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1. Introduction 

Increasing demands for various and complex tasks on contemporary computing systems 
require the precise deployment of components that perform the tasks. For example, in 
service robot systems (Hans et al., 2002; Kim et al., 2008) that have several SBCs (single 
board computers), users may simultaneously request several tasks such as locomotion, 
speech recognition, human-following, and TTS (text-to-speech). Each task comprises a set of 
components that are organized by an architectural configuration. These components execute 
their own functionality to provide services to the user. To execute components, they must be 
deployed into computing units that have computing power, such as desktops, laptops, and 
embedded computing units. 
The deployment of components into computing units can influence the performance of 
tasks. If the system has only one computing unit, every component is deployed in the 
computing unit and there is no option to vary the deployment to improve the performance. 
On the other hand, if the system has multiple computing units, performance improvement 
by varying the deployment can be considered. Different instances of component 
deployment show different performance results because the resources of the computing 
units are different. Concentrated deployment into a certain computing unit may lead to 
resource contention and delayed execution problems. Therefore, the system requires an 
deployment method to improve performance when the user requests multiple tasks of a 
system that has multiple computing units. 
When determining the deployment of components that comprise the architectural 
configuration for the tasks, it is important to rapidly and precisely make a decision about 
deployment. Since there are a large number of candidate deployment instances, even for a 
small number of computing units and components (i.e., their combinations exponentially 
increase), the deployment instance selection method must efficiently search for the best 
deployment instance that provides the most effective performance to the user. The 
exhaustive search method guarantees to search the best instance; however, it requires a long 
time for performing search. The greedy search method rapidly finds a solution; however, it 
does not guarantee to search the best instance. 
This study proposes a genetic algorithm-based selection method that searches a set of 
candidate deployment instances for an optimal instance. This method repeatedly produces 
generations, and the solution found by the method rapidly converges to the best instance. 
This method more rapidly and precisely searches an optimal instance than the exhaustive 
search method and the greedy search method, respectively. 

Source: Human-Robot Interaction, Book edited by: Daisuke Chugo,  
 ISBN 978-953-307-051-3, pp. 288, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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Fig. 1. An example of architectural deployment for required tasks. 

This paper is organized as follows: Section 2 illustrates a motivating example that describes 
the dynamic architectural deployment problem. This problem is formulated as a 
multiplesack and multidimensional knapsack problem in Section 3. Section 4 describes a 
genetic algorithm-based approach to the problem. In Section 5, the proposed approach is 
evaluated in terms of efficiency and accuracy. Section 6 describes a case study conducted to 
show that our approach can be effectively applied to robot software systems. Section 7 
compares our approach to related work. Section 8 provides two issues for discussion. 
Finally, Section 9 provides conclusion and suggests further studies. 

2. Motivating example 

Service robot systems such as Care-O-bot (Hans et al., 2002), and home service robot (Kim et 
al., 2008) have several computing systems termed single board computers (SBCs). An SBC 
has similar computing power to a desktop or laptop computer. Robot systems (especially 
service robots) perform their tasks by deploying robot software components into these SBCs, 
as shown in Figure 1. When a user wants to achieve a specific goal such as navigation, 
speech recognition, or more complex tasks, the user requests a set of tasks. For each task, the 
robot system derives its software architecture to handle the requested task. The robot system 
deploys these architectures to its SBCs to execute the tasks. 
Even when the user requests the same tasks, the architectures that perform the tasks can be 
deployed in different ways. As shown in Figure 2, the consolidated architecture of the 
architectures shown in Figure 1 can be deployed into two SBCs in different ways. These 
different instances of deployment can exhibit different results. For example, if components, 
which consume more CPU time than other components, are deployed into one SBC, then they 
may lead to resource contention. Resource contention can cause execution delay during task 
execution. In addition, if two components that require extensive communication between them 
are deployed into two different SBCs, it may lead to performance degradation. 
Performance degradation resulting from inappropriate architectural deployment may lead 
to more serious problems. For example, the path planning component in the robot 
navigation architecture and the image analysis component in the face recognition 
architecture highly consume CPU resources; therefore, if they are deployed into the same 
SBC, resource contention can occur. This does not allow for the allocation of sufficient CPU 
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Fig. 2. Examples of architectural deployment instances. 

time to the components; the path planning component is not able to respond in the required 
period of time, and the robot may then collide with the user or a wall. 
In the face recognition architecture, the image preprocessing component and the image 
analysis component frequently interact with each other by passing a large amount of data. It 
would certainly lead to performance degradation if these two components were deployed 
into two different SBCs. Suppose that the user simultaneously requests a task that requires 
the location of the user’s face (e.g., human-robot eye contact task). The delay resulting from 
the inappropriate deployment eventually leads to a malfunction, in which the robot cannot 
trace the user’s face and the required task cannot be performed. 
The abovementioned problems can occur when a software system uses multiple computing 
units (e.g., SBCs) and its elements interact with each other (e.g., software components) with a 
considerable amount of data. These problems can be serious if the system must deal with real-
time tasks that have specific time constraints to achieve the goal of the tasks. This may not only 
degrade the quality of services but also result in failures of tasks that the user has requested. 
To prevent these problems, a software system can search for appropriate deployment 
instances for every task requested by the user. However, the number of task combinations 
exponentially increases according to the number of tasks (the set of combinations can be 

defined by the power set of the set of tasks, i.e., 2n where n is the number of tasks). 
Moreover, the number of possible deployment instances is larger than the number of task 
combinations (when the requested tasks have m components and the system has k 

computing units, the number of possible deployment instances is km where m is strictly 
larger than the number of tasks). Therefore, it is not efficient to exhaustively search the set of 
possible deployment instances for an optimal instance at run-time. 
It is possible to determine optimal deployment instances for every possible task request 
prior to system execution, even though the number of possible task requests is large. If a 
developer has sufficient time to search for optimal deployment instances for every possible 
task request, then one can find them and record them to exploit them at run-time. However, 
this method is not applicable if a system has a large number of tasks and a large number of 
components belonging to the tasks. If the size of the task set is larger than 20 and the 
average size of the component set in a task request is larger than 30 or 40, it requires a very 
long time to search an optimal instance, even if it is conducted prior to runtime. 
In addition to the size of task and component sets, the set of tasks and their architectural 
configurations can be dynamically updated at runtime. This implies that a developer should 
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search the sets for optimal deployment again and update the result to the system. This may 
increase the development time and cost. Moreover, it is impossible to anticipate the 
configuration of every possible computing unit (e.g., the number of SBCs and their 
computing power) in operating environments. An operating environment can vary for every 
user. To deal with this problem, a method is needed to dynamically determine optimal 
deployment at runtime. This method should decide a deployment instance for every task 
request in a short time period to prevent the delay in task execution and search for a near-
optimal instance. 

3. Dynamic architectural deployment 

This section formulates the optimal architectural deployment problem. This problem is 
defined by computing units, their provided resources, architectural configurations, and their 
required resources. This problem can be modeled by knapsack problems, in which 
computing units are sacks, components in an architectural configuration are items, and 
resource consumption efficiency is the value function. The remainder of this section 
describes the elements of this problem. 

3.1 Computing unit 
Every software system is executed on a specific computing unit, e.g., desktops, laptops, 
embedded systems, and other hardware systems that have computing power. When a 
software system performs its tasks in a computing unit, it uses resources that the computing 
unit provides, such as CPU time, memory space, and network bandwidth. In particular, 
software systems that are executed in embedded systems use dedicated resources. For 
example, in robot systems, the robot software uses sensors (e.g., laser range scanners, 
ultrasonic sensors, and touch sensors) and actuators (e.g., robot arms, wheels, and speakers). 
There are two types of resources: sharable and non-sharable.  
A sharable resource suggests that a software component consumes a certain amount of the 
resource. In other words, one component cannot exclusively use the resource and shares the 
resource with other components. For example, a component consumes a certain amount of 
main memory space to record its necessary data and another component can simultaneously 
consume a certain amount of memory to perform its own tasks. However, if components 
attempt to consume more than the resource can provide, they can experience a resource 
contention problem, in which the components that request the resource compete for the 
resource and cannot access it when needed. This implies that the appropriate management 
of architectural deployment is required. 
A non-sharable resource cannot be shared by several components. Only one component 
exclusively uses a non-sharable resource and other components that require the resource can 
use the resource only after the currently occupying component releases it. This type of 
resource is often installed in a specific subset of a computing unit. For example, in general, a 
robotic system has one wheel actuator and one arm manipulator. They are installed in a 
specific SBC, respectively (usually, these actuators are installed in separate SBCs). Therefore, 
components that use these actuators must be deployed in SBCs that have actuators that the 
components require1. 

                                                 
1 Remote invocation schema such as RPC (remote procedure call) and RMI (remote method 
invocation) can facilitate that the component can remotely exploit devices; however, this 
may lead to performance degradation due to communication burden. 
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These resources provided by computing units can be defined by the provided resource 
space that is the Cartesian product of the individual resource dimension rj. For each 
computing unit Oi, its provided resource space Pi is formulated as 

 

where n is the number of resources that the system can provide. The provided resource 
space represents the resource capability that a computing unit can provide. 

A resource dimension rj, which is a sharable resource, is denoted by
 

. It can have a certain 

integer value (  ∈[vl, vu] where vl and vu are the lower and upper bounds) that represents the 

maximum amount that the resource can provide. An instance of the j-th sharable resource 

dimension rj belongs to the provided resource space of a computing unit and can have a 

value. For example, the main memory resource dimension of a system is denoted by  

and its instance has a value of [MemMIN, MemMAX] that represents the size of memory 

installed in the computing unit. 
A resource dimension rj, which is a non-sharable resource, is denoted by 

 
and can have a 

Boolean value ( ∈ {0,1}) that represents whether the computing unit provides the resource. 

For example, the wheel actuator resource dimension of a system is denoted by  and its 

instance has a value 0 or 1, where 0 represents that the computing unit does not provide the 

wheel actuator and 1 represents that it does. 
The total provided resource space Ptot represents the resource capability of all computing 
units. This is formulated as 

 

where m is the number of computing units, n is the number of resources, and 

 is the provided resource space of the computing unit Oi (i.e., Pi). The total 

provided resource space is used to determine whether the requested tasks are acceptable in 
terms of resource capability. 

3.2 Architectural configuration 
Software architectures represent structural information about the elements of a software 
system and their relationships. The software architecture of a system comprises software 
components (elements) that represent system functionality and connectors (relationship) 
that are responsible for providing a communication medium (Shaw & Garlan, 1996). In 
software architectures, a component provides an executable code that performs specific 
functions such as transforming a data set and processing user requests. A connector links 
two or more components and relays messages between the components. The software 
architecture organizes components and connectors into a software system. 
In this formulation, a software architectural configuration denotes an instance of software 
architecture in a system. During system execution, components and connectors in an 
architectural configuration consume resources that the system provides. For example, a 
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component can consume CPU time, memory space, and embedded devices (such as wheel 
actuators in robotic systems) when it operates in the system. A connector consumes network 
bandwidth when two components (the connector interconnects) communicate to perform 
their functionality. 
The resource consumption of components and connectors can be defined by the required 

resource space that is the Cartesian product of the individual required resources. It specifies 

the amount of resource consumption that a component or connector requires. The required 

resource space Ri of a component or connector ci is defined by 

 

where n is the number of resources and rj represents the j-th resource dimension. 
When the j-th resource dimension represents a sharable resource, its instance of the i-th 

component or connector ci can have an integer value that represents the required amount of 

the j-th resource dimension rj. This formulation assumes that the value represents the 

average consumption of a component or connector because real-time resource accounting 

imposes a severe overhead. 

The total provided resource space Rtot represents the resource requirements of all 
components and connectors. This is formulated as 

 

where m is the number of components and connectors, n is the number of resources, and 
 is the required resource space of a component or connector ci (i.e., Ri). The 

total required resource space is used to determine whether the requested tasks are 
acceptable in terms of the resource capability that the system provides. 

3.3 Dynamic architectural deployment problem 
The dynamic architectural deployment problem can be formulated on the basis of 
information given in the previous sections. This problem is a combinatorial optimization 
problem (Cook et al., 1997) in which one searches the problem space for the best 
combination. Among the various types of combinatorial optimization problems, the 
dynamic architectural deployment problem can be modeled as a knapsack problem, in 
which one searches for the best combination of items to be packed in the knapsack. In 
architectural deployment, components are regarded as the items to be packed and the 
computing units are regarded as knapsacks that contain the items. 
In particular, this problem is a 0−1 knapsack problem, in which items cannot be partially 

packed into the knapsack because components cannot be decomposed into smaller ones. 

Further, the dynamic architectural deployment problem has multiple computing units. This 

implies that the problem should be formulated as a multiple-sack knapsack problem. 

Additionally, this problem should optimize multidimensional resource constraints. Therefore, 

this problem is formulated as a multidimensional knapsack problem. Consequently, the 
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dynamic architectural deployment problem is formulated as a 0−1 multiple-sack 

multidimensional knapsack problem. 

A knapsack problem comprises knapsacks, items, and cost/value functions. In dynamic 
architectural deployment, computing units in the system are knapsacks and components are 
items, as described in the previous paragraphs. A cost function decides that the selected 
items meet a certain constraints. In this problem, the cost function determines whether the 
selected combination in the knapsacks (i.e., the combination is a set of components in 
computing units) exceeds provided resources. A value function shows how valuable the 
selected combination in the knapsacks is. The value function of this problem represents the 
standard deviation of residual resources in all computing units. 
The rationale of the value function formulation is based on the component execution 
pattern. As described in (Keim & Schwetman, 1975), some tasks can consume computing 
resources in a bursty manner. For example, the face recognition component of a human face-
tracing task may temporarily use a large amount of network bandwidth when it requires the 
next scene of cameras. On the other hand, some other tasks consume computing resources in 
a steady manner, as when the localizer component of a navigation task continuously 
identifies the current position of a robot. The former type of resource consumption (bursty 
consumption) may particularly lead to performance degradation and execution delay 
problems mentioned in Section 2. 
To prevent these problems, the resources of computing units should be managed to tolerate 
bursty resource consumption. This can be achieved by maximizing the residual resources of 
computing units. A computing unit can endure bursty consumption if it has sufficient 
residual resources. This assumption can be valid for sharable resources; however, for non-
sharable resources, it is not useful for maximizing residual resources. To deal with this 
problem, it is assumed that the cost function determines whether the component can use the 
specified non-sharable resources. In other words, the cost function returns a positive integer 
if the computing unit Ok does not provide a non-sharable resource rj (i.e.,  = 0) when 

component ci that requires a non-sharable resource rj (i.e., 
 
= 1); otherwise returns 0. 

Another issue is the resource consumption of connectors. In this formulation, connectors are 
not items to be packed into knapsacks; however, they definitely consume resources such as 
network bandwidth between computing units. It is assumed that connectors consume 
computing resources, which are used for connecting components, only when the 
components are deployed into separate computing units. This type of resource consumption 
is dependently determined by component deployment. 
On the basis of the above assumptions, the value function v can be defined by 

 

 

where A is the set of architectural deployment instances, R is the real number set, ci is the i-

th component, and  is the computing unit, in which ci is deployed. m is the number of 
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components and n is the number of resource dimensions. wi is the weight of the i-th resource 

dimension where  The value function v returns the weighted sum of the residual 

amount of every resource dimension. Function  represents the residual amount of the 

resource dimension ri. This function is defined as 

 

 

where std is the standard deviation function, k is the number of computing units, and d is 
the residual resource function that returns the residual amount of resource of the i-the 
resource in computing unit k (i.e.,  when the system selects deployment instance a). 

The cost function S, which determines whether the deployment instance violates resource 
constraints, is defined as 

 

 

where  is the function that determines whether architectural deployment instance a 

exceeds the amount of resource dimension rj. The cost function returns 0 if no resource 
dimension exceeds, and 1 if at least one resource dimension exceeds. It determines the 
excess based on function  that is defined by 

 

 

On the basis of the value and cost function described above, the goal of this problem is 
defined by 

 

a* is the best deployment instance based on the value function and S(a) ≠1 indicates that a 
deployment instance that violates resource constraints cannot be selected as an actual 
deployment instance in the system. 
As described earlier, this problem is formulated as a 0-1 knapsack problem; however, in 
general, 0-1 knapsack problems are known as NP-hard problems (Kellerer et al., 2004). In 
particular, this is a multiple-knapsack, multidimensional, and 0-1 knapsack problem. 
Moreover, the dynamic architectural deployment problem requires both a better solution 
and faster search for the solution. To deal with this requirement in the present study, genetic 
algorithms are applied to the problem. The next section describes our approach in detail. 
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4. Genetic algorithm based dynamic architectural deployment 

A genetic algorithm is applied to the dynamic architectural deployment problem in this 
study. A genetic algorithm (Holland, 1975) is a metaheuristic search method to approximate 
an optimal solution in the search space. This method is well known for dealing with 
combinatorial optimization problems. In a genetic algorithm, the target problem should be 
represented by a string of genes. This string is called a chromosome. By using the 
chromosome representation, a genetic algorithm generates an initial population of 
chromosomes. Then, it repeats the following procedure until a specific termination 
condition is met (usually a finite number of generations): (1) select the parent chromosomes 
on the basis of a specific crossover probability and perform the crossover; (2) choose and 
mutate the chromosomes on the basis of a specific mutation probability; (3) evaluate fitness 
of the offspring; and (4) select the next generation of population from the offspring. 
In our approach, a genetic algorithmis used to search for an optimal architectural 
deployment instance. To apply the above procedure to the problem, architectural 
deployment instances are encoded into the chromosome representation, mutation and 
crossover operators for the chromosomes are determined, and the fitness function to 
evaluate the chromosomes is designed. 

4.1 Representing architectural deployment instances in genes 
It is important to encode the problem space into a set of chromosomes by a string of genes 
when applying a genetic algorithm to a certain application. In this approach, architectural 
deployment instances are encoded into chromosomes because our goal is to find an optimal 
instance from a set of instances. Components are matched to genes; each gene represents 
that the corresponding component is deployed into a specific computing unit by specifying 
the number of the computing unit. 
For example, a deployment instance can be represented by a chromosome shown in Figure 
3. ci, ei, and hi represent the i-th component, deployment instance, and chromosome, 
respectively. In each instance, the i-th digit has a value that indicates the computing unit, in 
which the i-th component is deployed (i.e., the i-th digit of the chromosome is 1 if the i-th 
component ci is deployed in computing unit O1). When the required number of components 
in the task that the user requested is m, the length of the chromosome is m. The string of m 
digits is the i-th chromosome hi of the i-th architectural deployment instance ei. On the basis 
of the representation described above, our approach configures the search space of the 
dynamic architectural deployment problem. 
 

 
Fig. 3. An example of chromosomes that represent architectural deployment instances. 
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4.2 Operators 
As described earlier in this section, chromosomes that constitute the population (i.e., the 

search space) are reproduced by crossover and mutation operators. Therefore, designing 

these operators is an important issue in applying genetic algorithms. In this approach, two-

point crossover and digit-wise probabilistic mutations are used. 

The two-point crossover operator picks up two chromosomes as parents with crossover 
probability Pc and chooses two (arbitrary and same) positions of the parents. The operator 
exchanges digits between the selected positions of the parents. These new chromosomes are 
offspring. This technique is used because it preserves more characteristics of parent 
chromosomes than other crossover techniques (other crossover operators may exchange 
different digits of parents). Further, it is assumed that similar chromosomes may have 
similar results to the value function. 
After producing offspring by the crossover operator, the algorithm should perform 

mutation. Every digit of offspring produced by the crossover operator is changed to 

arbitrary values with mutation probability Pm. Note that if the mutation probability is too 

high, it cannot preserve the characteristics of the parent chromosomes. On the other hand, if 

the probability is too low, the algorithm may fall into local optima. Offspring produced by 

crossover and mutation are candidates for the population of the next generation. 

4.3 Fitness and selection 
After performing crossover and mutation, the next step of our approach is selection. In this 

step, in general, a genetic algorithm evaluates the fitness values of all offspring, and 

chromosomes that have better values survive. In this study, the value function described in 

Section 3.3 is used as a fitness function to evaluate chromosomes, and the tournament 

selection strategy (Miller et al., 1995) is used as a selection method. The tournament selection 

strategy selects the best ranking chromosomes from the new population produced by 

crossover and mutation. 

The cost function removes chromosomes that violate resource constraints and that the 
function specifies. In this approach, this filtering process is performed in the selection step. 
Even if the best ranking chromosomes have higher values than the value function, 
chromosomes that the cost function indicates as 1 should be removed from the population. 
On the basis of the value and cost functions, the approach selects the next population. 
The size of the population is an important factor that determines the efficiency of genetic 
algorithms. If the size is too small, it does not allow exploring of the search space effectively. 
On the other hand, too large a population may impair the efficiency. Practically, this 
approach samples at least k · m number of chromosomes, where k is the number of 
computing units and m is the number of components that the task requires. 
By using the described procedure, our approach can find the best (or reasonably good) 
solution from the search space when the user requests a set of tasks and the task requires a 
set of components. The next section describes the results of the performance evaluation. 

5. Evaluation 

This section provides the results of the performance evaluation. First, the performance of 

exhaustive search and greedy search was measured. Then, the performance of our approach 

was measured and compared with the results of the earlier experiments. 
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Every experiment was performed on a set of desktops equipped with Intel Pentium Core 2 

2.4 Ghz CPU and 2 GB RAM. Our approach was implemented using Java. A set of 

components and a set of five computing units were designed. The required resources of the 

components and the provided resources of the computing units were arbitrarily specified. 

The total required resources of the components (i.e., Rtot) did not exceed the total provided 

resources of the computing units (i.e., Ptot). Under these conditions, the following 

experiments were conducted. 

5.1 Baseline 
As a baseline, an experiment was conducted to measure the performance of exhaustive and 

greedy searches. In this experiment, the elapsed time of the exhaustive and greedy search 

was measured, and the best and greedy-best chromosomes (i.e., the best combination found 

by exhaustive search and the greedy combination found by greedy search, respectively) 

were determined. These results were used as a baseline to compare with the results of our 

approach. As stated in Section 3.3, the dynamic architectural deployment problem is a 

combinatorial optimization problem and has time complexity O(km), where k is the number 

of computing units and m is the number of components requested by a task. In this 

experiment, there are five computing units k and the number of components n is varied 

from 5 to 13. 

As shown in Figure 4, the exhaustive method searches the problem space in 10 seconds 

when m < 10. However, since m = 10, the elapsed time to complete searching the problem 

space exponentially increases. It is not always acceptable for the user to wait for the end of 

search because it may lead to user intolerance (Schiaffino & Amandi, 2004). 

 

 

Fig. 4. The performance of the exhaustive search. 

Greedy algorithms can be an alternative for reducing the search time to prevent user 
intolerance. In ubiquitous environments, a greedy algorithm is already adopted to 
determine better application combinations for a task requested by the user (Sousa et al., 
2006). An experiment in which a greedy algorithm searches the same problem space for 
greedy solutions was also conducted. In every search from m = 5 to m = 13, the greedy 
search technique could find greedy solutions in 100ms. However, as shown in Figure 5, their 
quality decreases as the number of components increases. Therefore, an optimal solution 
cannot be expected using a greedy search. 
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Fig. 5. The proximity of greedy solutions compared to the best solutions found in the 
exhaustive search. 

5.2 Performance of GA-based approach 
On the basis of the baseline of the previous experiment, three performance tests were 
conducted. The first test measured the elapsed time required to search an optimal or near-
optimal combination of architectural deployment instances. It is difficult to anticipate the 
time required to find an optimal solution because genetic algorithms are randomized. 
However, a near-optimal solution that is close to the best solution (such as the Las Vegas 
algorithm) can be considered. In the first test, it is assumed that our approach terminates 
when the difference of the elitist chromosome in the population and the best chromosome 
(i.e., the best deployment instance found in the exhaustive search) is smaller than 5% of the 
best chromosomes. 
In other words, if Fit(elitist)− Fit(best) < 0.05 · Fit(best), then terminate the search, where 
Fit(a) evaluates the fitness (or value) of chromosome a. 
As shown in Figure 6, the elapsed time to obtain an approximate chromosome by our 
approach is very short compared to the time for the exhaustive search. For every number of 
components, the elapsed time does not exceed 2 seconds and does not proportionally 
increase. This is because of the randomness of genetic algorithms, as previously stated. Even 
though this test shows that our approach can find a near-optimal solution in a short time, 
this type of approximation and termination condition is not feasible in practical systems 
because it is not possible for a system to anticipate the best solution before executing the 
search. Therefore, another termination condition is required. 
The next test provides another termination condition that is similar to the Monte Carlo 
simulation (i.e., the termination condition specifies the fixed number of generations). This 
test was conducted to verify how fast our approach converges to the best architectural 
deployment instance when the fixed number of generations is used as the termination 
condition. In this test, the elitist chromosome was recorded for every generation and the 
results are shown in Figure 7. As shown, the number of generations is fixed as 300 and every 
search is finished in 500ms. Except for the case where the number of components is 12 and 
13, our approach gradually converges to over 85% of the best solutions in 300 generations 
when the number of components is from 5 to 11. This implies that our approach can find 
near-optimal solutions in short generations. However, when the number of components is 
12 and 13, the convergence of the solutions is under 65% of the best solutions. This implies 
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that 300 generations are not sufficient to search the larger problem space of a large number 
of components. 
 

 

Fig. 6. Elapsed time to obtain an approximate chromosome for each number of components. 

 

 

Fig. 7. Ratio of proximity to the best architectural deployment instance (#COM= n represents 
the number of components is n). 

The third test provides an adaptive termination condition. When the number of components 
is larger than 12, using the fixed number of generation as a termination condition is not 
feasible; therefore, adaptively increasing the number of generations is applicable. However, 
simply increasing the number of generations may lead to the problem of the previous test. 
Hence, it is assumed that the elitist chromosome is the best chromosome with high 
probability if the elitist has not been changed for a long period. In this test, if the elitist has 
not been changed in p · k · m generations, the search is terminated, where p is a constant, k is 
the number of computing units, and m is the number of components. The result of the test is 
shown in Figure 8 and we set p = 10. Each elapsed time in the figure is the average time of 10 
test runs. As shown in Figure 8, when the number of components is 20 and 25, the elapsed 
time to determine that the elitist is the best chromosome (or very close to the best) is smaller 
than 5 seconds. When the number of components is from 30 to 40, the elapsed time is 
around 7 seconds. This implies that the required time to determine that the elitist is the best 
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chromosome does not exponentially increase. Therefore, an optimal or near optimal 
architectural deployment instance can be found in a reasonable time with higher probability 
than the fixed number of generations, even if the best solution is not known. The constant p 
should be adaptively controlled, as a wait of more than 5 seconds is probably too long for 
some users. 
 

 

Fig. 8. Required time to perform the search to determine that the elitist is the best. 

The evaluation results show that our approach provides optimal, or near-optimal, solutions 

(which are definitely better than the solutions found by greedy algorithms) in a reasonably 

short time (which is obviously faster than an exhaustive search). In addition, three different 

termination conditions are provided and their applicability is discussed. Consequently, the 

termination condition that adaptively controls the number of generations is practically 

applicable. 

6. Case study 

This section describes a case study conducted to show the applicability of our approach. The 

case study applies our approach to home service robots. In this case study, we assume that 

the task manager, which manages the robot’s operation, requests five tasks to achieve a 

specific goal requested by the user. Static deployment, fixes the location of components that 

comprise the robot software architecture, obviously has problem. For example, all 

components in ‘Object Recognizer’ subsystem architecture must be deployed and executed 

in the Vision SBC that has cameras. This assumption looked reasonable when the 

architecture can dominate the SBC’s resource. However, this is not appropriate because 

other tasks can share the resources of the SBC if the tasks statically assigned to be deployed 

into the SBC. Therefore, the system needs dynamic deployment. This case study provides 

three cases: 1) static deployment to verify the resource contention problem, 2) greedy 

dynamic deployment, and 3) genetic algorithm-based dynamic deployment. 

We conducted the three cases under the following configuration: 1) Two SBCs; one is the 

Vision SBC that has cameras and pan-tilt gears which controls the robot’s head, the other 

one is called the Main SBC that has wheels, microphones, laser range finders, and speakers. 

2) Each SBC is equipped with 1GB of main memory and 2.2 GHz CPU. 3) Two SBCs are 

connected by 100 Mbps network. 
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First, we statically deployed autonomous navigator (has five components), TV program 
recommender (four components), arm manipulator (four components), interaction manager 
(seven components), and active audition planner (four components) into the Main SBC. At 
this time the Vision SBC has no resource consumption. Then, we focused on the navigator’s 
behavior. The navigator must receive the robot’s current pose (position and direction) and a 
map around the robot every 200ms to navigate safely. Since all components were deployed 
in a static manner, the navigator cannot have sufficient computing resource (especially CPU) 
and cannot retrieve a pose and a map every 200ms. This leads to wrong path planning. 
Moreover, the robot cannot reach the destination. This situation can be relieved by removing 
more than one architectures; however, if the goal of the user simultaneously requires all 
software components, the robot cannot achieve the goal. 
To resolve the above problem, we applied dynamic deployment with greedy search. Based 
on the dynamic architecture reconfiguration framework in our previous research (Kim et al., 
2006; Kim & Park, 2006) (Figure 9 shows screen shots of user interfaces in the framework 
and the robot using the framework), the robot searched for an appropriate deployment 
instance. The greedy algorithm has O(nN) time complexity where n is the number of 
components to be deployed and N is the number of SBCs. In this case, we performed 
deployment 79 times with greedy search. The average time to search a deployment instance 
was 42ms. This overhead doesn’t influence overall performance of the robot software 
system. However, the found deployment instance was far from the optimal solution. 
Therefore, we applied our genetic algorithm-based approach described in Section 4. 
 

 

Fig. 9. A capture image of the case study 

Using dynamic deployment with our approach, the robot could determine an efficient 
deployment instance within 3 ~5 seconds. It took more time than the greedy search, but our 
approach found better (near optimal) deployment instance as shown in Section 5. After 
deployment, the navigator could have sufficient resources and reliably retrieve the robot’s 
pose and map. Other concurrent tasks were also performed effectively. Consequently, our 
approach enabled the robot system to perform its services more reliably. 
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7. Related work 

Floch et al. (Floch et al., 2006) proposed a utility-based adaptation scheme. This approach 
assumed that an adaptable application operates on the adaptation middleware that was 
previously proposed (Hallsteinsen et al., 2004), and the middleware monitors the current 
user and system context. The system context includes computing resources such as CPU and 
memory. This approach selects an appropriate component for a specific component type on 
the basis of the user context (quality attributes) and system context (resource constraints). 
The differences between this approach and our approach are concerns about resource-
efficiency and multiple computing units. This approach evaluates only whether the selected 
set of components exceeds the provided resources and assumes that the system provides 
only one computing unit. 
Sousa et al. (Sousa et al., 2006) described the selection problem in which the system selects 
an appropriate application for a specific application type. This approach assumes that the 
user moves around various environments such as home, office, and park. The user needs the 
same context of his or her task wherever he or she moves. However, the computing power 
in each environment is different, e.g., a desktop at home or a handheld PC in the street. 
Therefore, for each environment, the systems must provide a different set of applications 
with the same context. This approach models the problem as a knapsack problem and solves 
it by using a greedy algorithm. The difference between Sousa’s approach and our approach 
is the number of computing units and the selection method. This approach assumes that every 
system has only one computing unit. The greedy algorithm can find a solution in a short time; 
however, it cannot guarantee that the solution is the best or near-optimal solution. 

8. Discussion 

The first issue to discuss is the multiobjective (multidimensional) property of the dynamic 
architectural deployment problem. In general, a multiobjective problem can have a set of 
solutions that meets the requirements (i.e., Pareto set) (Das & Dennis, 1996). The dynamic 
architectural deployment problem can also have multiple solutions because it has 
multidimensional criteria. However, the goal of the problem is to search for only one optimal 
executable deployment instance rather than a set of possible solutions. In addition, the user or 
system administrator can specify the priority of dimensions by weight values and searching 
for an accurate Pareto set is time consuming. Therefore, evaluating the value of instance on the 
basis of the weighted sum of dimensions is practically applicable to this problem. 
In the formulation, it is assumed that the constraint of non-sharable resources (i.e., the 
required resources of a component) can be acceptable if the computing unit provides the 
non-sharable resources. This assumption is acceptable only if the computing resource has a 
scheduling scheme for the non-sharable resource. Fortunately, most computing resources 
have specific scheduling schema, such as FIFO-like spooling for printer devices and round 
robin-like access mechanism for disk devices. Therefore, the assumption can be practically 
applicable to computing systems. 

9. Conclusion and future work 

The efficient deployment of components into multiple computing units is required to 
provide effective task execution, as the user simultaneously requests multiple and more 
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complex tasks to the computing system. For example, service robots are requested to 
simultaneously perform several tasks and have multiple computing units. In such systems, 
inefficient deployment may lead to the malfunction of the system or the dissatisfaction of 
the user. 
In this paper, a motivating example to deal with this problem was provided that described 
the problem in detail and formulated it as a multiple-sack multidimensional knapsack 
problem. To efficiently solve this problem, a genetic algorithm-based approach was 
proposed and the performance of the approach (efficiency and accuracy) was evaluated. The 
results of the performance tests demonstrated that our approach produced solutions more 
rapidly than exhaustive search and more precisely than greedy search methods. 
Possible improvements to our approach include the extension of dimensions and parallel 
execution. Dimension extension implies that the problem formulate can add quality 
attributes to the problem space. Similar to computing resources, tasks may require a set of 
quality attributes, and components may provide various levels of quality. Further, some 
components may provide different quality levels in different computing units. 
As stated in the formulation, our approach assumes that the system has multiple computing 
units. This indicates that our approach can be performed in parallel. The most time-
consuming step is the selection process, and an individual chromosome evaluation by the 
value and cost function can be executed in independent computing units. Future work could 
focus on how the population of chromosomes can be efficiently divided. 
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