in the markets; primary services such
as power grids, water supplies, transportation systems, and communication and
commodities production cannot be interrupted without putting at risk human health and
social stability.

On the other hand, modern systems and challenging operating conditions increase the
possibility of system failures which can cause loss of human lives and equipments; also,
some dangerous environments in places such as nuclear or chemical plants, set restrictive
limits to human work. In all these environments the use of automation and intelligent
systems is fundamental to minimize the impact of faults.

The most important benefit of the Fault Tolerant Control (FTC) approach is that the plant
continues operating in spite of a fault, no matter if the process has certain degradation in its
performance. This strategy prevents that a fault develops into a more serious failure. In
summary, the main advantages of implementing an FTC system are (Blanke et al., 1997):

. Plant availability and system reliability in spite of the presence of a fault.

. Prevention to develop a single fault in to a system failure.

. The use of information redundancy to detect faults instead of adding more
hardware.

. The use of reconfiguration in the system components to accommodate a fault.

. FTC admits degraded performance due to a fault but maintain the system
availability.

. Is cheap because most of the time no new hardware will be needed.

Some areas where FTC is being used more often are: aerospace systems, flight control,
automotive engine systems and industrial processes. All of these systems have a complex
structure and require a close supervision; FTC utilizes plant redundancy to create an
intelligent system that can supervise the behavior of the plant components making these
kinds of systems more reliable.
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272 AUTOMATION & CONTROL - Theory and Practice

Since a few years ago, emerging FTC techniques have been proposing new controller
designs capable to tolerate system malfunctions and maintain stability and desirable
performance properties. In order to achieve its objectives, two main tasks have to be
considered on an active FTC system: fault detection and diagnosis and controller
reconfiguration. The main purpose of fault detection and diagnosis is to detect, isolate and
identify the fault, determining which faults affect the availability and safety of the plant. The
controller reconfiguration task accommodates the fault and re-calculates the controller
parameters in order to reduce the fault effects.

Although several schemes of FTCS have been proposed, most of them are closely related to
a general architecture. (Blanke et al., 1997) introduce an approach for the design of an FTC
system, shown in figure 1, which included three operational levels: single sensor validation,
fault detection and isolation using analytical redundancy, and an autonomous supervision
and reconfiguration system. The single sensor validation level involves the control loop with
actuators, sensors, the controller and the signal conditioning and filtering. The second level
(FDI) is composed of detectors and effectors that will perform the remedial actions. And
finally, the supervision level deals with state-event logic in order to describe the logical state
of controlled objects.

Fig. 1. Architecture for Fault Tolerant Autonomous Control Systems proposed by (Blanke,
1997).

A slightly different architecture is presented in (Karsai et al, 2003). They introduce a scheme
of Fault-Adaptive Control Technology (FACT), centered on model-based approaches for
fault detection, fault isolation and estimation, and controller selection and reconfiguration
for hybrid systems (see figure 2). Hybrid models derived from hybrid bond graphs are used
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Artificial Intelligence Methods in Fault Tolerant Control 273

to model the continuous and discrete system dynamics. The supervisory controller, modeled
as a generalized finite state automaton, generates the discrete events that cause
reconfigurations in the continuous energy-based bond graph models of the plant. Fault
detection involves a comparison between expected behaviors of the system, generated from

the hybrid models, with actual system behavior.
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Fig. 2. Architecture for Fault-Adaptive Tolerant Control Technology (FACT) proposed by
(Karsai et al, 2003).

2. Classification of the Fault Tolerant Control Methods

Some authors have proposed different classifications for the FTC methods (Blanke et al.,
2003; Eterno et al., 1985; Farrel et al., 1993; Lunze & Richter, 2006; Patton, 1997; Stengel,
1991). The classification shown in figure 3 includes all the methods explained by these
authors. We can also find a recent and very complete survey of FTC methods and
applications in (Zhang & Jiang, 2008).

Regarding the design methods, fault tolerant control can be classified into two main
approaches: active or passive. In Active Fault Tolerant Control (AFTC), if a fault occurs, the
control system will be reconfigured using some properties of the original system in order to
maintain an acceptable performance, stability and robustness. In some cases degraded
system operations have to be accepted (Blanke et al., 2001; Patton, 1997, Mahmoud et al.,
2003). In Passive Fault Tolerant Control (PFTC) the system has a specific fixed controller to
counteract the effect and to be robust against certain faults (Eterno et al., 1985).

To implement the AFTC approach two tasks are needed: fault detection and isolation and
controller reconfiguration or accommodation. FDI means early detection, diagnosis,
isolation, identification, classification and explanation of single and multiple faults; and can
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be accomplished by using the following three methodologies (Venkatasubramanian et al.,
2003a, 2003b, 2003c):

Quantitative Model-Based: requires knowledge of the process model and dynamics in
a mathematical structural form. Also, the process parameters, which are unknown, are
calculated applying parameter estimation methods to measured inputs and outputs signals
of the process. This approach uses analytical redundancy that can be obtained by
implementing Kalman filters, observers and parity space.

Qualitative Model-Based: Are based on the essential comprehension of the process
physics and chemical properties. The model understanding is represented with quality
functions placed in different parts of the process. This methodology can be divided in
abstraction hierarchies and causal models. Abstraction hierarchies are based on
decomposition and the model can establish inferences of the overall system behavior from
the subsystems law behavior. This can be done using functional or structural approaches.
Causal models take the causal system structure to represent the process relationships and
are classified in diagraphs, fault trees and qualitative physics.

Process History-Based: uses a considerable amount of the process historical data and
transform this data into a priori knowledge in order to understand the system dynamics.
This data transformation is done using qualitative or quantitative methods. The quantitative
methods are divided in expert systems (solves problems using expertise domain) and trend
modeling (represents only significant events to understand the process). Quantitative
methods can be statistical (use PCA, DPCA, PLA, CA) and non statistical (neural networks)
to recognize and classify the problem.

After the detection and isolation of the fault, a controller reconfiguration or accommodation
is needed. In controller accommodation, when a fault appears, the variables that are
measured and manipulated by the controller continue unaffected, but the dynamic structure
and parameters of the controller change (Blanke et al, 2003). The fault will be
accommodated only if the control objective with a control law that involves the parameters
and structure of the faulty system has a solution (Blanke et al., 2001). In order to achieve
fault accommodation, two approaches can be used: adaptive control and switched control.
Adaptive control means to modify the controller control law to handle the situation where
the system’s parameters are changing over time. It does not need a priori information about
the parameters limits. The goal is to minimize the error between the actual behavior of the
system and the desirable behavior. In the other hand, switched control is determined by a
bank of controllers designed for specifics purposes (normal operation or fault) that switch
from one to another in order to control a specific situation (Lunze & Richter, 2006).
Meanwhile, controller reconfiguration is related with changing the structure of the
controller, the manipulated and the measured variables when a fault occurs (Steffen, 2005).
This is achieved by using the following techniques:

Controller Redesign. The controller changes when a fault occurs in order to continue
achieving its objective (Blanke et al., 2003). This can be done by using several approaches:
pseudo inverse methods (modified pseudo inverse method, admissible pseudo inverse
method), model following (adaptive model following, perfect model following, eigen
structure assignment) and optimization (linear quadratic design, model predictive control)
(Caglayan et al., 1988, Gao & Antsaklis, 1991; Jiang, 1994; Lunze & Richter, 2006;
Staroswiecki, 2005).
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Artificial Intelligence Methods in Fault Tolerant Control 275

Fault Hiding Methods. The controller continues unchanged when a fault is placed,
because a reconfiguration system hides the fault from the controller. This method can be
realized using virtual actuators or virtual sensors. (Lunze & Richter, 2006; Steffen, 2005).

Projection Based Methods. A controller is designed a priori for every specific fault
situation and replaces the nominal controller if that specific fault occurs. This can be done by
a bank of controllers and a bank of observers (Mahmoud et al., 2003).

Learning Control. This methodology uses artificial intelligence like neural networks,
fuzzy logic, genetic algorithms, expert systems and hybrid systems which can learn to
detect, identify and accommodate the fault (Polycarpou & Vemuri, 1995; Stengel, 1991;
Karsai et al, 2003).

Physical Redundancy. This is an expensive approach because it uses hardware

redundancy (multiple sensor or actuators) and decision logic to correct a fault because it
switches the faulty component to a new one. An example of this is the voting scheme
method (Isermann et al., 2002; Mahmoud et al., 2003).
On the other hand, passive FTC is based on robust control. In this technique, an established
controller with constant parameters is designed to correct a specific fault to guarantee
stability and performance (Lunze & Richter, 2006). There is no need for online fault
information. The control objectives of robust control are: stability, tracking, disturbance
rejection, sensor noise rejection, rejection of actuator saturation and robustness (Skogestad &
Postlethwaite, 2005). Robust control involves the following methodologies:

H., controller. This type of controller deals with the minimization of the H-infinity-
norm in order to optimize the worst case of performance specifications. In Fault Tolerant
Control can be used as an index to represent the attenuation of the disturbances
performances in a closed loop system (Yang & Ye, 2006) or can be used for the design of
robust and stable dynamical compensators (Jaimoukha et al., 2006; Liang & Duan, 2004).

Linear Matrix Inequalities (LMlIs). In this case, convex optimization problems are
solved with precise matrices constraints. In Fault Tolerant Control is implemented to
achieve robustness against actuator and sensor faults. (Zhang et al., 2007).

Simultaneous Stabilization. In this approach multiple plants must achieve stability
using the same controller in the presence of faults. (Blondel, 1994).

Youla-Jabr-Bongiorno-Kucera  (Y]BK)  parameterization. This methodology is
implemented in Fault Tolerant Control to parameterize stabilizing controllers in order to
guarantee system stability. YJBK in summary is a representation of the feedback controllers
that stabilize a given system (Neimann & Stoustrup, 2005).
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3. Artificial Intelligence Methods

The use of Al in fault tolerant control has been suggested in the past (Bastani & Chen, 1988).
Methods such as Neural Networks (NNs), Fuzzy Logic and Neuro-Fuzzy Systems, offer an
advantage over traditional methods (state observers, statistical analysis, parameter
estimation, parity relations, residual generation, etc) because can reproduce the behavior of
non linear dynamical systems with models extracted from data. This is a very important
issue in FTC applications on automated processes, where information is easily available, or
processes where accurate mathematical models are hard to obtain. In the other hand, Al
optimization tools such as Genetic Algorithms (GAs) provide a powerful tool for
multiobjective optimization problems frequently found on FTC.

3.1 Neural Networks

Artificial Neural Networks (ANNSs) are mathematical models that try to mimic the biological
nervous system. An artificial neuron have multiple input signals x1, x, ...,x, entering the
neuron using connection links with specific weights wi, w», ..., w, or 2!, w,x; named the
net input, and also have a firing threshold b, an activation function f and an output of the
neuron that is represented by y=f ( WX, —b). The firing threshold b or bias can be

represented as another weight by placing an extra input node xo that takes a value of 1 and
has a wy=-b. (Nguyen et al., 2002). This can be represented in the figure 4.

Xo

y=fZLwx -b)

Fig. 4. Artificial Neuron.

A neural network with more than one input layer of neurons, a middle layer called the
hidden layer and an output layer is named a multi-layer neural network.

Hidden
Layer

Input Output
Layer Layer

Fig. 5. Multi-layer neural network.
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A neural network can have a feedback or a feed forward structure. In the feedback structure
the information can move back and forward. In the feedforward structure, the information
moves only forward from the input nodes through the outputs nodes with no cycles in the
network (Ruan, 1997).

The neural networks need to be trained from examples, in a process called supervised
learning. Once a successfully training is done, the neural network is ready if and only if the
networks reproduce the desired outputs from the given inputs. The most common
methodology for this kind of learning is the backpropagation algorithm, where the weights
of the neural network are determined by using iteration until the output of the network is
the same as the desired output (Rumelhart et al., 1986). In addition, unsupervised learning
uses a mechanism for changing values of the weights according to the input values, this
mechanism is named self-organization. An example of this algorithm is the Hebbian
learning algorithm (Ruan, 1997).

3.1.1 Neural Networks in Fault Tolerant Control

Artificial neural networks have been applied in fault tolerant control because they are
helpful to identify, detect and accommodate system faults. The application of ANNs to FTC
can be divided in three groups. The first group includes neural networks used as fault
detectors by estimating changes in process models dynamics (Polycarpou & Helmicki, 1995;
Patton et al., 1999; Polycarpou, 2001, Gomaa, 2004). The second group includes neural
networks used as controllers (Wang & Wang, 1999; Pashilkar et al., 2006), and the third group
integrates neural networks which performs both functions: fault detection, and control
(Perhinschi et al., 2007; Yen & DeLima 2005).

(Polycarpou & Helmicki, 1995) proposed a construction of automated fault detection and
accommodation architecture that uses on-line approximators and adaptive-learning
schemes. The online approximator is a neural network model that monitors changes in the
system dynamics due to a failure.

(Patton et al., 1999) use a scheme of neural network to detect and isolate a fault in two steps:
residual generation and decision making. In the first step a residual vector characterizes the
fault and then the second step process the residual vector information in order to locate the
fault and the time of occurrence. Once the residual is trained, qualitative knowledge of the
plant can be added. This combination of qualitative and quantitative approached is helpful
to decrease the number of false alarms in the fault decision making step.

(Polycarpou, 2001) proposed a methodology for fault accommodation of a multivariable
nonlinear dynamical system using a learning approach that monitors and approximates any
abnormal behavior using neural networks and adaptive nonlinear estimation. When a fault
occurs the neural network is used to estimate the nonlinear fault function supplying a
framework for fault identification and accommodation. The neural network at the beginning
of the monitoring stage is capable of learning the modeling errors in order to improve the
system robustness.

(Gomaa, 2004) recommended a fault tolerant control approach based on multi-ANN system
faulty models. The nominal plant is nonlinear and is vulnerable to faults. A feedforward
neural network is trained as the nominal model; two PID controllers are used, one for the
nominal plant and the other for the neural network imitating the nominal plant (reference
model). Both PIDs controllers were tuned using genetic algorithms. If there exist a difference
between the nominal plant (y,) and the reference model (y..,) a nonzero residual is
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generated. Then, depending on the magnitude of the residual an ANN faulty model and its
respective compensation path are selected to repair the fault and improve the system
operating conditions. This can be observed in figure 6.

_ +
N PID + Nominal Yrm
controller ANN model

+
PID Real nominal e
- controller model
Set point
ANN faulty ;_( > TN n)
model 1 +
[ J
[ J
(X X J °
ANN faulty Cj ()
modeln +
ANN FDD
compensator 1 f J
o
. )
ANN Lok,
compensator n *

Fig. 6. Multi-ANN faulty models FTC scheme (Gomaa, 2004).

(Wang & Wang, 1999) proposed a Neural Network-FTC where the nominal system is
controlled by a Pseudolinear Neural Network (PNN) based one-step-ahead controller that
uses a modified gradient approach. When the system is with no fault, a PNN model
connected in parallel to the plant model can be trained and used for the design of the control
algorithm. The PNN model is helpful for the detection of a fault. In addition, when a fault is
present, a residual signal is generated and an extra neural network based fault
compensation loop is imported in order to provide the closed loop stability. This last neural
network is a two layers perceptron network and its weights are updated using the modified
gradient approach. This FTC system is shown in figure 7.

(Pashilkar et al. 2006) proposed a neural controller that improves the fault tolerant potential
of a fighter aircraft during landing. The faults are caused by severe winds or stuck control
surfaces and can be divided in single faults (aileron or elevator stuck) or double fault
(aileron and elevator stuck). This neural network controller employs a feedback error
learning method with a dynamic radial basis function neural network. The neural network
uses on-line training and not a-priori training. This kind of controller helped to improve the
capability of handling large faults and also helps to achieve the desired requirements.
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280 AUTOMATION & CONTROL - Theory and Practice

(Perhinschi et al., 2007) presented a methodology for detection, identification and
accommodation of sensor and actuator failures inside fault tolerant control laws. The fault
detection and identification uses neural estimators. The accommodating control laws design
for the actuator fault is done using nonlinear dynamic inversion with neural network
augmentation. Whereas the accommodation of sensor fault is accomplished by changing the
failed sensor output for neural estimates calculated in the detection and identification
process. This approach can handle sensor and actuator faults successfully. It uses
membership functions to describe the mathematical model of process.

(Yen & DeLima, 2005) presented a neural network trained on-line with a global dual heuristic
programming architecture. This approach has also a supervision structure made from
decision logic. This supervision level is very efficient to identify the controller faults in early
stages and can supply new values to improve the convergence utilizing dynamic model
bank information.

V4 e NN u u nonlinear y
controller system
&
Ym
ANN i fault
model detection
U NN fault
compensator

Fig. 7. Neural Network FTC scheme proposed by (Wang & Wang, 1999).

3.2 Fuzzy Logic

Fuzzy logic is a research field of fuzzy set theory; this methodology uses heuristic and
mathematical tools to approximate reasoning in order to achieve knowledge processing
when lack of information exists. In addition, this approach tries to mimic the control logic
rules used by persons.

In Fuzzy systems, a mathematical model of the system is not needed because the desired
input and output relationships are defined by “if” and “then” rules. Also, due to the lack of
system information it is not possible to precise the exact value of a variable “x” but it is
possible to know the membership function. The membership function is created to describe
range of values that the variable can have, this is known as input fuzzification (Passino &
Yurkovich, 1997; Ruan, 1997; Nguyen, 2002). This membership function can have different
shapes that are defined according to a specific problem; the shapes forms are: triangular,
Gaussian trapezoidal, sigmoidal S and sigmoidal Z functions.

Once the membership functions of variables are established, the inference rules “if
(antecedent)-then (consequent)” are set. Then an inference method is used to quantify each
premise, this is an application of a fuzzy operator in the “if” part of the rule and can be the
math function “or” - “and”, once this is done, the inference method fire rules, which is
known as the implication method. Two inference methods are commonly used: Mamdani
method, where the “if” and “then” parts are fuzzy expressions, and the Takagi-Sugeno
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method where the “if” part of the rule is a fuzzy expression, but the “then” part of the rule is
a deterministic expression (Passino & Yurkovich, 1997; Nguyen, 2002). After applying the
chosen inference method, the output fuzzy set is form. This can be shown in the next rules:
If (0.4 or 0.2) then input (0.4)
If max (0.4, 0.2) then input (0.4)

Finally: If (0.4) then input (0.4)
The above means that if the antecedent part of the rule is partially true which means that
have a value minor than one, then the output fuzzy set will be truncated by the implication
method, as showed in the next figure:

consequent
membership fuzzy output
1 function . from the rule
antecedent N =>
result —> 0.4 0.4
0 — function L . function
I " domain 0 ro ! " domain
7.5
input

Fig. 8. Implication method representation.

The last step in the inference method is the aggregation of all the fuzzy outputs from the
rules, as can be seen in the next figure:

fuzzy output
14 fromthe rulel

0 function 1
domain
fuzzy output :>
14+ fromthe rule2
0 function

1 . domain
0 / \ function

domain

Fig. 9. Fuzzy outputs aggregation representation.

Finally, the fuzzy controller implements defuzzification, where the input of the
defuzzification process is a fuzzy set and the output is just a number. This can be done using
several methods as: center of area method also known as the center or gravity or centroid
method, the height-center of area, the max criterion, the first of maxima and the middle of
maxima method. The deffuzification result will be the output of the fuzzy system (Passino &
Yurkovich, 1997; Nguyen, 2002). This is showed in the following figure:
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defuzzification result
(first of maxima
method)

function
domain

Fig. 10. Defuzzification representation.

In summary, the main advantages of Fuzzy Logic are: robustness, easy controller
reconfiguration, works well with multi input multi output systems and adequate to model
complex nonlinear systems.

3.2.1 Fuzzy Logic in Fault Tolerant Control

Fuzzy models are capable of handling nonlinear dynamic systems and the nonlinearities of
the faults. In the following we describe several works reported with fault detectors and/or
controllers based on fuzzy logic.

(Kwong et al., 1995) presented an expert supervision approach of Fuzzy learning system for
fault tolerant control in aircrafts. This approach, shown in figure 11, uses a fuzzy model
reference learning controller (FMRLC) to reconfigure the aircraft nominal controller in order
to accommodate actuator failures without needing specific information about the failures.
This approach also demonstrated that the FMRLC can be improved using fault detection
and identification information to acquire an adaptive system that can reconfigure its
performance level when a failure occurs.

s

Input - FuZZy OUtput
—%?f controller PLANT

2 yd ]

Learning Reference ;Cj
mechanism model
FDI inputs EMRLC
“Supervisory |
level

Fig. 11. Supervisory FMRLC scheme proposed by (Kwong et al., 1995).
(Ballé et al., 1998) presented a model-based adaptive control and reconfiguration approach

based on fault detection and diagnosis implemented to a heat exchanger. The fault detection
and adaptive tasks are based on Takagi-Sugeno (T-S) fuzzy model of the process and the
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fault diagnosis task uses a self-organizing fuzzy structure. In this approach an on-line
adaptation scheme is used for reconfiguration when the measurements are erroneous
because of the sensor faults. If all the input signal and the disturbances can be measured the
model is used for model-based predictive control. When a sensor fault occurs, the signals
are not longer used for prediction. Instead of these measurements, a reduced model of the
system process is required to adapt these erroneous signals as external disturbances. The T-S
fuzzy model is also used for residuals generation in order to detect and isolate sensor faults.
Then the decision making is sustained by identifying particular patterns of the residual that
are link to different faults. This is done by using a fuzzy classification tree that can learn
sample data patterns. The next figure shows the explained approach:

Reconfiguration

Model Fault
adaptation f— Diagnosis
High
Level — Parameters Symptoms
Automation
Process - Symptom
Model Generation
— Measurements
Low
Level —< Controller Process | —
Automation

—

Fig. 12. Model-based control, diagnosis and reconfiguration scheme proposed by (Ballé al.,
1998).

(Patton et al., 1999) proposed the use of Takagi-Sugeno fuzzy observers for nonlinear
dynamic systems. In this methodology the plant is represented by a T-S fuzzy model and a
fuzzy observer estimate the system state vector. The fuzzy model is locally observable in
order to design the fuzzy observer. A linear time invariant observer is created with every
real of the fuzzy model. Then, the whole complete observer’s dynamic is a weighted sum of
the individual observers. A residual is generated from the observers and is compared
against the fuzzy model output. If the residual is nonzero a fault is present in the system.
(Holmes & Ray, 2001) proposed a damage mitigating control system in which the main
objective is to accomplish optimal performance of the system with a high level of reliability,
availability, component durability and maintainability. This scheme was implemented in a
two-tier structure. A lineal robust sample data controller was proposed for the lower tier to
track a reference trajectory vector. On the other hand, for the upper tier, a fuzzy logic based
damage controller was implemented. This controller adjusts the system dynamic
performance with the structural durability of critical components. This scheme
demonstrated that a substantial gain in structural durability of critical components can be
reached without significant performance degradation.

(Diao & Passino, 2001) implemented an intelligent Fault Tolerant Control scheme using a
hierarchical learning structure for the design of the plant. This learning structure was a
Takagi-Sugeno Fuzzy system. Then, the fault tolerant control system is based on stable
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adaptive fuzzy/neural control that has online learning properties which are used to acquire
the unknown dynamics developed as consequence of system faults.

(Diao & Passino, 2002) presented a fault tolerant control scheme using adaptive estimation
and control methods based on the learning properties of fuzzy systems and neural
networks. An online approximation-based stable adaptive neural/fuzzy control was
implemented in an input-output feedback time-varying nonlinear system. Also, the
adaptive controller enhanced the fault tolerance capability by using the estimated
information from the fault diagnosis unit, chosen by a multiple model interface with a
supervisory expert approach.

(Oudghiri et al., 2008) proposed a Fault Tolerant scheme for lateral vehicle dynamics
implementing static output feedback control with sliding mode observers in order to
enhance the vehicle stability and handling in the presence of sensor fault. This approach
uses three blocks, one for the fault and detection, a second for the static output feedback
controller and a third for a switcher. The lateral vehicle dynamics are represented in a
nonlinear two degrees of freedom vehicle model implemented in a Takagi-Sugeno fuzzy
model. The fault detection and isolation block uses a bank of observers’ constructed using
sliding mode in order to calculate the system state vector. Then, a set of diagnostic signal
residuals are produced, associating the measured and the estimated outputs. After doing
this, the sensor in which the fault happened is isolated.

3.3 Genetic Algorithms

Genetic Algorithms (GAs) are searching and optimizing algorithms motivated by natural
selection evolution and natural genetics (Goldberg, 1989). The simplest GA follows the next
steps: Generate a random initial population of chromosomes, calculate the fitness of every
chromosome in the population, apply selection, crossover and mutation and replace the
actual population with the new population until the required solution is achieved. The main
advantages of GAs are: powerful computational effect, robustness, fault tolerance, fast
convergence to a global optimal, capability of searching in complex landscape where the
fitness function is discontinuous, can be combined with traditional optimization techniques
(Tabu search) and have the ability to solve problem without needing human experts
(Goldberg, 1989; Mitchell, 1996; Ruan, 1997).

3.3.1 Genetic Algorithms in Fault Tolerant Control

Recently genetic algorithms have been applied in fault tolerant control as a strategy to
optimize and supervise the controlled system in order to accommodate system failures.
Some applications of this technique are the following:

(Schroder et al., 1998) proposed a fault tolerant control technique for an active magnetic
bearing. In this approach a nonlinear model of a turbo machine rotor from the rolls-royce
lifted up by an active magnetic bearing was presented. This model is capable of modeling
difference configuration of magnetic bearings. A multi-objective genetic algorithm was used
to generate and adequate PID controller for the active magnetic bearing with different
bearing configuration. Also the fault accommodation was done using a centralized fault
compensation scheme.

(Sugawara et al., 2003) showed a fault tolerant control approach using multi-layer neural
networks with a genetic algorithm. The proposed of this approach was to develop a self-
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recovery technique implemented for large scale neural networks programmed in a single
ship to accommodate faults without the needing of a host computer. This FTC scheme uses
hardware redundancy and weight retraining using a genetic algorithm in order to
reconfigure the neural network to accommodate the fault. The objective of the genetic
algorithm is to reduce the error between the actual output and the desired output.

4. The Proposed Methodology, Experiments and Results

We propose a new FTC schema, where a Model Reference Adaptive Control (MRAC) is
used in combination with a neural network controller, in order to achieve a better
performance when faults are present in the system. We use an experimental model of a heat
exchanger where abrupt and gradual faults (also called soft faults) are induced in sensors
and actuators. To compare our schema, we also have made experiments with a simple
MRAC and MRAC-PID structures.

4.1 MRAC Controller

The Model Reference Adaptive Controller, shown in figure 13, implements a closed loop
controller that involves the parameters that should be optimized, in order to modify the
system response to achieve the desired final value. The adaptation mechanism adjusts the
controller parameters to match the process output with the reference model output.

Reference Ym
Model

y + €
Ul Process >

Controller

~ Controller
Parameters

Adaptation

Mechanisml
Fig. 13. MRAC scheme (Nagrath, 2006).

The controller error is calculated as follows:
€= yprocess - ymfcmnce (1)
To reduce the error, a cost function was used, in the form of:
J(0)=15¢(0) 2)

The function above can be minimized if the parameters 8 change in the negative direction of
the gradient J, this is called the gradient descent method and is represented by:

a0/ __.9/ __..o
= 46— %50 ()

where y helps to adjust the speed of learning. The above equation is known as the MIT rule
and determines how the parameter 6 will be updated in order to reduce the error.
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The implemented MRAC scheme in our process, shown in figure 14, has two adaptation
parameters: adaptive feedfoward gain (6,) and adaptive feedback gain (6,). These

parameters will be updated to follow the reference model.

Vapor Reference Model
b,
3
s +a,s+a,,
! 0 YVuporircfcrcncc
u, + (&
——— Process
Y\/apor
a8 +4a,, a8+ 4,
A s +a,s+a, s’ +a,s+a,
+
- ( ) Yreference N
Water Reference Model + Y model
b,
s’ +a,s+a,
ywalcrircfcrcncc -
u, + €
Process
ywulcr
a,s+a,, a,.s+a,,
= s*+a,s+a, 5% +a,s+a,,

Fig. 14. Fault tolerant MRAC scheme.

4.2 PID Controller

To overcome the limitations of the simple MRAC structure, a classical PID controller, in the
form of equation 4, was introduced in the feedforward part of simple MRAC scheme. The
resulting structure is shown in figure 15. The desired response is introduced in terms of rise
time, stabilization time and overshoot.

K.
GPID_contwller = Kp + % + de (4)
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Vapor Reference Model

b,
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Controller -
Ue N u + €
PID X ———— Process
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4 r
K J
9,
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Fig. 15. Fault tolerant MRAC-PID Controller structure.

4.3 Neural Network Controller

In this scheme, we substitute the PID controller by a neural network (shown in figure 16).
The neural network was trained with the original process inputs as well as the desired
outputs.

4.4 Experiments

Two different faults were simulated: abrupt faults and gradual faults. In the abrupt faults
case, the whole magnitude of the fault is developed in one moment of time and was
simulated with a step function. On the other hand, gradual faults are developed during a
period of time and are implemented with a ramp function.

Both types of faults, abrupt and gradual, can be implemented in sensors (feedback), in
which the properties of the process are not affected, but the sensor readings are mistaken.
Also, can be implemented in actuators (process entry) in which the process properties are
not affected either, but the process behavior can change or can be interrupted.

We use an industrial heat exchanger to test our approach (shown in figure 17). The process
has two inputs: water and steam flows controlled by pneumatic valves, and one output, the
water temperature measured by a termocouple. Variations in water and steam flows are
determined by flow transmitters. To develop the continuous model of this process, an
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identification experiment was performed, where a Pseudo Random Binary Sequence (PRBS)
was applied to water and steam valves, and variations in water temperature were recorded.

+-Cj c
y

Vapor Reference Model
br
2
s*+a,s+a
" g YVapor_reference
Controller
uC
Neural Process
Network vapor
a,S+4ay, a8+ dy,
2 s’ +a,5+a, s*+a,s+a,
Water Reference Model
br
2
s*+a,s+a,,
! 0 YWat/er_reference
Controller
uC
Neural Process
Network
‘water
a, S+ 4, a,S+ay,
Sl X ETT

2
s +a,s+a,,

+
- f ) Y reference N

+ ( ) Ymodel >

2
s”+a,s+a,,

Fig. 16. Fault tolerant MRAC-Neural Network Controller structure.

With the data obtained in the PRBS test, the identification was achieved using software

developed in Matlab®.

Fig. 17. Industrial heat exchanger used in the experiments.

www.intechopen.com



Artificial Intelligence Methods in Fault Tolerant Control 289
The following model was obtained:
Gp = Gvnpor - Gwnter
G - 0.00002 0.000013 (5)

P52 +0.004299s +0.00002 5% +0.007815s + 0.00008
This model was used to implement the 3 different FTC Schemes mentioned above.

4.5 Results
A total of six different experiments were developed in Simulink®. Table 1 explains the
results of each simulated experiment and shows the numerical performance of every

method by using the Mean Square Error (MSE) obtained during the application of the fault.

Method & Results when a the Fault was applied Results when an Fault was applied
Fault Type In Sensor In Actuator
MRAC- - If the fault magnitude is < 0.44, the system | - If the fault magnitude is 1 the system
Abrupt is robust against the fault. response varies around +/- 3%. This
Fault - If the fault magnitude is between [0.44, | means that the system is degraded but
1.52] the system accommodates the fault. still works. This degradation becomes
-If the fault magnitude is > 1.52, the system | smaller over time, because the system
becomes unstable. continues accommodating the fault.
- MSE= 0.501236189 - MSE=0.10521016
MRAC- - If the fault has saturation < +/- 0.44, the | - If the fault saturation is +/- 1 the system
Gradual system is robust against the fault. response varies around +/- 4%. This
Fault - If the fault has a saturation between +/- | means that the system is degraded but
[0.44, 1.52] the system accommodate the |still works. This degradation becomes
fault. smaller over time, because the system
-If the fault has saturation > 1.52, the |continues accommodating the fault.
system becomes unstable. - MSE=0.09163081
MSE=0.50777113
MRAC- - If the fault magnitude is < 1.75, the system | - If the fault magnitude is 1 the system
PID- is robust against the fault. response varies around +/- 3.5%. This
Abrupt - If the fault magnitude is between [1.75, | means that the system is degraded but
Fault 1.97] the system accommodates the fault. still works. This degradation becomes
-If the fault magnitude is > 1.97, the system | smaller over time, because the system
becomes unstable. continues accommodating the fault.
- MSE=0.00036942 - MSE=0.13283874
MRAC- - If the fault has saturation < +/- 1.75, the | - If the fault saturation is +/- 1 the system
PID- system is robust against the fault. response varies around +/- 4%. This
Gradual - If the fault has a saturation between +/-| means that the system is degraded but
Fault [1.75, 1.97] the system accommodates the |still works. This degradation becomes
fault. smaller over time, because the system
-If the fault has saturation > 1.97, the continues accommodating the fault.
system becomes unstable. - MSE=0.13508005
- MSE=0.0003694
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MRAC- - The system is robust against sensor faults |- If the fault magnitude is 1 the system
Neural - MSE=0.00030043 response varies around +/- 3%. This
Network- means that the system is degraded but
Abrupt still works. This degradation becomes
Fault smaller over time, because the system

continues accommodating the fault.

- MSE=0.13154736
MRAC- - The system is robust against sensor faults. |- If the fault saturation is +/- 1 the system
Neural - MSE=0.00030043 response varies around +3% and - 4%.
Network- This means that the system is degraded
Gradual but still works. This degradation becomes
Fault smaller over time, because the system

continues accommodating the fault.

- MSE=0.13149647

Table 1. Results of experiments with abrupt and gradual faults simulated in the 3 different
fault tolerant MRAC schemes.

The following graphs represent a comparison between the different simulated experiments.
Figure 18 represents system behavior when abrupt faults are simulated. The three graphs on
the left column are sensor faults and the graphs from the right column are actuator faults.
The sensor faults have a magnitude of 1.8 and the actuator faults a magnitude of 1. It is
observed that the MRAC-Neural Network represents the best scheme because is insensitive
to abrupt sensor faults and has a good performance when abrupt actuator faults are
developed.

Figure 19 graphs represent system behavior when gradual faults are present on the system.
The fault magnitude of the sensor fault is of 1.8 and the magnitude of the actuator fault is of
1. It can be seen also that the MRAC-Neural Networks Controller scheme is the better option
because is robust to sensor faults and has a less degraded performance in actuator faults. In
conclusion, the proposed MRAC-Neural Network scheme gives the best fault tolerant
control scheme developed in this work.
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Fig. 18. Abrupt-Sensor Faults (left column) and Abrupt-Actuator Faults (Right column) of
the three different proposed schemes, the fault started at time 7000 secs.
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Fig. 19. Gradual-Sensor Faults (left column) and Gradual-Actuator Faults (Right column) of
the three different proposed schemes, the fault started at time 7000 secs.
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valuable overview of theoretical and practical methods in control and automation to those who deal with
engineering and research in this field of activities.
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