
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322388458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14

Particle Swarm and Ant Colony Algorithms
and Their Applications

in Chinese Traveling Salesman Problem

Shuang Cong, Yajun Jia and Ke Deng
University of Science and Technology of China

P. R. China

1. Introduction

Intelligent heuristic optimization methods have increasingly attracted the attentions and
interests of many scholars in recent years. Such as genetic algorithm, ant colony algorithm,
particle swarm optimization, simulated annealing, etc.. They have become effective tools to
solve the TSP and other NP-hard combinatorial optimization problems. The particle swarm
optimization (PSO) algorithm is a population-based evolutionary algorithm which was
proposed by Eberhart and Kennedy in 1995 (Eberhart & Kennedy, 1995). The PSO simulates
the behaviors of bird flocking. Suppose the following scenario: a group of birds are
randomly searching food in an area. There is only one piece of food in the area being
searched. No bird knows where the food is. But they know how far the food is in each
iteration. So what’s the best strategy to find the food? An effective one is to follow the birds
which are nearest to the food. The PSO firstly generates a random initial population, the
population contains numbers of particles, each particle represents a potential solution of
system, each particle is represented by three indexes: position, velocity, fitness. Firstly
endows each particle a random velocity, in flight, it dynamically adjusts the velocity and
position of particles through their own flight experience (personal best position), as well as
their companions’ (global best position). The evolutions of particles have a clear direction,
the whole group will fly to the search region with higher fitness through continuous
learning and updating. This process will be repeated until reach the default maximum
iterations or the predetermined minimum fitness. The PSO is therefore in essence a fitness-
based and group-based global optimization algorithm, whose advantage lies in the
simplicity of algorithm, easy implementing, fast convergence and less parameters. Presently,
the PSO has been widely applied in function optimization, neural network training, pattern
classification, fuzzy system control and other applications. Whereas, like other intelligent
optimization algorithms, the PSO may occur the phenomenon that particle oscillates in the
vicinity of optimal solution during searching in the search space, therefore the entire particle
swarm performs a strong "convergence", and it is easily trapped in local minimum points,
which makes the swarm lose diversity. Thus it has the weakness of solving complex
problems, and it is difficult to obtain a more accurate solution in the late evolution. Many
scholars proposed some improved algorithms (Yuan et al., 2007; Xu et al., 2008; Lovbjerg,
2001), which improve the search capabilities of the elementary PSO in different aspects.

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 New Achievements in Evolutionary Computation

298

Bionics appeared in the mid 50's in 20th century, people were inspired from the mechanism
of organic evolution, and put forward many new methods to solve complex optimization
problems. In these methods, the evolutionary computation including evolution strategies,
evolutionary programming, and genetic algorithms is the most remarkable. With people's
research to biological group behavior and bio-social, algorithms based on swarm
intelligence theory have appeared including Ant Colony Optimization (ACO). Since the Ant
System (AS) which is the first algorithm in line with the ACO framework was put forward,
the researchers have begun their attempts to improve the design. The first one is Elitist
Strategy for Ant System (EAS). The EAS mainly gives special pheromone deposit to the
artificial ants, which perform so far the best in constructing solutions followed by the Ant-Q
algorithm which combines ant colony algorithm with the Q learning algorithm, uses the
synergies of artificial ants. Then there appears the Ant Colony System (ACS), Rank based
version AS (ASrank) and Max-Min Ant System (MMAS). These three improvements have
greatly improved the performance of AS, in particular the MMAS gets a lot of expansion
and becomes an algorithm of highly practical application and one of the best ACO
algorithms at present. In recent years, there have been some new improvements of ACO
such as Approximate Nondeterministic Tree Search (ANTS). The ANTS is extended to a
deterministic algorithm later, and it has a good performance in solving the Quadratic
Assignment Problem (QAP); Another new improved algorithm is the Hyper-Cube
Framework for ACO, and its purpose is automatically adjusting the value of pheromone
trails to ensure that the pheromone trails lie always in the interval [0,1]. The current study
for ACO has extended from TSP range to many other fields, and it has developed into
solving the multi-dimensional and dynamic combinatorial optimization problems instead of
the static one-dimensional optimization problem. The research of ACO has also developed
from discrete domain into continuous domain. It has got fruitful research results in
improving the performance of the ACO and grafting on bionic natural evolutionary
algorithms or local search algorithms.
This chapter is divided into three parts. In part one, in order to solve the shortcoming of easily
being trapped in local minimum points, we respectively introduced mutation and simulated
annealing (SA) algorithm (Kang et al.,1998) to the PSO, and proposed a hybrid algorithm by
combined with the advantages of the strong global search ability of PSO and good local search
ability of SA. The hybrid algorithm proposed was applied to solve the Chinese Traveling
Salesman Problem with 31 cities (C-TSP). The comparative study on the experimental results
with SA, elementary PSO (Zhong et al., 2007; Xiao et al., 2004; Li et al., 2008) and PSO with
mutation were given. In part two, the mechanisms and properties of the five ant colony
algorithms were synthesized, compared and analyzed including basic ant colony algorithm
(ant system, AS), elitist strategy of ant system (EAS), a new rank-based version of the ant
system (ASrank), max-min ant system (MMAS) and ant colony system (ACS). The efficiency of
five algorithms was also compared through their applications in the C-TSP. The investigations
of the performances were done in the aspects of the effects of different parameters and the
relations between parameters of the algorithms. The third part is conclusions.

2. PSO and its application in C-TSP

2.1 PSO with mutation

In the PSO, each single solution is a “bird” in the search space. The particles fly through the
problem space by following the current optimum particles. In every iteration, each particle

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

299

is updated by following two “best” values. The first one is the best solution it has achieved

so far, it is a personal best position denote by ibp . Another “best” value, which is tracked by

the particle swarm optimizer, is the best value obtained so far by any particle in the

population, it is a global best position and defined as gbp . All of particles have fitness values

which are evaluated by the fitness function to be optimized. Each particle updates according
to those two best values, and then a new generation of population is created.

Suppose that the searching space is D dimensional with m randomly initialized particles in

it, the particle swarm can be indicated by following parameters: 1 2(, ,...,)i i i iDx x x x= stands

for the location of particle i in the D dimensional space and it is also regarded as a potential

solution, 1 2(, ,...,)i i i iDv v v v= stands for the flight velocity of particle i in the D dimensional

space, 1 2(, ,...,)i i i iDp p p p= stands for the personal best position of particle i,

1 2(, ,...,)i g g gDp p p p= stands for the global best position in the whole swarm. The particle

updates its velocity and position with the following rules:

 1

1 2()() ()()k k k k

id id ib ib gb ibv v c rand p x c rand p xω+ = + − + − (1)

 1 1k k k

ib ib ibx x v+ += + (2)

in which, i = 1 ,2 …,m; d = 1 ,2 ,…,D; k is iteration number; c1, c2 are called acceleration
coefficients, which are used to adjust the maximum flight step of personal best value and
global best value, rand() returns a random number between (0,1); ω is inertia weight which

affects the balance of global search ability and local search ability.
In Zhong et al. in 2007 a large number of experiments proved that once ω decreases linearly

with the iteration, the convergence of algorithm would be significantly improved. Therefore

here we let max min
max

() * k

K

ω ωω ω −
= − , where k is the current iteration number, K is the

maximum iteration number, maxω is the maximum inertia weight, minω is the minimum

inertia weight. The basic principles of Eq. (1) is that the velocity achieves information from
the original velocity, personal best value and global best value, the number of information
depends onω , c1 and c2. The first part of Eq. (1) is called memory term, which denotes the

impact of velocity and direction of previous iteration. The second part (the distance between
current position of particle i and the personal best position) is called self-awareness term,
which denotes the information that comes from its own experience. The third part (the
distance between current position of particle i and the global best position) is called
population-awareness term, which denotes the information that comes from another particles
of the whole swarm, which reflects the knowledge sharing and cooperation. The PSO
algorithm can be implemented in the following 6 steps:
Step 1. Initialize generation and all particles, viz. set the initial position X of each particle

and the initial velocity V randomly.
Step 2. For each particle, calculate the fitness value.

Step 3. For each particle, if the fitness value is better than the best fitness value ()ibf p in

history, set current value as the new ibp .

Step 4. Choose the particle with the best fitness value of all the particles as gbp .
Step 5. For each particle, calculate the particle velocity according to Eq. (1), and update

particle position according to Eq. (2).

www.intechopen.com

 New Achievements in Evolutionary Computation

300

Step 6. If the maximum iteration or the minimum error criteria is not attained, return to
Step 2; otherwise end the iteration.

The PSO has been successfully applied in many continuous optimization problems. The

Traveling Salesman Problem (TSP) is a typical discrete combinatorial problem. If one wants

to solve the TSP with PSO, some improvements of basic PSO must be done. In Huang et al.,

in 2003 the concept of swap operator and swap sequence were introduced for solving the

TSP. Suppose that the solution sequence of the TSP with n nodes is (), 1,..., .iS a i n= = The

definition of swap operator 1 2(,)SO i i is the points
1i
a and

2i
a in the solution sequence S. Swap

sequence is an orderly sequence with one or more swap operators, meanwhile the order

between swap operators is meaningful. Different swap sequence operate on the same

solution may generate the same new solutions, the equivalent set of swap sequence is the set

of swap sequence which has the same effect. Among all the equivalent sets of swap

sequence, the swap sequence with least swap operators is called basic swap sequence. An

array with N cities denotes the particle’s position X, All the possible arrays compose the
state space of the problem. Based on vectors, functions and operations defined above, the
traditional updating equations will be changed in the following versions (Huang et al.,
2003):

 1 () ()k k

id id id id gd idv v P X P Xω α β+ = ⊕ − ⊕ − (3)

 1 1k k k

ib ib ibx x v+ += + (4)

in which, , (,) [0,1]α β α β ∈ are random numbers. ()id idP Xα − denotes that all the swap

operators in the basic swap sequence ()id idP X− are reserved with a probability of α ,

similarly, ()gd idP Xβ − denotes that all the swap operators in the basic swap sequence

()gd idP X− are reserved with a probability of β . Thus the greater the value of α is, the

more swap operators that ()id idP X− will be reserved, and the greater the impact of idP is.

Similarly, the greater the value of β is, the more swap operators that ()gd idP X− will reserve,

and the greater the impact of gdP is. The definition of operator “⊕ ” is the merger operator

of two swap sequences. Operator “+” denotes the implementation of swap operation,

operator “-” denotes to obtain the basic swap sequence of two sequences. For example：A =

(1 2 3 4 5), B = (2 3 1 5 4), as can be seen that A(1) = B(3) = 1, so the first swap operator is

SO(1,3), B1 = B + SO (1,3), so one gets that B1: (1 3 2 5 4), A(2) = B1(3) = 1, so the second

swap operator is SO(2,3), B = B1 + SO(2,3), so one gets that B2: (1 2 3 5 4). Similarly, the third

swap operator is SO(4,5), B3 = B2 + SO(4,5) = A, thus one gets a basic swap sequence: SS = A

– B = (SO(1,3), SO(2,3), SO(4,5)).
The steps of the PSO algorithm for solving the TSP can be described as follows:
Step 1. Initialize generation and all the particles, set each particle a random initial solution

and a random swap sequence.
Step 2. If the maximum iteration or the minimum error criteria is met, turn to Step 5.

Step 3. According to the particle’s current position k

idX , calculate the next position 1k

idX
+ ,

namely the new solution.

1. Calculate the difference between idP and idX , id idA P X= − , in which A is a basic

swap sequence.

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

301

2. Calculate the difference between gdP and idX , gd idB P X= − , in which B is a

basic swap sequence.

3. Calculate the velocity 1k

idv
+ according to Eq. (3), and convert the swap

sequence 1k

idv
+ to a basic swap sequence.

4. Calculate the new solution 1k

ibx
+ according to Eq. (4).

5. If 1k

ibx
+ is better than idP , set a new solution 1k

ibx
+ as new idP .

Step 4. Choose the particle with the best fitness value of all the particles as gdP , turn to Step

2.
Step 5. Show the result that obtained.
In the settlement of solving TSP, basic PSO generates new individual through Eq. (3) and
Eq.(4), from which one can see that a basic swap sequence generated by Eq. (3) is in fact
equivalent to the swap operator to a route, but the route between the two swap cities do not
change, so it is easy to generate cross route which is illegal solution. To deal with the
problem, inspired by the mutation operator in evolutionary algorithm, we add the mutation
operator to the PSO. The specific approach is: after generating a new route by basic PSO
approach during each iteration one does the mutation operator to the new route. More
specific, change Step 4 as follows:

Step 4: Generate two mutate cities randomly, then reverse the order of all the cities between

two mutate cities. If the length of new route is less than the original route, set the

new route as 1k

ibx
+ . Otherwise, maintain the original route unchanged.

2.2 A hybrid algorithm of PSO and SA

The SA algorithm derived from the principle of solid annealing. Firstly, heat the solid to a
sufficiently high temperature, and then cool it slowly. This process is based on an analogy
from thermodynamics where a system is slowly cooled in order to achieve its lowest energy
state. According to Metropolis criteria, the probability of particles balance at temperature T

is /()E kTe−Δ , where E is the internal energy at temperature T; EΔ is the increment of internal

energy; k is the Boltzmann constant. Once one converts the internal energy E to the objective
function value, and the temperature T to control parameter t, the SA algorithm of solving
combinatorial optimization problems may be obtained with the initial solution i and initial
control parameter t by repeating the iteration of “generate new solution→ calculate the

difference of objective function→ accept or discard” to the current solution, and gradually

reduce the value of control parameter t. The current solution is the approximate to the
optimal solution when algorithm is terminated. It is a stochastic heuristic search process
based on Monte Carlo iterative method. The process is controlled by Cooling Schedule, which

includes initial control parameter t, attenuation factor tΔ , iteration number for each t and

the termination condition .
The SA algorithm used to solve the TSP can be described as follows:

1. Solution spaces：Solution spaces are all the routes of visiting each city once. The solution

can be denoted as 1 2{ }nω ω ω， ，. . . . 1ω , … , nω in an array that is composed of 1 to n,

which denotes one walks to start from the city 1ω , and visits along with the cities

2ω ,…, nω orderly, then returns to the city 1ω .
2. Objective function: Objective function is the total distance length of the route pass

through all the cities. The objective function value of the optimal route is the least one.
Objective function is also called fitness function.

www.intechopen.com

 New Achievements in Evolutionary Computation

302

3. Criteria of new solution generation and acceptance: Here we use reverse operator to

generate new solution, more specifically, choose two different number k and m between

1 to n randomly, moreover, k is smaller than m, then one swaps the cities between k to

m, that is to convert 1 2 , 1 ,{ ,..., ..., }k k m nω ω ω ω ω ω+， ，. . . into

1 2 , 1 1, ,{ ,..., ..., }m m k k nω ω ω ω ω ω ω+ +， ，. . . . Once the new route is generated, calculate the

difference of distance length between new route and current route, if the length of new

route is smaller, that is, () () 0j if f x f xΔ = − ≤ , set the new route as 1k

ibx
+ , if the length of

new route is bigger, but exp(/) (0,1)f t random−Δ > , still set the new route as 1k

ibx
+ ,

otherwise maintain the current route unchanged.
The SA algorithm in hybrid algorithm of PSO and SA proposed calculates alternately by two
steps:
1. Generate a new solution by stochastic perturbation and calculate the change of the

objective function.
2. Decide whether the new solution is accepted or not. In the case at a high temperature,

the solution that increases the objective function may be accepted by means of
decreasing the temperature slowly, which may avoid to trap in local minima. In such a
way the algorithm can converge to the global best solution.

The nature of basic PSO is the use of individual and global maximum to guide the position

of the next iteration, which can converge fast at the early iteration. But, after several

iterations current solution, personal best value and global best value tend to the same,

which leads to the loss of population diversity, and makes the solution be trapped in local

minima. In order to avoid this phenomenon, inspired by the SA algorithm, we redesign the

algorithm’s framework: when basic PSO converges to a solution gp , use the solution gp as

the initial solution of SA, accept the new solution in accordance with the Metropolis criteria.

If there is such a solution y satisfies () ()gf y f p< , that is, the solution calculated by basic

PSO is not the global optimal solution. Then a new solution y can be used to randomly

replace a particle in the swarm, and the evolution of PSO continues, which can increase the

population diversity as well as retain the previous operation procedure. If there is not such a

solution y, then let () ()gf y f p< , that is, no better solution than gp has been found until the

convergence of SA, which indicates that gp is the global optimal solution.

2.3 The C-TSP application and results analysis

The TSP is a well-known combinatorial optimization problem with typical NP-hard and is
often used to verify the superiority of some intelligent heuristic algorithm. The
mathematical description of the TSP is: Given a list of n cities in order of visiting as

1 2{ , ,..., }nX x x x= and 1 1nx x+ = , the task is to find the shortest possible tour distance of

1

1,

min
i i

n

x x

i x

d
+

= ∈Ω
∑ that visits each city exactly once. The TSP can be modeled as a graph: the

graph’s vertices correspond to cities and the graph’s edges correspond to connections
between cities, the length of an edge is the corresponding connection’s distance. A TSP tour
is now a Hamiltonian cycle in the graph, and an optimal TSP tour is the shortest
Hamiltonian cycle.
Chinese Traveling Salesman Problem (C-TSP) is a typical symmetric TSP problem. Its simple
description is: Given a list of 31 Chinese capital cities and their pairwise distances, the task is

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

303

to find the shortest possible tour that visits each city exactly once. The C-TSP is a medium-

scale TSP problem, which has 32(31 1)!/ 2 1.326 *10− = possible routes.

The algorithms of solving TSP problem are divided into two categories: Exact algorithms
and approximation algorithms. The exact algorithms used frequently includes branch and
bound algorithms, linear programming and exhaustion method, etc.. The running time for
this approach lies within a polynomial factor of O(n!), the factorial of the number of cities, so
this solution becomes impractical even for only 20 cities. Approximation algorithm is
divided into tour route construction algorithm, tour route optimization algorithm and
heuristic algorithm, in which heuristic algorithm is the most spectacular including genetic
algorithm, ant colony algorithm, particle swarm optimization, simulated annealing,
differential evolution, etc.. Currently, to C-TSP problem, simulated annealing, improved
genetic algorithm, differential evolution all achieve the optimal solution of 15404 km. The SA
has the advantages of high, quality, robust, easy to achieve but with slow convergence.

The hybrid algorithm proposed is applied into the C-TSP. At the same time, basic PSO, SA

and PSO with mutation are also applied to do the comparisons. The programming language

is Matlab 7.0, and it runs on Win XP with Intel Core2 Duo 2.10 GHz CPU. We use the

discrete PSO (DPSO) that proposed by Huang et al. in 2003 as the basic PSO, parameter

settings are as follows: Particle number m = 200, maximum inertia weight maxw = 0.99,

minimum inertia weight minw = 0.09, acceleration coefficient c1 = 0.8, c2 = 0.4, iteration

number k = 2000. The parameters of mutation in the PSO are the same as in DPSO. The

parameter settings of SA are as follows: Initial temperature 0T = 5000, termination

temperature fT = 1, cycle constant L = 31000, attenuation factor α = 0.99. The parameter

settings of the hybrid algorithm are as follows：Particle number m = 200, maximum inertia

weight maxw = 0.99, minimum inertia weight minw = 0.09, acceleration coefficients c1 = 0.8, c2

= 0.4, initial temperature 0T = 5000, termination temperature fT = 1, cycle constant L =

31000, attenuation factor α = 0.95. Each algorithm has been run for 20 times, the numerical

results of four algorithms are listed in Table 1, in which “Worst” denotes the worst solution

in 20 runs, “Best” represents the best solution in 20 runs, “Average ” is the average fitness in

20 runs, “Optimal rate” denotes the rate that gets the times of the optimal solution (15404)

over 20 times runs.

One can see from Table 1 that the result obtained by DPSO is not satisfactory. It is unable to

find the optimal solution of 15404, and its average value of solutions is also away from the

optimal solution, which is because current solution idX , personal best value ibp and global

best value gbp tend to the same after several iterations. The DPSO is difficult to get new

effective edge and new effective route, and it is easy to be trapped in local minima. On the

other hand, the SA, PSO with mutation and the hybrid algorithm can obtain the optimal

solution. The average and worst distances of hybrid algorithm proposed are 15453.4 and

15587, respectively, which are the smallest in all those of the four algorithms. The solutions

obtained by the hybrid algorithm proposed are the best and its optimal solution rate is 20%,

which is the highest. In order to further compare SA, PSO with mutation and the hybrid

algorithm, we have studied the three algorithms in the fitness curve when finding the

optimal solution. The results are shown in Figures 1-3, in which the x axes is the iteration

number in unite of times, and the y axes is the global best route distance which is just the

solution of C-TSP.

www.intechopen.com

 New Achievements in Evolutionary Computation

304

Algorithm Worst Best Average Optimal rate

DPSO 20152 16665 18035.3 0

PSO With Mutation 16194 15404 15662.3 0.1

SA 15606 15404 15467.8 0.15

Hybrid Algorithm 15587 15404 15453.4 0.2

Table 1. Experiment Results

2

Iteration number (times)

3

4

5

D
is

ta
n
ce

 (
k

m
*
1

0

)
4

0 200 400 600 800

Fig. 1. The C-TSP optimization procedure of SA

From Figure 1 it is clear that SA converges to the optimal solution in about 500 iterations.

Figure 2 indicates that PSO with mutation algorithm has oscillation at the early iteration,

and it converges to the optimal solution in about 1000 iterations. From Figure 3 one can see

that the hybrid algorithm converges to the optimal solution in about 100 iterations. The

Fig. 2. The C-TSP optimization procedure of PSO with mutation

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

305

Iteration number (times)

D
is

ta
n

ce
 (

k
m

*
1

0

)

4

2

3

4

0 40 80 120 160

Fig. 3. The C-TSP optimization procedure of hybrid algorithm proposed

0

0

Y

X
1000 2000 3000

-3000

-2000

-1000

Fig. 4. Optimal route of C-TSP

problem of local optimal solution is not only been solved, but also the convergence speed is

greatly decreased. Figure 4 is the optimal route made by the hybrid algorithm for C-TSP

problem. The optimal route is: Beijing - Harbin - Changchun - Shenyang - Tianjin - Jinan -

Hefei - Nanjing - Shanghai - Hangzhou - Taipei - Fuzhou - Nanchang - Wuhan - Changsha -

Guangzhou - Haikou - Nanning - Guiyang - Kunming - Chengdu - Lhasa - Urumchi - Xining

- Lanzhou - Yinchuan - Xian - Zhengzhou - Shijiazhuang - Taiyuan - Hohhot – Beijing. The

total distance length of the optimal route is 15404 km.

3. Ant colony optimization algorithms and their improvements to the C-TSP
application

3.1 Ant colony optimization algorithms

Artificial ants of the ACO algorithms build solutions by performing random walk which use

a certain stochastic rules on a completely connected graph (,)CG C L= whose nodes are the

components C, and the set L fully connect the components C. Each connection of the map

www.intechopen.com

 New Achievements in Evolutionary Computation

306

(,)CG C L= can be associated pheromone trail ijτ , and heuristic information ijη (The

subscripts i and j are labeling of the nodes on the map).
It is important to note that artificial ants are in parallel movement independently. Although
each ant is complex enough to find a (probably poor) solution to the problem under
consideration, good-quality solutions can only emerge as the result of the collective
interaction among the ants. This collaborative interaction is obtained via indirect
communication mediated by the information ants read or write in the variables storing
pheromone trail values. To some extent, this is a distributed learning process in which the
single ant is not self-adaptive but, on the contrary, it can modify adaptively the way
represented and perceived by other ants. Informally an ACO algorithm can be imagined as
the interplay of three procedures (Dorigo & Stützle, 2004): Construction of Ants Solutions,
Pheromone updating, and Daemon Actions.
1. Construction of Ants Solutions manages a colony of ants that concurrently and

asynchronously visit adjacent states of the problem considered by moving through
neighbor nodes of the problem’s construction graph GC. They move by applying a
stochastic local decision policy that makes use of pheromone trails and heuristic
information. In such a way, ants incrementally build solutions of optimization problem.
Once an ant has built a solution, the ant evaluates the solution that will be used by the
Pheromone updating procedure to decide how much pheromone to deposit.

2. Pheromone updating is the procedure in which the pheromone trails are modified. The
trails’ values move either increase, as ants deposit pheromone on the components or
connections they use, or decrease due to pheromone evaporation. From a practical point
of view, the deposit of new pheromone increases the probability whose components/
connections are used by either many ants or at least one ant. A very good solution
produced will be used again in future ants. Differently, pheromone evaporation carries
out a forgetting factor in order to avoid a too rapid convergence to a sub-optimal
region, so pheromone evaporation has the advantage of generating new search areas.

3. Daemon Actions procedure is used to centralize the actions which can not be performed
by single ants. Examples of daemon actions are the activation of a local optimization
procedure, or the collection of global information used to decide whether it is useful or
not to deposit additional pheromone to update the search process.

These three procedures should interact and take into account the characteristics of the

problem considered. The TSP can be represented by a complete weighed graph (,)CG C L=

with C being the set of nodes representing the cities, and L being the set of arcs. Each arc

(,)i j L∈ is assigned a value ijd , which is the distance between cities i and j. In the

symmetric TSP, ij jid d= holds for all the arcs in L; but in the general case of the asymmetric

TSP, the distance between a pair of nodes i, j is dependent on the direction of traversing the

arc, that is, there is at least one arc (i, j) for which ij jid d≠ . More formally, TSP is described

as: A finite set 1 2{ , , , }NC c c cA of components is given, where N is the number of

components. Set { | , }ij i jL l c c C= ∈ fully connects the components C. (, 1,2,)ijd i j n= A is the

Euclid distance of arc ijl :

 2 2() () , (,)ij i j i jd x x y y i j L= − + − ∀ ∈ (5)

In the TSP, (,)G C L= is a directed graph and the goal is to find a minimum length

Hamiltonian circuit of the graph, where a Hamiltonian circuit is a closed path visiting each

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

307

of the n nodes of G exactly once. In another way, an optimal solution to the TSP is a

permutation R of the node indices 1 2{ , , , }nc c cA such that the length ()F R is minimal, where

()F R is given by

1

() (1) () (1)

1

()
n

R i R i R n R

i

F R d d
−

+
=

= +∑ (6)

The ACO can be applied to the TSP in a straightforward way. The construction graph

(,)CG C L= , where the set L fully connects the components C, is identical to the problem

graph; the set of states of the problem corresponds to the set of all possible partial tours; and

the constraints Ω enforce that the ants construct only feasible tours that correspond to

permutations of the city indexes. In all available ACO algorithms for the TSP, the

pheromone trails are associated with arcs, so the ijτ refers to the desirability of visiting city j

directly after city i. The heuristic information is chosen as 1 /ij ijdη = thus the heuristic

desirability of going from city i directly to city j is inversely proportional to the distance

between the two cities. If there is the length of arc (i, j) equal to 0, then put the ijη set to a

very small value. For implementation purposes, pheromone trails are usually collected into

a pheromone matrix whose elements are the arcs’ pheromone trails. This can be done

analogously for the heuristic information. Tours are constructed by applying the following

simple construction procedure to each ant (Dorigo & Stützle, 2004): (1) choose a initial city

according to some criterion. (2) make use of pheromone and heuristic values to

probabilistically construct a tour by iteratively adding cities, to which the ant has not visited

yet, until all cities have been visited; (3) go back to the initial city. After all ants have

completed their tours, they may deposit pheromone on the tours they have followed.

Sometimes, adding Daemon Actions such as the local search will improve the performance

of algorithm.

3.2 Ant System (AS)

Ant System is created by Marco Dorigo and others in 1991 (Dorigo & Stützle, 2004; Dorido et
al., 1991; Colorini et al., 1992; Dorigo 1992), and it is the first algorithm which is in line with
the ACO algorithm framework. Initially three different versions of AS were proposed which
are called ant-density, ant-quantity, and ant-cycle. These three versions are different on
pheromone updating. Whereas in the ant-density and ant–quantity versions the ants update
the pheromone directly after a move from one city to an adjacent city. In the ant-cycle
version the pheromone deposited by each ant is set to be a function of the tour quality. The
version of ant-cycle considers the quality of complete solution and uses pheromone
updating method which has overall mechanism. Ant-cycle is better than the other two
versions which just consider the single-step path information. Nowadays, when referring to
AS, one actually refers to ant-cycle (AS described in this chapter also refers the ant-cycle
version). The principle of AS is introduced as follows.

3.2.1 Tour construction

In AS, m artificial ants concurrently build a tour of the TSP. First, the m ants are put on
randomly n chosen cities, which is also known as the scale of the problem. At each

www.intechopen.com

 New Achievements in Evolutionary Computation

308

construction step, ant k applies a probabilistic action choice rule to decide which city to visit
next. Evidently the next visit city j must be in the feasible neighborhood of ant k. Due to visit

each city only once, so this neighborhood structure k

iN is restricted by kM which is used to

store information of ant k about the path it followed so far. The following is the path chosen
by the probability formula:

, if ;

0 , otherwise ;

[][]

[] []
k
i

ij ij k
i

k
il ilij

l N

j N

P

βα

α β

ητ

ητ
∈

⎧
⎪ ∈⎪

= ⎨
⎪
⎪
⎩

∑

 (7)

By this probabilistic rule, the probability of choosing a particular arc(i, j) increases with the

value of the associated pheromone trail ijτ and of the heuristic information value ijη . The

heuristic information value 1 /ij ijdη = represents a pre-given inspiration information which

describes the objective conditions of the path outside. Pheromone trail ijτ is the key factor

in the tour construction and it represents experience which comes from the previous

generation. Last, and ┚ are two parameters which determine the relative influence of the

pheromone trail and the heuristic information. Each ant k has a memory storage kM and it

records in accordance with the order in which they visit all the cities visited. This kM is

used to define the feasible neighborhood k

iN in the construction rule. In addition, the

memory kM allows ant k both to compute the length of the tour kT it generated and to

retrace the path to deposit pheromone. Although the solution of the whole construction is

parallel, there are two different ways of implementing it: parallel and sequential solution

construction. In the parallel implementation, at each construction step all the ants move

from their current city to the next one, while in the sequential implementation an ant builds

a complete tour before the next one starts to build another one. These two methods are

equivalent in AS, because the pheromones are released only after m ants constructing a

complete solution, they do not significantly influence the algorithm’s behavior. However, in

every step of ants moving if the local pheromone updating is added, then the effect of these

two methods is different, such as ACS.

3.2.2 Pheromone trails updating

After all the m ants have constructed their tours, the pheromone trails are updated. First step
is pheromone evaporation, and each edge of the pheromone is to evaporate according to
pheromone evaporation rate ρ. Pheromone evaporation is implemented by

 (1) * , (,)ij ij i j Lτ ρ τ← − ∀ ∈ (8)

The parameter ρ (0 1ρ≤ ≤), which represents the pheromone evaporation rate, is used to

avoid unlimited accumulation of the pheromone trails and it enables the algorithm to forget

bad decisions previously taken. Actually if an arc is not chosen by the m ants then its

associated pheromone value decreases exponentially in the number of iterations.
After pheromone evaporation, all the m ants deposit pheromone on the arcs they have
crossed in their tours:

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

309

1

, (,)
m

k

ij ij ij

k

i j Lτ τ τ
=

← + Δ ∀ ∈∑ (9)

where k

ijτΔ is the amount of pheromone ant k deposits on the arcs it has visited. It is defined

as:

/ if arc (,) belongs to ;

0 otherwise;

k k

k

ij

Q C i j T
τ

⎧⎪Δ = ⎨
⎪⎩

，
，

 (10)

where kC , the length of the tour kT built by the k-th ant, is computed as the sum of the

lengths of the arcs belonging to kT . By means of Eq. (10), the better an ant’s solution is, the

more pheromone the arcs belonging to this tour receive. This ensures the probability of

choosing good path.

3.3 Elitist Ant System (EAS)

Elitist Ant System is the first improvement on the initial AS, which is called elitist strategy
for Ant system (EAS) (Dorigo & Stützle, 2004; Dorido et al., 1991; Colorini et al., 1992;
Dorigo, 1992). EAS gives the ant which has constructed so far the best path solution the elite

logo, sets the so far the best path bsT , and provides strong additional reinforcement to the

arcs that is belong to the best tour bsT found since the start of the algorithm.

In tour construction, the methods in EAS is the same as the methods in AS. In pheromone

updating, the pheromone evaporation formula is the same as (3.4).The additional

reinforcement of tour bsT is achieved by adding a quantity / bse C to its arcs, where e is a

parameter that defines the weight given to the best-so-far tour bsT , and bsC is its length. The

following is the equation for the pheromone deposit:

1

* , (,)
m

k bs

ij ij ij ij

k

e i j Lτ τ τ τ
=

← + Δ + Δ ∀ ∈∑ (11)

where k

ijτΔ is defined as in Eq. (10) in AS and bs

ijτΔ is defined as follows:

1/ , if arc (,) belongs to ;

0 otherwise.

bs bs

bs

ij

C i j T
τ

⎧⎪Δ = ⎨
⎪⎩ ，

 (12)

The key is that the EAS has adopted a daemon action, which is the additional incentive of
the elite ants. Although this operation belongs to the pheromone updating steps, it is a kind
of additional guidance to the overall operation. One can image like this: After all the ants
including the elite ant depositing pheromone on the arcs they have crossed over their tour,

the elite ant give the bsT additional release of pheromones.
Compared with EAS, the pheromone updating mechanism in the AS is weak indeed.
Sometimes, the optimal path may be with a very small difference between the paths which
are not so satisfactory, and the mechanism in the AS can not make a good distinction
between them. This is because of the simple form of the pheromone depositing formula
which allows all ants use the same weight for depositing pheromone. Usually, the level for
the algorithm to explore the overall optimal solution is not enough. The EAS with the

www.intechopen.com

 New Achievements in Evolutionary Computation

310

parameter e determining the weight gives the best-so-far tour, that is, the best-so-far solution
has been improved in the course of the search status, and the algorithm attempts to search a
better solution which around the best-so-far solution. From the other side of the coin, the
EAS concentrates a smaller search space which is compressed from original search space.
Such a smaller search space may have better solutions. The mechanism increases the
probability for finding overall optimal solution, and at the same time it also speeds up the
convergence. Experiments later in this chapter show that parameter e needs to be selected
with a reasonable value: an appropriate value for parameter e allows EAS to both find better
tours and have a lower number of iterations. If parameter e is too small, the elitist strategy
will not have much effect because of the low discrimination for better ants, while if the
parameter e is too large, the algorithm will be too dependent on the initial best-so-far tour,
and have rapid convergence to a small number of local optimal solutions, which weaken
algorithm’s ability of exploration.

3.4 Rank-Based Ant System (ASrank)

Another improvement over AS is the rank-based version of AS (Dorigo & Stützle, 2004;
Bullnheimer et al., 1997): ASrank. In ASrank, before updating the pheromone trails, the ants are
sorted by increasing tour length and the quantity of pheromone deposited by an ant is
weighted according to the rank of the ant. Usually in each iteration, only the (w-1) best
ranked ants and the ant produced the best-so-far tour (this ant is not necessarily is belong to
the set of ants of the current algorithm iteration) are allowed to deposit pheromone. The
best-so-far tour gives the strongest feedback, with weight w; the r-th best ant in the current

iteration contributes the pheromone updating with the value 1/ rC multiplied by a weight

given by max {0, w-r}.
In tour construction, the methods in ASrank are the same as the methods in AS. In
pheromone updating, the pheromone evaporation formula is the same as in Eq. (8). The
ASrank pheromone update rule is:

1

1

() , (,)
w

r bs

ij ij ij ij

r

w r w i j Lτ τ τ τ
−

=

← + − Δ + Δ ∀ ∈∑ (13)

where 1 /r r

ij CτΔ = and 1/bs bs

ij CτΔ = ; rC is the length of r-th solution and bsC is the same as

in Eq. (12)
Compared with AS the ASrank selects w ants to deposit pheromone according to the rank of
solutions’ quality, which is a new improved formula. It completely abolishes the national
pheromone deposit mechanism, in other word, only the ant who has constructed a good
enough solution can deposit pheromone and the amount of pheromone to deposit is
decided by the rank. It can reduce the operation of the pheromone and get rid of bad
solutions directly. The pheromone depositing mechanism in ASrank is a group of elite ants
award, and it is better than the mechanism in AS which just depends on the reciprocal of the
tours. Totally, the performance of ASrank is much better than AS.
ASrank and EAS are different on the reward strategy of elitist ants. EAS just give the best-so-
far solution an additional incentive, although it can find the good solutions, indirectly it is
greatly weakened or even abandoned the second-best-so-far solutions whose neighborhood
may have better solutions. In ASrank, the algorithm gives a group of elitist ants award, but the
award is according to the rank of solutions. On the one hand the mechanism takes into

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

311

account the importance of the best-so-far solution, which ensures that the experience of the
leading elitist ant is retained; on the other hand it considers the neighborhood of sub-
optimal solutions, that is, it increases ability to explore the optimal solution.

3.5 MAX-MIN Ant System (MMAS)

Max-Min Ant System is a constructive amendment to AS (Dorigo & Stützle, 2004; Stützle &
Hoos, 1996; Stützle & Hoos, 1997; Stützle & Hoos, 2000). It is one of the best ACO
algorithms. There are four main modifications with respect to AS:
1. It strongly exploits the best tours found: only either the iteration-best ant, that is, the ant

produced the best tour in the current iteration, or the best-so-far ant is allowed to
deposit pheromone.

2. It limits the possible range of pheromone trail values in the interval min max[,]τ τ .

3. The pheromone trails are initialized to the upper pheromone trail limit together with a
small pheromone evaporation rate.

4. Pheromone trails are reinitialized when the system approaches are stagnated or when
no improved tour has been generated for a certain number of consecutive iterations.

The first point strongly exploits the best tours found, but may lead to a stagnation situation
in which all the ants follow the same tour. To increase the effect, the second modification is
introduced by MMAS. It makes that the pheromone in each arc does not accumulate too
large or consume too small, so that it could ensure the sustainability of exploration. The
third point makes MMAS have a stronger ability to explore at the initial stage. The fourth
point introduces a new mechanism which can be applied to all the ACO algorithms, that is,
through the resumption of initial pheromone and re-search thus it increases the possibility
of finding the optimal solution.
Since only the optimal solution is allowed to deposit pheromones, the formula about
pheromones depositing is very concise:

 , (,)best

ij ij ij i j Lτ τ τ← +Δ ∀ ∈ (14)

where 1/best best

ij CτΔ = . bestC is the length of optimal tour. It can be the best-so-far tour or

iteration-best tour.
In general, in MMAS implementations both the iteration-best and the best-so-far updating
rules are used, in an alternate way. Obviously, the choice of the relative frequency with
which the two pheromone updating rules are applied has an influence on how greedy the
search is: When pheromone updating is always performed by the best-so-far ant, the search
focuses very quickly around the best-so-far solution, whereas when it is the iteration-best
ant that updates pheromones, the number of arcs received pheromone is larger and the
search is less directed.

In MMAS, there are two default daemon actions. One is the pheromone trails limits, the

other one is the pheromone trails re-initialization. In MMAS, lower and upper limits minτ

and maxτ on the possible pheromone values of any arc are imposed in order to limit the

probability ijp of selecting a city j when an ant is in city i in the interval min max[,]P P , so that it

could avoid searching stagnation and enhance the ability to explore. In the long run, the

upper pheromone trail limit on any arc is bounded by *1/ Cρ , where *C is the length of the

optimal tour. Based on this result, MMAS uses an estimate of this value of 1/ bsCρ , to define

www.intechopen.com

 New Achievements in Evolutionary Computation

312

maxτ : each time a new best-so-far tour is found, the value of maxτ is updated. The lower

pheromone trail limit is set to min max / aτ τ= , where a is a parameter which decides the

proportion of upper limit and lower limit. In MMAS, in order to avoid stagnation, the lower

pheromone trail limits play a more important role than upper limits. Pheromone trail re-

initialization is typically triggered when the algorithm approaches the stagnation behavior

or if no improved tour of a given number of algorithm iterations is found. It can increase the

exploration of paths that have only a small probability of being chosen. By the way, the

pheromone trail re-initialization also increases the probability of finding the global optimal

solution (equivalent to cumulative probability).

3.6 Ant Colony System (ACS)

Ant Colony System (ACS) is an extension of AS (Dorigo & Stützle, 2004; Dorigo &
Gambardella, 1997). The ACS exploits the search experience accumulated by the ants more
strongly than AS. The rule is called pseudorandom proportional rule. When located at city i,
ant k moves to a city j, the rule is given by

0, if ;arg max

, otherwise

{ [] }
k
i

il il

l N

q q

j

J

β
τ η

∈

⎧ ≤
⎪

= ⎨
⎪
⎩ ;

 (15)

where q is a random variable uniformly distributed in [0,1] , J is a random variable selected

according to the probability distribution given by Eq.(5) with ┙ = 1. 0 0(0 1)q q≤ ≤ is a

parameter with which the ant makes the best possible move as indicated by the learned

pheromone trails from the heuristic information, while with probability 0(1)q− it performs

a biased exploration of the arcs.
This pseudorandom proportional has strong artificial operability because the parameters q0

can be set to guide the algorithm’s preference. By tuning the parameter q0, it is allowed to
modify the degree of exploration and to select whether to concentrate the search of the
system around the best-so-far solution or to explore other tours.
In ACS only the best-so-far ant is allowed to update pheromone after each iteration
including the pheromone deposit and pheromone evaporation. In each time an ant uses an
arc to move from city i to city j, which is called the local pheromone updating to remove
some pheromone from the arc to increase the exploration of alternative paths. The global
pheromone trail updating is described as the following equation:

 (1) , (,)bs bs

ij ij ij i j Tτ ρ τ ρ τ← − + Δ ∀ ∈ (16)

where 1 /bs bs

ij CτΔ = . bsC is the length of the best-so-far tour bsT . It is worth to note that the

deposited pheromone is discounted by a factor ρ, which results in the new pheromone trail

becoming a weighted average between the old pheromone value and the amount of

pheromone deposited.
The local pheromone trail updating is described as the following equation:

 0(1) , (,)ij ij i j Lτ ε τ ετ← − + ∀ ∈ (17)

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

313

where ε, 0 1ε≤ ≤ , ε is the local pheromone evaporation rate and the 0τ is the initial

pheromone. The effect of the local updating rule is to reduce pheromone trail of an ant in

some arc so that the arc becomes less desirable for the following ants. The role of local

updating is to strengthen the capacity of artificial ant exploration.

3.7 Application of five ACO algorithms in C-TSP and results analysis

In order to demonstrate and verify the properties of five ACO algorithms mentioned above,

in this section, we’ll apply them in the Chinese TSP with 31 capital cities, and compare their

advantages and disadvantages in the medium-scale discrete optimization problem.

The important parameters of Ant System are as follows. N: the number of cities; m: the

number of artificial ants; ┙: the parameter that controls the relative importance of

pheromone trail; ┚: the parameter that controls the relative importance of heuristic

information; ρ: pheromone evaporation rate; q: a constant represents the weight of the

deposited pheromone; 0τ : initial pheromone trail; NC: preset number of iterations. In

addition, in its improved algorithms the addition parameters are as follows. The e in EAS : a

parameter that defines the weight given to the best-so-far tour. The w in ASrank: the number

of the artificial ants who are allowed to add pheromone. The τ_proportion, τ_max, τ_min and

nowbest_p in MMAS: τ_proportion is a parameter which decides the proportion of upper limit

and lower limit; τ_max is the upper limit of pheromone; τ_min is the lower limit of

pheromone; nowbest_p is the frequency of selecting best-so-far tours rule of depositing

pheromone. The pbest and local_p in ACS: pbest is a probability of choosing right path; local_p

is the local pheromone evaporation rate.

A candidate list is first built to restrict the number of available choices considered at each

construction step. In general, candidate lists contain a number of the best rated choices

according to some heuristic criterion. First, configure for each city a nearest neighbor list

which records the other cities sorted in ascending order by distance; Second, build the

candidate lists for each city and set the parameter (0)nn nn n≤ ≤ which decides the number

of the nearest neighbors needed; Last, get the cities which are previous nn cities in the

nearest neighbor list into the candidate list for each city. When an ant constructs solution, it

gives priority to the candidate list of cities. In fact, the ant usually considers from the first

city in the candidate lists that has not been visited and selects with random probability rule.

When all the cities in the candidate list have been visited by an ant, the ant will consider

other cities and select the city which has a maximum value of [] []ij ij

α βτ η , that is, the ant

selects the city which is the best experience-oriented one. Set the parameter nn to a constant

which is below the number of cities n, especially for a small value, the algorithm’s speed will

be improved significantly. The mechanism is feasible, because in TSP a good path can not

appear a city i connects another city j which has a long distances from city i. In other words,

the ant in city i should choose the city j which nears the city i. It is worth to note that the

parameter nn is important for candidate list. If the value of nn is too large, the effect of

speeding up algorithm will be weakened. On the other hand, a too small nn will make the

performance of algorithm very poor. However, it should be noted that the use of truncated

nearest-neighbor lists can make it impossible to find the global optimal solution. The global

optimal solution does not mean to be the combination of cities in the candidate lists. Perhaps

www.intechopen.com

 New Achievements in Evolutionary Computation

314

in order to achieve the best, ants in some cities should choose far way cities to go and these

cities are not in departure cities’ candidate lists.

The steps of Ant System (AS) algorithm is as follows (in the case no candidate lists):
Step 1. Enter an actual TSP, get the scale n of the problem, and transform the instance into

a symmetric distance matrix distance (set the diagonal elements with small values
to prevent the situation of NAN.)

Step 2. Initialize all the parameters, including m, ┙, ┚, ρ, q, 0τ and NC. Set the iteration

number to 0.

Step 3. Initialize storage variable including best-so-far solution nowbest_opt = 2 * vicinity

(vicinity is the solution comes form the nearest algorithm), best-so-far path

nowbest_path = zeros (1, n), pheromone tails matrix τ = ones(n) * 0τ , and the matrix

which describes the importance of heuristic information βτ = dist.^(- ┚).
Step 4. Begin to circulate, and set the iteration number nc = nc +1.

Step 5. The starting cities of ants are randomly distributed as begin_city = randperm (n);

initialize tabu list tabu = ones (m, n) and taboo the starting city; initialize path matrix

path = zeros (m, n) and add the starting city into the first column; build the matrix

that describes the importance of pheromone ατ = τ.^ ┙; build the comprehensive

weight matrix .*d α βτ τ τ= .

Step 6. Ant walking steps step=step+1 (initialize step = 0，and 1step n≤ −).

Step 7. Artificial ants’ label k = k +1 (initialize k = 0, and k m≤)
Step 8. Choose the next city in accordance with the probability formula, taboo the selected

city in the ant taboo list tabu (k, :), and add this chosen city into the ant path
sequence path (k, step +1).

Step 9. If k < m, then turn to step 7; otherwise turn to step 10.

Step 10. If 1step n≤ − , then turn to step 6; otherwise turn to step 11.

Step 11. According to the pheromone updating formula of AS, update the pheromone trails
τ, and update the optimal solution as best-so-far solution nowbest_opt and the
optimal path as best-so-far tour nowbest_path which includes the cities of the best-
so-far tour.

Step 12. If the iteration number nc < NC, then turn to step 4; otherwise end the operation,
export the data and image results.

Remark: The steps described above are just the AS algorithm. The improved algorithms

mentioned above should have some changes, which are mainly in the steps of the parameter

settings, constructing solutions and pheromone updating. In the process of building a

solution, they use parallel mechanism. To add the candidate lists to the algorithm, first of all

one needs to add a step in one of the first two steps in the algorithm: list the neighbor cities

in ascending order by distance and configure nearest neighbor list for each city, set the

parameter Neighbor_num of the candidate list, and then get the candidate list Neighbor_list

from the nearest neighbor list; followed by modifying the step 8: first of all, begin to

consider the first city in the candidate list that does not be visited, and select the target city

of the next step with probability rules. When the cities of the candidate list have all been

visited one compares the values .*d α βτ τ τ= of all the other remaining cities, and select the

largest one as the next target city; taboo the selected city in the ant taboo list tabu (k,:), and

add this city into the ant path sequence path (k, step +1).

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

315

Table 2 is the summary of the experimental results of the five ACO algorithms including

adding the mechanism of the candidate list and pheromone re-initialization, etc.. Each

system runs for 100 times. In Table 2, the algorithm with "_C" has the mechanism of

candidate list, the algorithm with “_R” has the mechanism of pheromone re-initialization,

Best or Worst mean the best or worst solution of the 100 solutions. “Opt. rate” is the rate of

global optimal solution, Average is the average solution of all solutions. “Average converg.”

is the average convergence iteration number, and Average time is the average time in 100

running solutions. Relative error is described as follows:

| average solution - global optimal solution |

relative error =
global optimal solution

 (18)

where the global optimal solution = 15404, and the average solution is the average solution in

100 running solutions.

Algorithm Best Worst
Opt.
rate

Average
Relative

error
Average
converg.

Itera.
No.

Average
time

AS 15420 15669 0 15569.05 1.071% 1405.95 3000 12.221

AS_C 15420 15620 0 15548.3 0.937% 1380.11 3000 6.044

EAS 15404 15625 48% 15447.4 0.282% 1620.48 4000 16.409

EAS_C 15404 15593 52% 15437.62 0.218% 1606.95 4000 7.954

ASrank 15404 15593 63% 15413.74 0.063% 1857.19 4000 16.662

ASrank_C 15404 15520 65% 15408.05 0.026% 1747.07 4000 8.349

MMAS 15404 15593 55% 15428.54 0.159% 2371.96 5000 20.386

MMAS_C 15404 15593 57% 15424.32 0.132% 2166.56 5000 10.384

MMAS_R 15404 15593 68% 15418.48 0.094% 2984.5 8000 23.951

MMAS_C_R 15404 15520 73% 15418.75 0.096% 2655.68 8000 10.799

ACS 15404 15779 40% 15442.42 0.249% 2889.67 10000 5.546

ACS_C 15404 15745 40% 15445.51 0.269% 2708.9 10000 4.817

Table 2. The summary of the test results when ACO algorithms are applied to the C-TSP

One can obtain from Table 2 the following results:
1. In the test of all 12 kinds of algorithms, from the column "Best" solutions one can see

except AS and AS_C which add the mechanism of candidate list to AS, the other 10
kinds of algorithms can detect the global optimal solution 15404.

2. Along all the algorithms, from the column "Opt. rate" one can see max-min ant system
which has the mechanisms of the candidate list and pheromone initialization added in
MMAS_C_R owns the highest rate of excellent, that is 73%, followed by MMAS_R;

www.intechopen.com

 New Achievements in Evolutionary Computation

316

Except AS and AS_C, ACS and ACS_C which add the mechanism of candidate list to
ACS have the worse performance, that is 40%.

3. Compare these five algorithms without any mechanism, from the "Opt. rate " one can
also see that rank based version AS, ASrank has the highest rate of excellent, that is 63%,
followed by MMAS, EAS, ACS, and AS.

4. Compare these five algorithms without any mechanism to those five algorithms with
mechanisms of the candidate list respectively, that is, compare XXX with XXX_N, one
can see from the optimal rate and average running time except ACS and ACS_C are not
obvious, the mechanism of the candidate list slightly improves the performance of the
algorithms and greatly reduces the running time.

5. Compare the four cases of MMAS, that is, MMAS, MMAS_C, MMAS_R and
MMAS_C_R, one can see from the optimal rate that every mechanism can improve the
performance of algorithms, and max-min ant system only with the mechanisms of
pheromone initialization the candidate list has a better performance than only with the
mechanisms of the candidate list. Of course, max-min ant system with two mechanisms
at the same time has the best performance.

4. Conclusions

This chapter has analyzed the characteristics of the SA and PSO for solving the C-TSP

problem. Combined the fast convergence speed of PSO with the good local search ability of

SA, a hybrid algorithm has been proposed. Numerical simulations show that the proposed

algorithm is more efficient in C-TSP than single PSO and SA, respectively. Generally

speaking, when ACO algorithms are applied to the TSP instance C-TSP, elitist strategy for

ant system, rank based version AS, max-min ant system, ant colony system show better

performance, they have a certain percentage to find the global optimal solution, but ant

system fails to find global optimal solution. In all these systems, max-min ant system which

has the mechanisms of the candidate list and pheromone initialization added in shows the

best performance in the C-TSP.

5. Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant

No. 60774098.

6. References

Eberhart, R. C. & Kennedy, J. (1995). A New Optimizer Using Particles Swarm Theory.

Proceedings of the 6th Int’1 Symposium of Micro Machine and Human Science, pp. 39-43,

0-7803-2676-8, Nagoya, Oct. 4-6

Yuan, Z. L.; Yang, L. L. & Liao, L. (2007). Chaotic Particle Swarm Optimization Algorithm

for Traveling Salesman Problem. Proceedings of the IEEE International Conference

on Automation and Logistics, pp.1121-1124, 978-1-4244-1531-1, Jinan, China, Aug. 18-

21

Xu, Y. H., Wang, Q. W. etc. (2008). An Improved Discrete Particle Swarm Optimization

Based on Cooperative Swarms. International Conference on Web Intelligence and

www.intechopen.com

Particle Swarm and Ant Colony Algorithms and Their Applications
in Chinese Traveling Salesman Problem

317

Intelligent Agent Technology, pp. 79-82, 978-0-7695-3496-1, Sydney, Australia, Dec. 9-

12

Lovbjerg, M.; Rasmussen, T. K. & Krink, T. (2001). Hybrid Particle Swarm Optimizaters with

Breeding and Subpopulations. Proc of the Third Genetic and Evolutionary Computation

Conference, Vol. 24, pp. 469-476, San Francisco, USA

Kang, L. H. & Xie,Y.(1998). Non-numerical Parallel Algorithms—Simulated Annealing

Algorithm, Science Press, 703003736, Beijing

Zhong, W. L.; Zhang, J. & Chen, W. N.(2007). A Novel Discrete Particle Swarm Optimization

to Solve Traveling Salesman Problem. IEEE Congress on Evolutionary Computation,

pp. 3283-3287, 978-1-4244-1339-3, Singapore, Sept. 25-28

Xiao, J.M.; Li, J.J. & Wang, X.H. (2004). A Modified Particle Swarm Optimization for

Travelings Salesman Problems. Computer Engineering and Applications, Vol. 40, No.

35: pp. 50-52

Li, L. L.; Zhu, Z. K. & Wang, W.F. (2008). A Reinforced Self-Escape Discrete Particle

 Swarm Optimization for TSP. Second International Conference on Genetic

and Evolutionary Computing, pp. 467-470, 978-0-7695-3334-6, Jinzhou, China, Sept.

25-26

Huang, L.; Wang, K. P. & Zhou, C.G.(2003). Particle Swarm Optimization For Traveling

Salesman Problems. journal of JiLin university (science edition), Vol. 41, No.10: pp.

477-480

Dorigo, M.; & Stützle, T.(2004). Ant Colony Optimization. MIT Press, 978-0-262-04219-2

Boston

Dorigo, M.; Maniezzo, V. & Colorni, A.(1991). Positive feedback as a search

strategy. Technical report, Dipartmento di Elettronica, Politecnico di Milano, Milan,

pp. 91-96

Colorini, A.; Dorigo, M. & Maniezzo, V.(1992). Distributed optimization by ant colonies. In

F.J. Varela&P.Bourgine (Eds), Proceedings of the First European Conference on Artificial

Life, pp.134-142. Cambrige, MA, MIT Press

Dorigo, M. (1992) Optimization, Learning and Natural Algorithms [in Italian].PhD thesis,

Dipartimento di Elettronica, Politecnico di Milano, Milan

Bullnheimer, B.; Hartl, R.F. & Strauss, C. (1997) A new rank based version of the Ant

System: A computational study. Central European Journal for Operations Research and

Economics, Vol. 7, No. 1: pp. 25-38

Stützle, T. & Hoos, H. H. (1996). Improving the Ant System: A detailed report on the

MAX-MIN Ant System. Technical report AIDA-96-12, FG Intellektik, FB Informatik,

TU Darmstadt, Germany

Stützle, T. & Hoos, H. H.(1997). The MAX-MIN Ant System and local search for the

traveling salesman problem. In T.Bäck, Z.Michalewicz, & X.Yao (Eds.), Proceedings

of the 1997 IEEE International Conference on Evolutionary Computation (ICEC’97),

pp.309-314, Piscataway, NJ, IEEE Press

Stützle, T. & Hoos, H. H. (2000). MAX-MIN Ant System. Future Generation Computer

Systems, Vol. 16, No. 8: pp. 889-914

Dorigo, M. & Gambardella, L. M. (1997). Ant colonies for the traveling salesman problem.

BioSystems, Vol. 43, No.2: pp. 73-81

www.intechopen.com

 New Achievements in Evolutionary Computation

318

Dorigo, M. & Gambardella, L. M. (1997). Ant Colony System: A cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Comtutation, Vol. 1, No. 1: pp. 53-66

www.intechopen.com

New Achievements in Evolutionary Computation

Edited by Peter Korosec

ISBN 978-953-307-053-7

Hard cover, 318 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary computation has been widely used in computer science for decades. Even though it started as far

back as the 1960s with simulated evolution, the subject is still evolving. During this time, new metaheuristic

optimization approaches, like evolutionary algorithms, genetic algorithms, swarm intelligence, etc., were being

developed and new fields of usage in artificial intelligence, machine learning, combinatorial and numerical

optimization, etc., were being explored. However, even with so much work done, novel research into new

techniques and new areas of usage is far from over. This book presents some new theoretical as well as

practical aspects of evolutionary computation. This book will be of great value to undergraduates, graduate

students, researchers in computer science, and anyone else with an interest in learning about the latest

developments in evolutionary computation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shuang Cong, Yajun Jia and Ke Deng (2010). Particle Swarm and Ant Colony Algorithms and Their

Applications in Chinese Traveling Salesman Problem, New Achievements in Evolutionary Computation, Peter

Korosec (Ed.), ISBN: 978-953-307-053-7, InTech, Available from: http://www.intechopen.com/books/new-

achievements-in-evolutionary-computation/particle-swarm-and-ant-colony-algorithms-and-their-applications-in-

chinese-traveling-salesman-proble

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

