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1. Introduction

As software becomes more complex and its scope dramatically increase, the importance of
research on developing methods for estimating software development effort has perpetually
increased. Estimating the amount of effort required for developing a software system is an
important project management concern, because these estimation is a basic for budgeting
and project planning, which are critical for software industry. However accurate software
estimation is critical for project success. So many software models have been proposed for
software effort estimation. Algorithmic models such as COCOMO, SLIM, Multiple
Regression, Statistical models,... and non-algorithmic models such as Neural Network
Models (NN), Fuzzy Logic Models, Case-Base Reasoning (CBR), Regression Trees,... are
some of these models. Here we want to improve software accuracy by integrating the
advantages of algorithmic and non-algorithmic models. Also, recent research has tended to
focus on the use of function point (FP) in estimating the software development efforts, but a
precise estimation should not only consider the FPs, which represent size of the software,
but also should include various elements of the development environment which affected
on effort estimation. Consequently, for software development effort estimation by Neuro-
Fuzzy approach, we will use of all the significant factors on software effort. So the final
results are very accurate and reliable when they are applied to a real dataset in a software
project.

The empirical validation uses the International Software Benchmarking Standards Group
(ISBSG) Data Repository Version 10 to demonstrate the improvement of results. This dataset
contains information on 4106 projects of which two thirds were developed between the
years 2000 and 2007. The evaluation criteria were based mainly upon MMRE (Mean
Magnitude Relative Error), MMER and PRED(20). The results show a slightly better
predictive accuracy amongst Fuzzy Logic Models, Neural Network Models, Multiple
Regression Models and Statistical Models.

This chapter of book is organized into several sections as follows: In section 1, we briefly
review fuzzy logic models and neural network models in software estimation domain.
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Section 2 begins with preparing the dataset and this is followed by description of our
proposed model. The experimental results are examined in Section 3 in details, and finally
Section 4 offers conclusions and recommendations for future research in this area.

1. Survey of fuzzy logic and neural network models

1.1 Fuzzy Logic Model

Since fuzzy logic foundation by Zadeh in 1965, it has been the subject of important
investigations [Idri & Abran, 2001]. Fuzzy logic enhances the user’s ability to interpret the
model, allowing the user to view, evaluate, criticize and possibly adapt the model.
Prediction can be explained through a series of rules [Gray & MacDonell, 1997],[Saliu et al.,
2004]. After analyzing the fuzzy logic model, experts can check the model to avoid the
adverse effects of unusual data, thereby increasing its robustness. Additionally, fuzzy logic
models can be easily understood in comparison to regression models and the neural
network, thus making it an effective communication tool for management [MacDonell et al.,
1999],[Gray & MacDonell , 1999]. In comparison to fuzzy logic, case-based reasoning is
similarly easy to interpret, but it requires a high volume of data [Su et al., 2007].

The purpose in this section is not to discuss fuzzy logic in depth, but rather to present these

parts of the subject that are necessary for understanding of this chapter and for comparing it
with Neuro-Fuzzy model. Fuzzy logic offers a particularly convenient way to generate a
keen mapping between input and output spaces thanks to fuzzy rules” natural expression.
The number of fuzzy rules for six input variables and three membership functions is
calculated by 3¢, which equals 729. As a result, writing these rules is an arduous task, so
based on the statistical model we use two input variables which are demonstrated later.
Implementing a fuzzy system requires that the different categories of the different inputs be
presented by fuzzy sets, which in turn is presented by membership functions. A natural
membership function type that readily comes to mind is the triangular membership
functions [Moataz et al., 2005].

A triangular MF is a three-point (parameters) function, defined by minimum (a), maximum
(c) and modal (b) values, that is MF(a, b, c) where a< b < c. Their scalar pa rameters (a, b, c)
are defined as follows:

MF(x)=0 ifx<a
MF(x)=1 ifx=Db
MEF(x) =0 if x>c

Based on the Correlation (r) of the variables, fuzzy rules can be formulated. Correlation, the
degree to which two sets of data are related, varies from -1.0 to 1.0. The Correlation
Coefficient for the input variables is calculated from the equation below [Humphrey, 2002]:

r= (X -Q X))
NCORSEDRITEORGEOREY

(1)
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An acceptable correlation should have an absolute value higher than 0.5. The fuzzy
inference process uses the Mamdani Approach for evaluating each variable complexity
degree when linguistic terms, fuzzy sets, and fuzzy rules are defined. Specifically, we apply
the minimum method to evaluate the ‘and” operation, and consequently, we obtain one
number that represents the antecedent result for that rule. The antecedent result, as a single
number, creates the consequence using the minimum implication method. Overall, each rule
is applied in the implication process and produces one result. The aggregation using the
maximum method is processed to combine all consequences from all the rules and produces
one fuzzy set as the output. Finally, the output fuzzy set is defuzzified to a crisp single
number using the centroid calculation method [Xia et al., 2007]. This Two-Input-One-Output
fuzzy logic system for Effort is depicted in Figure 1. Moreover, the results of this model are
shown in Table 7 and Table 9.
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Fig. 1. The Fuzzy Logic System for Effort Estimation

1.2 Neural Network Model

Artificial neural network are used in estimation due to its ability to learn from previous
data. In addition, it has the ability to generalize from the training data set thus enabling it to
produce acceptable result for previously unseen data [Su et al.,, 2007]. Artificial neural
networks can model complex non-linear relationships and approximate any measurable
function so it is very useful in problems where there is a complex relationship between
inputs and outputs [Aggarwal et al., 2005] [Huang et al.,2007].

When looking at a neural network, it immediately comes to mind that activation functions
are look like fuzzy membership function [Jantzen, 1998].

Our neural network model uses an RBF network, which is easier to train than an MLP
network. The RBF network is structured similarly to the MLP in that it is a multilayer, feed-
forward network. However, unlike the MLP, the hidden units in the RBF are different from
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the units in the input and output layers. Specifically, they contain the RBF, a statistical
transformation based on a Gaussian distribution from which the neural network’s name is
derived [Heiat, 2002]. Since the data of our variables differs significantly, first, we
normalized the data and then randomly divided them into two categories: 75% of projects
are used for training and 25% of them are used for testing. The trajectory of the training
phase is depicted in Figure 2. In particular, we used the Generalized Regression Neural
Network Model in MATLAB 7.6, RBF network was created and the data set was applied to
it; the results are shown in Table 7-9.

A Training with NEWREB

_1 FPerdormance is 0.00642231, Goal is O
1a T T T T :
Train ]
“alidation |]
Test
[=k)
()
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Fig. 2. Progress of Training Phase

2. Proposed Model:

2.1 choosing a Neuro-Fuzzy Model for estimation

By comparison between artificial neural networks (ANN) and fuzzy inference systems (FIS),
we find that neural network difficult to use prior rule knowledge, learning from scratch,
they have complicated learning algorithms and they are black box structure and also they
difficult extract knowledge while fuzzy inference systems can incorporate prior rule-base,
they are interpretable by if-then rules, they have simple interpretation and implementation
but they can’t learn linguistic knowledge and knowledge must be available. Therefore, it
seems natural to consider building an integrated system combining the concepts of FIS and
ANN modeling. A common way to integrate them is to represent them in a special
architecture. Different integrated neuro-fuzzy models implement a Mamdani and Takagi
Sugeno fuzzy inference systems, some of them are FALCON, ANFIS, NEFCON,
NEFCLASS, NEFPROX, FUN, SONFIN, EFuNN, dmEFuNN and many others [Abraham,
2005].

Due to unavailability of source codes, we are unable to provide a comparison with all the
models. In general Takagi-Sugeno fuzzy system has lower Root Mean Square Error (RMSE)
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than Mamdani-type fuzzy system but Mamdani fuzzy systems are much faster in compared
to Takagi-Sugeno types, our purpose is accuracy so we didn’t consider mamdani-type fuzzy
system such as FALCON, NEFCON, NEFCLASS, EFuNN. Since no formal neural network
learning technique is used in FUN and it randomly changes parameters of membership
functions and connections within the network structure, therefore we don’t consider it as a
neuro-fuzzy system. About other models, Mackey & Glass [Mackey & Glass, 1977] provided
a comparative performance of some neuro fuzzy systems for predicting the Mackey-Glass
chaotic time series that represented in table 1.

System Epochs Test RMSE
ANFIS 75 0.0017
NEFPROX 216 0.0332
EFuNN 1 0.0140
dmEFuNN 1 0.0042
SONFIN 1 0.0180

Table 1. Performance of neuro-fuzzy systems

As shown in table ANFIS has the lowest RMSE in compared to NEFPROX (highest RMSE),
SONFIN and dmEFuNN which used Takagi-Sugeno fuzzy system. So we use ANFIS as
neuro-fuzzy model for predicting effort of software projects.

2.2 Preparing Dataset

In this study we used the latest publication of ISBSG (International Software Benchmarking
Standards Group) data repository Release 10 that contains 4106 project’s information and
two thirds of them were developed between the years 2000 and 2007. One hundred seven
metrics were described for each project including data quality rating, project size, work
effort, project elapsed time, development type, development techniques, language type,
development platform, methodology, max team size,... .

The ISBSG data repository includes an important metric as Data Quality Rating which
indicated that the reliability of the reported data. We excluded 141 projects with quality
rating D which had little credibility. Project size is recorded with function points and
homogeneity of standardized methodologies is very essential for measuring function size.
Among different count approaches of function point NESMA is considered to produce
equivalent results with IFPUG [NESMA 1996] and most of projects used these approaches
for counting function points. So for giving more reliable results, projects with other counting
approaches were excluded from the analysis. Also some projects had mistakenly
information for example they had 0.5 or 0.95 for Average Team Size or Development
Platform was recorded by ‘HH’ where not acceptable. Finally after cleaning data, 3322
projects remained for predicting effort’s projects.

2.3 Suggested model

Our study is based on statistical regression analysis, which is the most widely used
approach for the estimation of software development effort. Now we briefly introduce the
variables in data repository which will be used as the predicator for the regression analysis
[Zhizhong et al.a, 2007]:
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1. Functional Size: It gives the size of the project which was measured in function
points.

2. Average Team Size: It is the average number of people that worked on the project
through the entire development process.

3. Language Type: It defines the language type used for the project such as 2GL, 3GL,
4GL and ApG. 2GL (two generation languages) are machine dependent assembly
languages, 3GL are high-level programming languages like FORTRAN, C ,etc. 4GL
like SQL is more advanced than traditional high-level programming languages and
ApG (Application Generator) is the program that allows programmers to build an
application without writing the extensive code.

4. Development Type: Describes whether the software development was a new
development, enhancement or Re-development.

5. Development Platform: Defines the primary development platform. Each project
was developed for one of the platforms as midrange, mainframe, multi-platform,
or personal computer.

6. Development Techniques: Specific techniques used during software development
(e.g. Waterfall, Prototyping, Data Modeling, RAD, etc). A large number of projects
make use of various combined techniques.

7. Case Tool Used: Indicates if the project used any CASE (Computer-Aided Software
Engineering) tool or not.

8. How Methodology Acquired: Describes whether the development methodology
was traditional, purchased, developed in-house, or a combination of purchased
and developed.

It is important to point out that [Zhizhong et al ., 2007]:

*  We did not take into account the factor primary programming language, since each
particular programming language (Java, C, etc) belongs to one of the generation
languages (2GL, 3GL, etc).

* It is conceivable that senior software developers are more proficient and
productive than junior developers. ISBSG data repository does not report this and
assumes the developers are all well-qualified practitioners.

*  When considering the factor Development Techniques, there exist over 30 different
techniques in the data repository and 766 projects even used various combinations
of these techniques. Our study considered the ten key development techniques
(Waterfall, Prototyping, Data Modeling, Process Modeling, JAD or Joint
Application Development, Regression Testing, OO or Object Oriented Analysis &
Design, Business Area Modeling, RAD or Rapid Application Development) and
separated each of them as one single binary variable with two levels that indicates
that whether this variable was used (1) or not (0), also other combinations were
labeled by ‘Other” as development factor technique.

*  The variables Effort, Size and Average Team Size are measured in ratio scales while
all others are measured in nominal scales.

Here by fitting a model with Effort as the dependent variable and all the other variables as

the predicators, we reduced our inputs for prediction, because for ANFIS with Genfisl
implementation is impossible to write all the rules and the complexity of model will be
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increased. So Regression Analysis helps us to use variables effectively. Table 2 gives the
summary of the variables used for the regression analysis.

Variables Scale Description
Effort Ratio Summary Work Effort
Size Ratio Functional Size
Average Team Size Ratio Average Team Size
Language Type Nominal Language Type
Development Type Nominal Development Type
Development Platform Nominal Development Platform
CASE Tool Nominal CASE Tools Used
Methodology Nominal How Methodology Acquired
Waterfall Nominal 1=Waterfall , 0=Not
Data Nominal 1=Data Modelling , 0=Not
Process Nominal 1=Process Modelling , 0=Not
JAD Nominal 1=JAD , 0=Not
Regression Nominal 1=Regression Testing , 0=Not
Development Prototypin | Nominal 1=Prototyping , 0=Not
Techniques g
Business Nominal 1=Business Area Modelling , 0=Not
RAD Nominal 1=RAD , 0=Not
0.0 Nominal 1=0Object Oriented Analysis, 0=Not
Event Nominal 1=Event Modelling , 0=Not
Other factors Nominal 1=Uncommon Development
Techniques, 0=Not
Missing Nominal 1=Missing , 0=Not

Table 2. Summary of the variables for Regression

The variable Missing was added as an indicator variable and indicate that the use of
development techniques was recorded for particular project or not (1=recorded, 0=missing).
The first step is automatic model selection based on Akaike’s information criterion (AIC).
AIC is a measure of the goodness of fit of an estimated statistical model. Given the
assumption of normally-distributed model errors, AIC is given as [Venables & Ripley, 2002]:

AIC =nlog(RSS/n)+ 2p (2)

Here n is the number of observations, RSS is Residual Sum of Squares, and p is the number
of parameters to be estimated. AIC has a penalty as a function of the number of estimated
parameters because increasing the number of parameters improves goodness of fit (small
RSS), so the preferred model is the one with the lowest AIC value. Based on this criterion,
the preferred model with the lowest AIC value is introduced in Table 3.

It is important to point out here that since the original data of Effort and Average Team Size
also Effort and Size are extremely skewed, we take the natural log transformation (with base

e) to make the data look normally distributed. In scatter plot between each two variables we
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can demonstrate that the relationship between them is close to linear. Accordingly we can

apply linear model to investigate them.

Regression Terms Df Sum of Square AIC (if variable excluded)
Log(Size) 1 140.6 -161.7
Log(Team Size) 1 134.4 -170.4
Language Type 3 22.2 -357.5
Development Type 2 14.2 -371.1
Development Platform 3 13.8 -373.8
Other 1 1.9 -393.7
RAD 1 1.2 -395.1

Table 3. Regression Results Based on AIC
(The lowest value of AIC is -395.1)

As regression based on AIC tends to overestimate the number of parameters when the
sample size is large [Venables & Ripley, 2002], rely fully on the results produced by AIC is
not suitable. So AIC should be combined with other statistical criterion such as ANOVA
(ANalysis Of VAriance), here we used the ANOVA approach (based on Type I Sums of
Squares) to test the significance of the variables. The variables added into the model in order
and according to Table 3, the exclusion of the variable size results in the greatest increase of
AIC value. Thus the project size factor is most significant to development effort likewise
average team size is the second most important factor and etc. Based on Table 3 we can add
the variable size to the regression model first, average team size, language type and so forth,
then each time the regression was performed, the most insignificant variable was removed
and then the model was refitted with the remained variables. By continuing this process we
have the model with the final sets of significant terms where represented in Table 4 and
significance level is based on p-value <0.05.

Regression Terms Df Sum of Sq F-Value P-Value
Log(Size) 1 497.8 1026.2 <10-15
Log(Average Team Size) 1 173.7 358.1 <1015
Language Type 3 35.9 24.7 4.8 %1015
Development Platform 3 16.3 11.2 3.8 * 107
Development Type 2 13.5 13.9 1.3*¥10¢
RAD 1 2.7 5.5 0.019
Other 1 3.9 8.1 4.6*10°3
Residuals 573 277.9

Table 4. ANOVA based on Type I Sums of Squares
(The significance level is based on P-level < 0.05)

By comparing Table 2 and Table 3, we can see that the two methods produced similar
significant factors for development effort, although the model based on AIC statistics
overestimated additional two variables (OO and Missing) as significant. Considering that
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AIC tends to overestimate the number of parameters when the sample size is large, we
accept the second model as most appropriate for our study. Summary of the regression
results are shown in Table 5.

Regression Terms Coefficients Standard Error P-Value
Intercept 4.24 0.30 <1015
Log(Size) 0.56 0.03 <10-15

Log(Average Team Size) 0.68 0.04 <1015
3GL'’s Language -0.40 0.27 0.136
4GL'’s Language -0.85 0.27 0.002
ApG’s Language -0.71 0.29 0.014

Midrange Platform -0.12 0.08 0.116
Multi-Platform -0.15 0.17 0.379
PC Platform -0.46 0.08 3.3*108
New Development Type 0.29 0.07 1.6*105
Re-development Type 0.56 0.15 2.4*104
RAD -0.23 0.11 0.027
Other -0.27 0.09 0.005

Table 5. Summary of the Regression results

It's important to point that the default Language Type is 2GL, the default Development
Platform is Mainframe, and the default Development Type is Enhancement. According to
Table 5, the model is fitted as (the variable ‘Other’ is not useful and not included):

log(Effort) = 4.24 + 0.56 * log(Size) + 0.68 * log(TeamSize) +
&, p(Language,) + f, p(Platform, )+ 7, p(DevType,) ©)
-0.23p(RAD)

i=1,2,3,4;,j=1,2,3,4,k=1,2,3

Here the function @ is the indicator function with binary values of 1 or 0. A value of 1
means the relevant development technique in the parentheses is used, otherwise the value is
0. So the default techniques used are: 2GL for language type (a1=0), Mainframe for
development platform (p:=0), and Enhancement for development type (y1=0). The
coefficients aj, 3, and yk can be obtained from Tableb.

By using the obtained coefficient, we assign a value to each variable in our database and
these values are corresponding to these coefficients which are shown in Table5.

Our purpose was to apply ANFIS to prepared ISBSG database. Before using ANFIS, we
need to have an initial FIS (Fuzzy Inference System) that determines the number of rules
and initial parameters, etc. This can be done in three different ways: by using five of the GUI
tools, by using Genfisl that generates grid partition of the input space, and by using Genfis2
that employs subtractive clustering. In other words, if we have a human expert, we can use
GUI tools to convert human expertise into rough correctly fuzzy rules, which are then fine-
tuned by ANFIS. If we don’t have human experts, then we have to use some heuristics
embedded in Genfis1 or Genfis2 to find the initial FIS and then go through the same ANFIS
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tuning stage. The question is that which of Genfisl or Genfis2 should be used to generate
the FIS matrix for ANFIS, and the answer is when you have less than six inputs and a large
size of training data, use Genfisl1 and otherwise use Genfis2. GENFIS1 uses the grid
partitioning and it generates rules by enumerating all possible combinations of membership
functions of all inputs; this leads to an exponential explosion even when the number of
inputs is moderately large. For instance, for a fuzzy inference system with 10 inputs, each
with two membership functions, the grid partitioning leads to 1024 (=210) rules, which is
inhibitive large for any practical learning methods. The "curse of dimensionality" refers to
such situation where the number of fuzzy rules, when the grid partitioning is used,
increases exponentially with the number of input variables. However, GENFIS1 and
GENFIS2 differ in two aspects. First, GENFIS1 produces grid partitioning of the input space
and thus is more likely to have the problem of the ““curse of dimensionality" described
above, while GENFIS2 uses SUBCLUST (subtractive clustering) to produces scattering
partition. Secondly, GENFIS1 produce a fuzzy inference system where each rule has zero
coefficients in its output equation, while GENFIS2 applies the backslash ("\") command in
MATLAB to identify the coefficients. Therefore the fuzzy inference system generated by
GENFIS1 always needs subsequent optimization by ANFIS command, while the one
generated by GENFIS2 can sometimes have a good input-output mapping precision already.
Any way since we have six inputs, Genfis2 and then ANFIS is used for our implementation.
Also we divided our inputs in two categories and then Genfis1 was used for implementation
because we want to compare our results with Fuzzy Model and this model is impossible to
implement with six inputs because of its” exponential rules. The other way for preparing FIS
for ANFIS is using Genfis3 and its” difference with Genfis2 is that Genfis3 use Fuzzy C-
Means Clustering for Clustering inputs data and since our results are almost the same, we
have arbitrarily used Genfis2.

For implementation with two inputs, as we say we should divide our six inputs in two

categories:
1. Inputs which have the Ratio Scale such as Log(Size) and Log(Average Team Size)
given as:

Inputl = 4.24 + 0.56 log(Size) + 0.68 log(Average Team Size)
2. Inputs which have the Nominal Scale such as Language Type, Development
Platform, Development Type and RAD
Input2 = a, p(Language,) + B, (Platform,)+ y, p(DevType,) —0.23p(RAD)
The ANFIS structure with six and two inputs are shown in Figure 3 and Figure 4
respectively.
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These inputs and structures are for estimating effort of software projects, but for the elapsed
time of software project studies shows that two inputs of log(Effort) and log(Average Team
Size) are sufficient for estimating. So by using Genfis1, the subspace of ANFIS Structure is as
shown in Figure 5.

log( Effor)

A

e

» log(4verageTeamSize)

N

Fig. 5. corresponding fuzzy subspaces with two inputs for time estimation

ANFIS uses a hybrid learning algorithm to identify parameters of Sugeno-type fuzzy
inference systems. It applies a combination of the least-squares method and the back-
propagation gradient descent method for training FIS membership function parameters to
emulate a given training data set. More specifically, in the forward pass of the hybrid
learning algorithm, functional signals go forward till layer 4 and the consequent parameters
are identified by the least squares estimate. In the backward pass, the error rates propagate
backward and the premise parameters are updated by the gradient descent. Hybrid learning
rule can speed up the learning process and has less error than gradient descent method.
Table 6 summarizes the activities in each pass.

Forward Pass

Backward Pass

Premise Parameters fixed gradient descent
Consequent Parameters Least Squares Estimate Fixed
Signals Node outputs Error rates

Table 6. Two passes in the hybrid learning procedure for ANFIS

In Figure 6 we demonstrate the membership functions of FIS for time estimation, and Figure

7 shows an output of ANFIS for Time Estimation.
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3. Experimental Results

3.1 Evaluation Criteria

We employ the following criteria to assess and compare the performance of effort estimation
models. A common criterion for the evaluation of effort estimation models is the relative
error (RE) or the magnitude of relative error (MRE), which is defined as [Huang et al., 2007]:
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RE - Actual Effort, — Predicted Effort,

j (4)
Actual Effort,

MRE, = | Actual Effort; — Predicted Effort, | )
Actual Effort,

The RE and MRE values are calculated for each project i whose effort is predicted. For N
multiple projects, we can also use the mean magnitude of relative error (MMRE) [Huang et
al., 2007]:

N _ . N
1 $ | Actual Effort, — Predicted Effort, | zlz MRE, (6)

MMRE, =
N4 Actual Effort, N4

Intuitively, MER seems preferable to MRE since MER measures the error relative to the
estimate. Here we used this. The MER is defined as follows [Lopez-Martin et al., 2008]:

| Actual Effort, — Predicted Effort, |

MER, = ,
Predicted Effort,

)

The MER value is calculated for each observation i whose effort is predicted. The
aggregation of MER over multiple observations (N) can be achieved through the mean MER
(MMER) as follows [Lopez-Martin et al., 2008]:

N
MMER =%ZMER1. (8)

i=1

Another criterion that is commonly used is the prediction at level p:

Pred(p)= (9)

13
N

Where k is the number of projects where MRE is less than or equal to p. here we used
Pred(25).

In general, the accuracy of an estimation technique is Proportional to Pred(p) and inversely
proportional to MMRE and MMER. Any way we used all of these criterions for evaluation
of software techniques.

Also the other criterion is coefficient of determination (R?). Coefficient of determination is
used to assess the quality of the estimation models and expressed by R2 The coefficient R2 jg

calculated by [Gu et al., 2006]:
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n _ 2
> W-v)
R? =il — (10)

Z(&—w

Here, Y expresses the mean value of random variables. Obviously, the coefficient R2

describes the percentage of variability and the value is between 0 and 1; when an R?is close
to 1, it indicates that this model can explain variability in the response to the predictive
variable, i.e. there is a strong relationship between the independent and dependent

variables.

3.2 Implementation Results

A software tool (MATLAB 7.6) was used to simulate fuzzy logic system, neural network
model and neuro-fuzzy model. Three categories of results are as below:
>  First category: Effort Estimation with two inputs data as we discussed above. The
results are gathered in Table 7 which showed that Neuro-Fuzzy model has 96%

data with less than 20% error. As shown in Figure 8 just four data had more than

25% error and most of them had less than 7% error.

Since we just have two inputs, we implement ANFIS by Genfis1.

Estimation Models Pred(20) Average Error MMRE MMER
Neuro-Fuzzy Model 0.96 0.40 0.05 0.05
Fuzzy Logic Model 0.89 0.91 0.12 0.13
Neural Network Model 0.88 0.39 0.04 0.07
Multiple Regression Model 0.78 0.90 0.12 0.14
Table 7. Implementation Results for Effort Estimation with two inputs
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Fig. 8. MMRE Results for ANFIS with two inputs for Effort Estimation
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» Second Category: due to the number of inputs we implement ANFIS by Genfis2
here. As we mentioned before the Fuzzy Model is impossible to implement in this
category due to large number of inputs, so we have nothing in that row. Here we
also had the best results for Neuro-fuzzy Model, these results were shown in Table

8 and were demonstrated in Figure 9.

Estimation Models Pred(20)

Average Error

MMRE

MMER

Neuro-Fuzzy Model 0.95

0.38

0.05

0.05

Fuzzy Model It's impossible to implement, Due to very large rule set.
Neural Network Model 0.89 0.73 0.11 0.11
Multiple Regression Model 0.95 0.50 0.07 0.07
Statistical Model 0.94 0.51 0.08 0.07
Table 8. Implementation Results for Effort Estimation with six inputs
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Fig. 9. MMRE Results for ANFIS with six inputs for Effort Estimation

As shown in Figure 7, most of estimations had less than 5% error and this
emphasized that the performance of this model is better than the others.
» Third category: Time estimation with two inputs: log (Effort) and log(Average

Team Size). The obtained results are organized in Table 9.

Estimation Models Pred(20) Average MMRE | MMER
Error
Neuro-Fuzzy Model 0.5103 0.4161 0.2594 0.2456
Fuzzy Logic Model 0.3913 0.5561 0.3435 0.3291
Neural Network Model 0.4119 0.5295 0.3266 0.3032
Multiple Regression Model 0.5149 0.4225 38.02 0.2640

Table 9. Implementation Results for Time Estimation

Www

Figure 10 demonstrated that most of results had less than 3% error and it’s pointed
that this model is very accurate for prediction.
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Fig. 10. MMRE Results of ANFIS for Time Estimation

The value of coefficient of determination (R2) for ANFIS is equal to 0.9828 which indicated
that more than 98 % of the variance in dependent variable can be explained by this model
thus that’s confidenceable.

The comparison plots of these models for Time and Effort estimation are shown in Figure 11
and 12 respectively.
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Fig. 11. Comparison plot for Time Estimation
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Fig. 12. Comparison plot for Effort Estimation

4. Conclusions and future works

As software development has become an essential investment for many organizations,
software estimation is gaining an ever-increasing importance in effective software project
management, quality management, planning, and budgeting.

The primary purpose of this study was to propose a precise method of estimation that takes
account of and places emphasis on the various software development elements. We
compared this neuro-fuzzy based software development estimation model with four other
models such as neural network models, fuzzy logic models, multiple regression models, and
statistical models.

The main benefit of this model is its good interpretability by using the fuzzy rules. Another

great advantage of this research is that they could put together expert knowledge (fuzzy
rules), project data and the traditional algorithmic model into one general framework that
may have a wide range of applicability in software effort and time estimation. Also recent
researches have tended to focus on the use of function points (FPs) in estimating the
software development efforts and FPA (Function Point Analysis) assumes that the FP is the
only factor which influences software development effort, however, a precise estimation
should not only consider the FPs, which represent the size of the software, but should also
include various elements of the development environment for its estimation. The factors
significant to software development effort are project size, average number of developers
that worked on the development, type of development, development language,
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development platform, and the use of rapid application development which are used for
estimation although FP as a software size metric is an important topic in the software
prediction domain.

As a result of comparison, the effort and time estimation model, which is based on the
neuro-fuzzy techniques, showed superior results in predictability than the other models
mentioned in this study.

This study worked on the latest release of ISBSG data repository which is very large
database recording 4106 software projects developed worldwide. Also for comparison of
software development techniques we used three evaluation criteria: MMRE (Mean
Magnitude Relative Error), MMER and Pred(20).

The proposed model has 98% coefficient of determination (R?) which emphasize on the best
performance of our proposed approach.

Some limitations in this domain are:

v' Estimation of time and effort in earlier phase of software development is very
difficult and it depends on lower level of estimation such as Size Estimation
which is done by using External Inputs (EI), External Outputs (EO), External
Queries (EQ), Internal Logical Files (ILF), and External Interface Files (EIF).

v Many existing research papers have proposed various effort estimation techniques
and they still do not have an agreement which technique is the best across
different cases.

v Also we don’t have any dynamic learning algorithm for our model to adopt itself
with any situation and completed our database in each estimation time. By adding
the process maturity in effort estimation models as an input factor, we can
improve the accuracy of estimation models.

This limitation gives us motivation to continue this research in our future work.
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