L=

. L . -
View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by IntechOpen

We are IntechUpen,

the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

Open access books available International authors and editors Downloads

Our authors are among the

154 TOP 1% 12.2%

Countries delivered to most cited scientists Contributors from top 500 universities

pTE AN
Q)Q ¢, ;,))

G

“ BOOK
CITATION
INDEX

NDEXE®

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

https://core.ac.uk/display/322388684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An approach to obtain a PLC
program from a DEVS model

Hyeong T. Park, Kil Y. Seong, Suraj Dangol,
Gi N. Wang and Sang C. Park

Department of Industrial Information & System Engineering, Ajou University
Republic of Korea

1. Introduction

To survive and prosper in the modern manufacturing era, a manufacturing company should
be capable of adapting reduced life cycle of products in a continuously changing market place.
Simulation is a useful tool for manufacturers to adapt this kind of rapidly changing market to
design and analyze complex systems that are difficult to model analytically or mathematically
(Choi, 2000). Manufacturers who are using simulation can reduce time to reach stable state of
automated manufacturing process by utilizing statistics, finding bottlenecks, pointing out
scheduling error etc. For the simulation of manufacturing systems, manufacturers have been
using various simulation languages, simulation software for example ARENA, AutoMod.
Most of traditional simulation languages and softwares focus on the representation of
independent entity flows between processes; their method is commonly referenced to as a
transaction-oriented approach. In this paper, we propose an object-oriented approach that is
based on the set of object classes capable of modeling a behavior of existing system
components.

The object-oriented modeling (OOM) is a modeling paradigm, that uses real world objects for
modeling and builds language independent design organized around those objects
(Rumbaugh, 1991). Even though OOM has been widely known to be an effective method for
modeling complicated software systems, very few researchers tried to apply the OOM to
design and simulate manufacturing system software models. Based on the OOM paradigm,
different researchers have proposed various modeling approaches despite the fact that they
express them in different ways with different notations. For example, Choi et al. presented the
JR-net framework for modeling which is based on the OOM paradigm of Rumbaugh et al.,
which is made of three sub-models(an object model, functional model, and dynamic model).
Chen and Lu proposed an object-oriented modeling methodology to model production
systems in terms of the Petri-nets, the entity relationship diagram (ERD) and the IDEFO (Chen,
1994). Virtual factory (VF) is also very important concept to be considered in today’s
simulation environment. By using the OOM paradigm, VF concept can be implemented
efficiently (Onosato, 1993).

Recently, Park (Park, 2005) proposed a ‘three-phase-modeling framework’ for creating a
virtual model for an automated manufacturing system. This paper employs the three-phase-

www.intechopen.com

48 AUTOMATION & CONTROL - Theory and Practice

modeling framework of creating a virtual model, and the Discrete Event System
Specification(DEVS) (Zeigler, 1984) for process modeling. The proposed virtual model consists
of four types of objects. The virtual device model represents the static layout of devices. This
can be decomposed into the shell and core, which encourages the reusability making possible
to adapt different system configurations. For the fidelity of the virtual model, The Transfer
handler model handles a set of device-level command that mimics the physical mechanism of
a transfer. The Flow controller model decides the firable transfers based on decision variables
that are determined by the State manager model. The State manager model and Flow
controller model can be converted to PLC part. After finishing the process modeling by
employing the three-phase-modeling framework, those two models will be the control
information for the converting to PLC.

The overall structure of the paper is as follows. Section 2 represents the brief explanation about
the PLC, and Section 3 is about the DEVS. The overall approach to create manufacturing
system model for generation PLC code is described in Section 4. Section 5 gives as example cell,
which is observed to find correlation between the PLC code and the DEVS model in Section 6.
Finally, Conclusion and discussion is addressed in Section 7.

2. Programmable Logic Controller(PLC)

The Programmable Logic Controller (PLC) is an industrial computer used to control
automated processes in manufacturing (Parr, 1999). PLC is designed for multiple inputs and
outputs arrangements, it detects process state data through the sensing devices such as limit
sensors, proximity sensors or signals from the robots executes logics in its memory and
triggers the next command through the actuator such as motor, solenoid valve or command
signal for the robots etc. PLC executes the control logic programmed in different types of
languages. IEC published IEC 61131-3 to standardize PLC languages including Ladder
diagram, Sequential Function Chart, Structured Text and Function Block Diagram (Maslar,
1996).

www.intechopen.com

An approach to obtain a PLC program from a DEVS model 49

SHTL B A - - - -
D BLINRE - e =301, SHT
TS e e FALSE -« e L MELODY

I I I
SHTL B R - | e
ET_RUMRI - | - - o
B
J JI ..
BAAIN. B B - -
CULLOSTROAL - o L3 PBLY . - -
UTE_ STARR - - L GBoxl_al - - -
D TO STAERT - - -
! i
BAAIN. B A - - | e
Lo STROA - |
UTE STAR e
F SMATODZ - | - - - L
s —— o o
DB PBLM - L3 PBLR - - - - L3 PTL -G - - - - - ..
COBBOX1_DO GBOMI_ERM - - - .o BoR1- GRE - - - - - - -
OR_S TETOP - T = R,
[Il | Co - - -
L3 PELX - - - - - .
GEOMY DO - e L3 PTG -
OR_SW - SMIOB2 - - - - e BOX1.RED - - - - - -
7 It e - - -
L3 PELX - | - T
GBORT_ERA | - L
TETOPR - | L
Ur —— oo

Fig. 1. The PLC code in the form of Ladder diagram

3. Discrete Event System Specification(DEVS)

DEVS formalism is introduced by Zeigler, which is a theoretic formalism and it supplies a
means of modeling discrete event system in a modular, hierarchical way. With this DEVS
formalism, we can perform modeling more easily and correctly by dividing large system
into segment models and define the coupling between them. Formally, an atomic model M
is specified by a 7-tuple:

M =< X, S, Y, 6int, 5ext,kl ta>

X :input events set;

S: sequential states set;

Y : output events set;

Oint : S5 : internal transition function;

Oext: Q X X 2 S : external transition function

Q={(s,e)|s* S, 0<e<ty(s)}: total state of M;

A: S->Y : output function;

ta: S=Real : time advance function:

The second form of the model, called a coupled model, indicates how to couple several
element models together to form a new and bigger model. Formally, a coupled model DN is
defined as:

DN =<X, Y, M, EIC, EOC, IC, SELECT >

X :input events set;

Y: output events set;

M: set of all component models in DEVS;

EIC » *DN.IN x ML.IN : external input coupling relation;

EOC+ M.OUT x DN.OUT : external output coupling relation;

www.intechopen.com

50 AUTOMATION & CONTROL - Theory and Practice

IC+ “M.OUT x M.IN : internal coupling relation;

SELECT : 2M - g-> M : tie-breaking selector,

Where the extension .IN and .OUT represent the input ports set and the output ports set of
each DEVS models.

4. Approach to create manufacturing system model to generate PLC code

To construct the automated process, the factory designers have to consider the overall
process layout. After deciding skeletal layout, the process cycle time is simulated by the
discrete event system software like ARENA or AutoMod. In this stage, including the process
cycle time and production capability, the physical validity and efficiency of co-working
machines are also described. Simulation and modeling software QUEST or IGRIP are used
for this purpose (Breuss, 2005).

System Requirements
Products 8 Capacity

h——-—'—'_—_—

Process design & Config.
Mnfg. Devices

Layout Design
(Multiple alternatives)

Layout Evaluation
{Choose one layout)

Job flow & Supervisory
Control logic design

Performance Analysis

Planning for
implementation

Blueprint for
Implementation

Fig. 2. Automated factory construction procedure
On the next step, the PLC code programming for logical functioning is done without

utilizing information from previous discrete event systems modeling. The gap between the
high level simulation of discrete event system and the low level physical process control

www.intechopen.com

An approach to obtain a PLC program from a DEVS model 51

logic need to be bridged for the utilization of process modeling and practical simulation in
terms of physical automated device movement. This paper tries to find the bridge between
these two different simulation levels and further describes automatic generation of PLC
code from the DEVS model.

In developing the DEVS model, the first thing we have to do is to model the manufacturing
system by the three-phase-modeling framework (Park, 2005). The framework describes
manufacturing system modeling with 4 components; the Virtual device model, the Transfer
handler model, the State manager model and the Flow controller model as shown in Figure
3.

Decision
State Variable
— Flow Controller
Manager
Fire
Device \l/
States
(Sthte changes) Transfer

Handler 1J
CE”d f J Endlof
omman De |Ce Deyice Command
Command
Virtual Dewce Virtual Dewce

g

Fig. 3. Outline of the virtual manufacturing model

The Virtual device model shows the manufacturing devices. It has input port to receive the
action signal and output port to send the work done signal. The Transfer handler model
handles the parts stream and assisting resources (tools and pallets) between devices. This
approach focused on the physical mechanism enabling the transfer than conventional
approaches. In reality, a transfer happens by the combination of device-level command
between co-working devices (giving and taking devices). The State manager model collects
the state data of every device. Whenever there is a state change of devices, it will update the
device states. Then, this information will be delivered to the Flow controller model as a
decision variable. After getting the state information from the State manager model, the
Flow controller model will decide firable transfer based on the system state (decision
variables).

For the implementation of the virtual manufacturing system model, this paper employs the
Discrete Event Systems Specification (DEVS) formalism, which supports the specification of
discrete event models in a hierarchical modular manner. The formalism is highly compatible
with OOM for simulation. Under the DEVS formalism, we need to specify two types of sub-
models: (1) the atomic model, the basic models, from which larger ones are built and (2) the
coupled model, how atomic models are related in a hierarchical manner.

www.intechopen.com

52 AUTOMATION & CONTROL - Theory and Practice

When the DEVS model is developed, both the State manager atomic model for the process
monitoring and the Flow controller atomic model for the actual control can be replaced the
PLC part. Namely, control part for the manufacturing cell. Here is the goal of this paper.

5. DEVS modelling of a simple cell based on the three-phase-modeling
framework

In this Chapter, we will observe a small work cell example. The work cell is modeled
according to the three-phase-modeling framework and converted to the DEVS model like
mentioned above. Finally, we will compare the DEVS model and the PLC code to find some
meaningful bridge.

Figure 4 shows the small cell example. At first, an entity is generated from the Stack, which
will lay on the AGV machine in P1, then AGV senses this raw part and moves to the P2 for
machining. When machine detects the part arrival by the AGV, the machine starts to

operate.
Machined part
Maching G
]

P1 fposttion 1) P2 (posttion 2

)
!

| Raw pat

|

\
\

|
A

{
N

Fig. 4. Example cell

When we consider this example cell in terms of the three-phase-modeling framework, there
are three virtual device models; the stack model, the AGV model and the machine model.
The stack model generates the raw part entity and places it on the AGV for transfer. Until
this point, the entity transfer process is between the stack and the AGV virtual device model
as a result the transfer handler model is created between the stack the AGV model.
Similarly, entity transferring between the AGV model and the Machine happens. This
transfer handling model can be represented as THam. If there is any state change among the
virtual devices, the changes are supposed to be reported to the State manager model. The
State manager model maintains the decision variables in compliance with the reported state
changes of the virtual devices and the Flow controller model will make a decision on firable
transfer based on the decision variables. Figure 5 represents the constructed model about the
example cell.

www.intechopen.com

An approach to obtain a PLC program from a DEVS model 53

Fig. 5. Modeling of the example cell in the Park’s methodology

Once the modeling by means of the three-phase-modeling framework is finished, second
step is to convert the model to the DEVS formalism. In this example, every model is
converted to the atomic model and entire cell will be the coupled model that is consist of all
atomic models. Figure 6 is the converted DEVS model example of AGV. In the traditional
implementation of discrete event system simulation using DEVS, DEVSIM++ is a simulation
framework which realizes the DEVS formalism for modeling and related abstract simulator
concepts for simulation, all in C++ (Kim, 1994). Through this open source frame, we can
develop the discrete event system simulation engine easily. Once, both the DEVS
implementation and the simulation with PLC control logic is done, we can achieve the
overall physical control simulator for automated process.

www.intechopen.com

54 AUTOMATION & CONTROL - Theory and Practice

AEPT) =01 and O

PO :_:’
ENCD

L{-P2-) =01 and O3

1

AGY atomic model
X={N,121
Y= {01, 02 03}
S = {P1, GoP2, P2, GoP1 }
it

Sipt { GoP2, MT } = P2,

Sint L GoP1, MT } = P1
Sex‘f:

Beutl P1, 12) = GoP2, 8l P2, 11) = GoP1
AIOP1) =01 and O2, x(P2) =01 and O3
LA GoP2) = O1, A GoP1) = O1
tal MT) : Moving Time

Fig. 6. DEVS model of the AGV

0

6. Correlation between the PLC code and the DEVS models

For the auto generation of PLC code from the DEVS model, we need to examine the PLC
code of example cell and the DEVS models, especially the State manager and the Flow
controller model.

In the manufacturing unit, PLC collects the process state information through the sensors.
These sensor signals are referenced to decide next command or operation. This task is done
by the state manager model in the modeled frame. The State manager model detects every
change in state of the virtual device and then updates the decision variables. Similar to PLC
code, the Flow controller model is supposed to have running logic that is kind of
combination of decision variables. As a result, PLC code from the DEVS model can be
divided into two parts. One part is for updating the decision variable from the signal of
input port in the State manager model. Another is for actual logic composed of decision
variables to fulfill the intended process control.

www.intechopen.com

An approach to obtain a PLC program from a DEVS model 55

I -
12 - State Manager - 01
DEVS model State Manager part
- identify the devices and system
13 - states = Sensor signals
B .|
Flow Controller part
. executes running logic jaccording

§O1

Flow Controller
DEVS model

(a) DEVS model
Fig. 7. Two part of PLC code

éOZ

to the updates sensor

signals(states)

= Logic and trigger the actuator

(b) Two partof PLC code

In the front part, the State manager model collects every state changes through the input
port. The one input port of example cell has different kind of signal depend on the state. For
example, the input port 12 is the signal from the AGV and it has 4 different kinds of state
signals. With the same way, each input port of the State manager model has multiple input

signals like shown in Table 1.

Atomic .
models States Input Signals
Idle, STACK_IDLE
I1 Stack Release STACK_RELEASE
P1, AGV_P1
GoP2, AGV_GOP2
< &L P2, AGV_P2
GoP1 AGV_GOP1
13 Machine | 1dle MACHINE_IDLE
achine | pun MACHINE_RUN

Table 1. The States of Atomic models

The memory structure in the PLC code can be classified into three groups. The first group is
input memory which consists of input signal names and the second group is the output
memory consisting output signal names and the last is the internal memory which is used to
maintain the signal information of input or output and for temporary numerical calculation.

www.intechopen.com

56 AUTOMATION & CONTROL - Theory and Practice

The name of input signal can be determined with combination between the input port and
its state name. In this way, we can give a name to all input signals.

As mentioned before, the flow controller model reads the decision variables to execute next
command. Thus, we have to make decision variables representing the process state as the
internal memory. As we did in the input variable for naming, we can give decision
variables” name by putting the ‘On” between the port name and the state name. Then, this
decision variable shows the port’s current state is active condition. Once decision variables
are set, the Flow controller detects the firable output signals from the set variables. Figure 8
show the decision variables of each input of AGV model and moving condition. To the
AGYV, the possible condition to move from P1 to P2 is when the raw part is on the AGV,
AGV’s state is ‘GoP2’, and the machine state is ‘Idle” at the same time.

Fig. 8. The triggering condition for AGV move

As we have noticed for the case of the AGV model, the other devices” executing condition
can be derived. While the PLC code for the State manager model part can be generated
automatically with a combination of decision variables, the flow controller part is sometimes
rather ambiguous. That is because unlike the flow controller, DEVS model is quite abstract
and high level, the PLC part is very specific control area. Even though, process system
designer can construct the DEVS model including low level of PLC, normally DEVS
modeling is not fulfilled in this way. This aspect will be limitation or designer’s choice in
reference to PLC code auto generation. The DEVS modeling here is done specifically in
mind of the PLC code generation of the Flow Controller model part. Figure 9 illustrates the
two part of PLC code about the AGV from the State manager and the Flow controller model.
And the Flow controller DEVS model for PLC code auto generation with the simple work
cell is shown in Fig. 10.

7. Discussion and conclusion

This paper presents the PLC code auto generation methodology from the DEVS model. The
PLC level control logic is rather closed and unopened engineering area while discrete event
system modeling and simulation is widely used to measure the process capacity. By using
the discrete event system simulation technique, the process or overall cycle time and
throughput can be calculated.

www.intechopen.com

An approach to obtain a PLC program from a DEVS model 57

EOEHIND ot wigal | MW's wialE 8 AR Y

e
i

= e

Melwork 3 Flow Condrolled Parl of A modsi

......

e TN OF B il . A
{hp—j A [y o rped - o
} | i} {—

IS Frow Cordeolier Part of ABY model

{a) PLC Code from the State Manager model {b) PLC Code from the Flow Controllermodel
Fig. 9. PLC code from the State Manager and the Flow Controller model

Flow Controller DEVS model
1a(MT)
¥ ‘Gl
: | | MACHINE_ON_RUN &
{ETAEK,GH_,IDLE & STACK_ON_IDLE & |
adh, AGY_ON_GOP2 & (| ON_AGY_MOVE_TO P2})
1 *Hﬁﬂ:HlMi_ﬂM_mLE) i

) 02
(AGV_ON_P2 &
MACHINE_ON_IDLE)

ta{MT) : Moving Time

Fig. 10. The Flow Controller DEVS model

www.intechopen.com

58 AUTOMATION & CONTROL - Theory and Practice

However, there is a big gap between the PLC code and the discrete event system simulation.
This gap causes the repetition of process analysis work for the PLC programmer and the
time delay to implement automated processing system in a manufacturing unit.

The overall procedure for proposed approach has three steps. Modeling the real system
according to the three-phase-modeling framework is first step. And this model is converted
to the DEVS formalism in second step. Among the 4 kind of models, the State manger and
the Flow controller model is going to be replaced to the PLC part.

The generated PLC code from our approach can be categorized into two parts, one is from
the state manager and another is from the flow controller. The first part is created from the
input signals and the decision variable. And the latter part is from the control part which is
from combination of decision variables.

The latter part generation is not achieved perfectly because the DEVS modeling level is more
abstracted than the PLC level. However, this approach offers the overall framework for the
PLC code generation from DEVS model. In the following future, the direction mentioned
above will be the inevitable stream for the more physical process simulation, for the time
saving toward the mass production condition and for better competitiveness to the company.

8. References

B. K. Choi, B. H. Kim, 2000. Paper templates, In Current Advances in Mechanical Design and
Production Seventh Cairo University International MDP Conference. New Trend in
CIM: virtual manufacturing systems for next generation manufacturing.

J. Rumbaugh, M. Blaha, W. Premerlani. 1991. Paper templates, In Prentice Hall Inc. Object-
Oriented Modeling and Design.

B. K. Choi, H. Kwan, T. Y. Park, 1996. Paper templates, In The International journal of Flexible
Manufacturing Systems. Object-Oriendted graphical modelling of FMSs.

K. Y. Chen, S. S. Lu, 1997. Paper templates, In International journal of Computer Integrated
Manufacturing. A Petri-net and entity-relationship diagram based object oriented
design method for manufacturing systems control.

M. Onosato, K. Iwata, 1993. Paper templates, In CIRP. Development of a virtual
manufacturing system by integrating product models and factory models.

Sang C. Park, 2005. Paper templates, In Computers in Industry. A methodology for creating a
virtual model for a flexible manufacturing system.

B. P. Zeigler, 1984. Paper templates, In Academic Press. Multifacetted Modeling and Discrete
Event Simulation.

E. A. Parr, 1999. The book, Programmable Controllers : An Engineer’s Guide 3td ed.

M. Maslar, 1996. Paper templates, In IEEE Pulp and Paper Industry Technical Conference. PLC
standard programming language: IEC61131-3

F. Breuss, W. Roeger, 2005. Paper templates, In Journal of Policy Modeling. The SGP fiscal
rule in the case of sluggish growth: Simulations with the QUEST

T. G. Kim, 1994. The Book. DEVS++ User’s Manual

www.intechopen.com

Automation Control - Theory and Practice

, ol . _
Automation and Control, Edited by A D Rodi

Theory and Praclice
et by Aaghermaste T R
" ;* :
-
2Py

.

o " i
T N 3

e
-

ISBN 978-953-307-039-1

Hard cover, 350 pages

Publisher InTech

Published online 01, December, 2009

i Published in print edition December, 2009

The present edited book is a collection of 18 chapters written by internationally recognized experts and well-
known professionals of the field. Chapters contribute to diverse facets of automation and control. The volume
is organized in four parts according to the main subjects, regarding the recent advances in this field of
engineering. The first thematic part of the book is devoted to automation. This includes solving of assembly
line balancing problem and design of software architecture for cognitive assembling in production systems.
The second part of the book concerns different aspects of modelling and control. This includes a study on
modelling pollutant emission of diesel engine, development of a PLC program obtained from DEVS model,
control networks for digital home, automatic control of temperature and flow in heat exchanger, and non-linear
analysis and design of phase locked loops. The third part addresses issues of parameter estimation and filter
design, including methods for parameters estimation, control and design of the wave digital filters. The fourth
part presents new results in the intelligent control. This includes building a neural PDF strategy for
hydroelectric satation simulator, intelligent network system for process control, neural generalized predictive
control for industrial processes, intelligent system for forecasting, diagnosis and decision making based on
neural networks and self-organizing maps, development of a smart semantic middleware for the Internet ,
development of appropriate Al methods in fault-tollerant control, building expert system in rotary railcar
dumpers, expert system for plant asset management, and building of a image retrieval system in
heterogeneous database. The content of this thematic book admirably reflects the complementary aspects of
theory and practice which have taken place in the last years. Certainly, the content of this book will serve as a
valuable overview of theoretical and practical methods in control and automation to those who deal with
engineering and research in this field of activities.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hyeong T. Park, Kil Y. Seong, Suraj Dangol, Gi N. Wang and Sang C. Park (2009). An Approach to Oobtain a
PLC Program from a DEVS Model, Automation Control - Theory and Practice, A D Rodi (Ed.), ISBN: 978-953-
307-039-1, InTech, Available from: http://www.intechopen.com/books/automation-control-theory-and-
practice/an-approach-to-obtain-a-plc-program-from-a-devs-model

INTECH

open science | open minds

InTech Europe InTech China
University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

www.intechopen.com

Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

No.65, Yan An Road (West), Shanghai, 200040, China

RE LiETHERL K655 LiEE PR R E# A RIS M AEE40558 7T
Phone: +86-21-62489820

Fax: +86-21-62489821

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0
License, which permits use, distribution and reproduction for non-commercial
purposes, provided the original is properly cited and derivative works building
on this content are distributed under the same license.

