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México 

1. Introduction    

Estimation of Distribution Algorithms (EDAs) (Mühlenbein et al., 1996; Mühlenbein & PaaB, 
1996) are a promising area of research in evolutionary computation. EDAs propose to create 
models that can capture the dependencies among the decision variables. The widely known 
Genetic Algorithm could benefit from the available dependencies if the building blocks of 
the solution were correlated. However, it was proved that the building blocks of a genetic 
algorithm have a limited capacity for discovering and using complex relationships 
(correlations) among variables. EDAs instead, focus on learning probability distributions 
which serve as the vehicle to capture the data dependencies and the data structure as well. 
In order to show how the proposed method unifies the theory for infinite sized population 
with the finite sized population case of practical EDAs, we explain them first. An EDA with 
infinite sized population would perform the steps shown in the algorithm in Table 1. 
 

EDA with an infinite size population 

1 t=0 

2 Initialize a probability model p(x,t) (usually a uniform distribution). 
3 Generate an infinite sized sample Xt from p(x,t). 
4 Evaluate Xt in the objective function(s) and constraint(s). 
5 Compute the selection distribution pS(x,t), and use it as the new 

search distribution. Then: p(x,t+1) = pS(x,t). (Selection and model 
rcomputation step) 

6 t=t+1 

7 If the stop criterion is not reached go to Step 3 

Table 1. The estimation of distribution algorithm with an infinite size population: the 
selection distribution is equal to the search distribution. 

The selection method introduces the search bias necessary to improve the current best 
solution, and in fact, “pushes” the population towards the optimum. For this case where the 
population is infinite, imagine a probability value could be computed for every point in the 
search space. Therefore, the “exact” probability distribution of the selected individuals 
(which is also an infinite set), can be used to sample the new population. Such distribution, 
the selection distribution, is the probability of any point in the search space of being 
selected. Four selection distribution formulas for an infinite population are shown in Table 

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,  
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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2, left column: Truncation, Boltzmann, Proportional, and Binary Tournament selections. In 
the same table but right column, we show the proposed empirical selection distributions 
studied in this paper. The first objective of this paper is to show that the proposed 
distributions converge to the theoretical ones as the population grows. The second objective 
is to apply the empirical distributions in practical EDAs, and to compare their performance 
through the analysis of several experiments. It has been proved that the ideal EDAs with 
any of the four selection distributions shown, converges to the optimum after a large 
number of generations (Zhang & Mühlenbein, 2004). 
 

Selection Model Empirical Selection Distribution 
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Table 2. Left: Selection models for the EDA with an infinite sized population. Right: the 
respective empirical selection distribution. 

Let us now contrast the infinite sized population case with the standard practical EDA, 

thereby, with a finite sized population. The practical EDA is presented in the algorithm in 

Table 3. Notice the selection operator returns a selected set S
tX whose size is a fraction of the 

total population. In the next step the standard EDA seeks to approximate the distribution of 

the selected set via a parametric distribution. The distribution parameters, and in some cases 

the data structure, are learned from the selected set. Such distribution, the search 

distribution, is the model (with a predefined structure), used for learning the underlying 

joint probability density of the selected set, ),()1,( tXptxp S
t≈+ . Also, note that the next 

population is simulated from the search distribution. The search distribution and its 

learning algorithm are so important for an EDA that, in fact, gives name to the EDA version. 
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Examples of search distributions are: Bayesian networks (Pelikan et al.., 1999), Polytrees 

(Soto & Ochoa, 2000), and Dependency Trees in discrete spaces. Also, Gaussian univariate 

and multivariate models (Bosman & Thierens, 2000; Larrañaga et al., 1999) in the continuous 

case, among others (Larrañaga & Lozano, 2001; Lozano et al., 2006; Pelikan et al., 2006). 

 
Standard EDA with a finite size population 

1 t=0 

2 Initialize a probability model p(x,t) (search distribution). 

3 Generate an infinite sized sample Xt from p(x,t). 

4 Evaluate Xt in the objective function(s) and constraint(s). 

5 St←SELECTION(Xt) (selection step) 

6 Recompute the search distribution model p(x,t+1), such 

that, p(x,t+1)≈p(St) (parametercomputation step). 

7 t=t+1 

7 If the stop criterion is not reached go to Step 3 

Table 3. The estimation of distribution algorithm with a finite size population: the search 
distribution is computed by learning parameters from the selected set. 

The approach introduced in this work is shown in the algorithm in Table 4. No selection 
operator is used, our approach firstly calculates the proposed empirical selection 
distribution to approximate to the theoretical selection distribution. The empirical selection 

distribution, ),(ˆ txp i
S , is the exact selection distribution when the population is thought as a 

model of the whole search space. Then, the search distribution model is created directly 
using the information from the empirical selection distribution, and used to simulate the 
new population. Remember, the empirical selection distribution equations are presented in 
Table 2, right column. The calculation of the empirical selection distribution is easy (as we 
shall explain later), however, its main advantage is to carry all the information needed to 
build the best approximating search distribution. 
 

EDA with the Empirical Selection Distribution 

1 t=0 

2 Initialize a probability model p(x,t) (search distribution). 

3 Generate an infinite sized sample Xt from p(x,t). 

4 Evaluate Xt in the objective function(s) and constraint(s). 

5 Compute the empirical selection distribution 

),(ˆ txpS (selection step) 

6 Recompute the search distribution model p(x,t+1), with  

),(ˆ txpS  (parametercomputation step). 

7 t=t+1 

7 If the stop criterion is not reached go to Step 3 

Table 4. The estimation of distribution algorithm with a finite size population: the search 
distribution is computed by learning parameters from the selected set. 

The chapter is presented as follows: Section 2 briefly reviews the most common selection 
methods used in EDAs. Section 3 discusses about the convergence of the empirical selection 
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distribution to the exact selection distribution. Section 4 introduces the general method to 
approximate the search distribution to the selection model. Section 5 is a comparison with 
related work. Section 6 presents well known EDAs, which have been modified to apply the 
proposed method. A set of experiments is presented in Section 7 and discussion about the 
performance of different selection methods. Finally, Section 8 shows the perspectives of 
future work and concludes. 

2. Selection methods 

The main goal of a selection operator is to bias the population towards promising regions of 

the search space. Truncation, Boltzmann, Proportional and Tournament selection operators 

discussed in this paper are introduced through an example. Assume the following objective 

function and an infinite sized population whose elements have as fitness the function value 

at 42exp20cos42exp 22 +−++−= )(|y|x)()(|x|(x,y) . The plot of this function is shown in 

Figure 1(a). Most of the EDAs draw the initial population from a uniform distribution, 
which is shown in Figure 1(b). Hence, during the first iteration any point has the same 
sampling probability. Assuming an infinite sized population, the rest of the figures show the 
selection distribution function. 

• The Truncation selection is shown in Figure 1(c). This selection is widely used by many 

EDAs. Here the select set would be the best population above a function threshold of 

30=θ . The probability density of the truncation selection is shown in Figure 1(c). 

Observe the flat area; it means the selection probability for the population above the 

threshold value is the same. The truncation selection hides the roughness of the 

objective function above the threshold value by assigning to such area the same 

selection probability. 

• The Boltzmann selection is shown in Figure 1(d). This operator exponentially favors 

the most promising regions (the zones with high function value), as shown in Figure 

1(d). Most of the probability mass is condensed on a single peak which corresponds to 

the function optimum. Since the remaining region is quite flat, the Boltzmann selection 

will deliver a selected set clustered on the peak region. 

• The Proportional selection is shown in Figure 1(e). This operator, proposed by John 

Holland for the standard genetic algorithm, selects points with some probability 

directly proportional to its objective value. The resulting probabilistic model of this 

method, shown in Figure 1(e), is very similar to the objective function (although in a 

different scale). 

• The Tournament selection is shown in Figure 1(f). The tournament selection picks the 

best point found in a randomly chosen subset of the population. The usual size of the 

subset is 2. Figure 1(f) shows that the resulting probabilistic model acquires the 

roughness of the objective function. A larger subset would increase the selection 

pressure on the winning individual, therefore, flatting the density function shown. 

Zhang and Mühlenbein have shown the selection models just illustrated can drive the 
population to the function optimum (Zhang & Mühlenbein, 2004). The main factor that 
makes convergence possible is the bias the selection operator introduces into the population. 
In the following section we provide simple proofs of the convergence of the empirical 
selection distribution to the selection distribution. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Fig. 1. a) Objective function example, b) uniform distribution, c) to f) probability densities of 
the most widely used selection methods.   
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3. Convergence of the empirical selection distribution to the selection 
distribution 

The empirical selection distribution equations for the four selection methods are shown in 

Table 2. In this section we provide simple proofs on the convergence of the empirical 

selection distribution to the selection distribution with large population size. In fact, the 

larger the population size, the better the approximation of the empirical selection 

distribution to the selection distribution.  

3.1 Discrete variables 

Assume an EDA with discrete variables and a search distribution denoted by ),( txp  (the 

continuous case will be further tackled). 

Truncation selection. Say the search space is described by m  binary variables, 

{ }myyy ,...,, 21 . There are mn 2=  combinations, and denote by ix , { }ni ,...,2,1=  to each 

combination. Then, for a large sample X  with size nX >>|| , every combination ix  receives 

a frequency ifreq  of instances. The empirical selection distribution at generation t  is given 

by: 
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Being || tS  the number of instances of X  such that txf θ>)( . Now recall that for a infinite 

sample ),(||/ txpXfreq ii = , then for ||/||)( XSt t=α  the empirical selection distribution is 
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which is exactly the expression given in Table 2 for the infinite sized population. The 

)(tα value is the proportion of truncated solutions. 

Boltzmann selection. The empirical selection model is given by: 
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then, in an analogous way to the truncation method: 
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Substituting ),(|| txpXfreq ii ⋅= , and ),(|| txpXfreq ii ⋅= , ∑
=

⋅=
n

k

xft
k

ketxptZ
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So, we have the exact Boltzmann selection distribution. 
Proportional selection. The empirical selection model is given as follows: 
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Substituting, ),(|| txpXfreq ii ⋅=  then: 
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n
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kk xftxptE
1

)(),()( , then the empirical selection for such large sample X  is given 

by: 
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which is exactly the expression in Table 2. 
Binary tournament selection. For the tournament selection method the exact selection 
distribution for the discrete case is given by: 
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being C the normalization constant, the number 2 in Table 2 is also a constant, so it is 
absorbed by C. Then the empirical selection distribution is given by: 
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Where )()(if,1),( ij xfxfjiI <=  and 0 otherwise. The term ∑∑
= =

X

i

X

j

jiI
1 1

),( is a normalization 

constant. Then, considering that for any y value the number of instances in the large 

population X  are ),(|| typXfreqy ⋅= , and the number of instances of a variable (vector) 

value  ix  is ),(|| txpXfreq ii ⋅= , then substituting: 
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which is the exact selection distribution for ∑ ∑
= <

⋅=
||

1 )()(

),(),(
X

i xfyf i

typtixpC . 

3.2 Continuous variables 
For the continuous case, consider a univariate search space with domain in the interval [a,b], 

then a set of points ix  for i=1,2,...,|X| define partitions. If we use these points as possible 

instances of a discrete variable, then, we have the equivalence with the discrete selections 

distribution previously shown. The partition size is 1i i ix x+Δ = − , if ε<Δi , the sums in 

Equation 8 can be written as Riemann sums. Even though this is not a proof for continuous 
cases, it is a strong argument to explain the convergence of the empirical selection 
distribution to the selection distribution. Figure 2 shows the similarities between the exact 
selection density function and the empirical selection distributions. 

4. Computing the search distribution 

Following the usual steps of an EDA, an arbitrary large sample should be obtained from the 

empirical selection distribution, and then used to learn the search distribution parameters. 

In our approach, sampling the empirical selection is avoided without diminishing the 

advantages of using all the information at hand. It is known that the relative frequency of a 

point ix  for an infinitely large sample is equal to the probability ),(ˆ txp i
S . Thus, the sampling 

process can be avoided and ),(ˆ txp i
S  can be used as the frequency of the point ix . 

For example, suppose that the search distribution is a Gaussian with mean μ  and variance 

v. These parameters must be computed to get the best approximation of the Gaussian to the 

selection model. Assume (for a moment) that a sample Ŝ  of size |ˆ|S  is obtained from the 

empirical selection distribution. The only possible values sampled from the empirical 

selection distribution are those in the population. Hence, most of the points ix  would get 

more than one instance in the sample Ŝ . Denote the number of instances of a point ix  

as ifreq , the estimator of the mean is: 
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Selection Model Empirical Selection 
Truncation 

  
Boltzmann 

  
Proportional 

  
Binary Tournament 

  

Fig. 2. Left: Selection model plot. Right: empirical selection distribution plot. 

Let us denote ),(ˆˆ txpp i
SS

i = . We know that when ∞→|ˆ|S , then, S
i

i p
S

freq
ˆ

|ˆ|
= . Substituting this 

term in Equation 13, the mean is simply computed as follows: 

 ∑
=

⋅=
||

1

ˆ
X

i

i
S
i xpμ , (14) 

where S
ip̂  is the probability of a point computed with the empirical selection distribution. 

Therefore, sampling the empirical distribution is not necessary. Also important, note that 
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the computation of the probabilities S
ip̂  is independent of the search distribution 

parameters. This allows us to easily adapt an EDA to any of the four selection models. These 
models cover most EDA implementations and other selection methods can be also expressed 

as distributions.  In addition, the computational cost of S
ip̂  in most of the cases is lower or 

equal to that of applying a selection operator. For example, the Proportional and Boltzmann 
selections must calculate the probabilities in Table 2 in order to obtain a sample which 
becomes the selected set. This sample is not necessary for the empirical selection distribution 
based EDA (ES-EDA). For the truncation method in the standard EDA as well as the ES-
EDA, it is only necessary to know the individuals whose objective function is greater than 

tθ , thus, the computational cost is the same. The binary tournament selection requires 

comparisons of the order of the selected set size, while the empirical selection distribution 
requires comparisons of order |X|(|X|-1)/2, hence, it is the unique case in which an ES-
EDA has a greater cost than the standard EDA. The parameter computation in the ES-EDA 
in general increases its computational cost only by multiplying each individual value xi by 

its corresponding frequency S
ip̂ , which is a minimal cost. 

5. Related work 

In order to show that this work is an extension of previous but less general approaches, we 
will show the equivalence of the resulting formulae when applying frequencies from the 
empirical selection distribution. Yunpeng et al. (Yunpeng et al., 2006) approximate the 
Boltzmann distribution with a Gaussian model by minimizing the Kullback-Leibeler 
divergence. The computation of the Gaussian distribution parameters is presented in 
Equations 15 and 16. Note that this approach which requires costly analytical work, gives 
exactly the same formulae as the Boltzmann empirical selection distribution presented in 
Table 2 with the UMDAc and the EMNAglobal. 
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6. Modifying successful EDAs with the empirical selection distribution 

This section presents several successful EDAs which have been modified to accept the 

relative frequencies given by the empirical selection distribution. Continuous and discrete 

EDAs with univariate and multivariate models are presented. Table 5 presents the notation 

used.  
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),( txp  Search distribution in generation t. 
n Number of variables. 

tX  Population. 
||X  Population size. 

S
jp̂  Frequency of  ix , according to ),(ˆ txp i

S  in Table 2. 

tF  Population objective values. 

bestX  An optimum approximation. 
),( kxI  Indicator, 1 if kxi = , and 0 otherwise. 

Table 5. Notation used for the empirical selection based EDAs. 

A practical EDA based on the empirical selection distribution is presented in Table 6. Since 
the parameter computation in line 8 is the only section that should be changed according to 
the particular search distribution, a pseudo-code is separately presented for each algorithm. 
The selection procedure in line 6 must be understood as the computation of the empirical 
selection distribution (according to Equations in Table 2). 
 

Practical EDA based on the Empirical Selection Distribution 

1 Initialize the search distribution model p(x,0) 
2 Sampling(Xt ,p(x,0)) 
3 Evaluation(Ft , Xt) 
4 While the stopping criterion is not met do 
5  Selection( ),(ˆ txpS , Xt, Ft) 

6  Parameter_Computation(p(x,t), ),(ˆ txpS , Xt , Ft) 

7  Sampling(Xt+1, p(x,t)) 
8  Evaluation(Ft, Xt+1) 
9  Elitism(Xbest, Ft+1, Xt+1) 
10 End While 

Ensure: An optimum approximation Xbest. 

Table 6. Pseudo-code a practical EDA based on the empirical selection distribution. 
 

1 For (i=1 to n) { 
2  For (k=1 to mi) { 
3   

∑
=

⋅=
||

1

,
ˆ),(

X

j

S
jjki pkxIb  

4  }  
5 }   

Table 7. Pseudo-code for the ES-UMDA parameter computation. 

6.1 UMDA 

The Univariate Marginal Distribution Algorithm (UMDA) was introduced by Mühlenbein 

and PaaB (Mühlenbein & PaaB, 1996). It is based on the estimation of univariate marginal 

probabilities. This model considers that all variables are statistically independent. It uses the 

simplest model for discrete distributions. Each variable ix  has attached a probability 
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vector kib , , that is, the probability of ix  taking the value k, is: )(, kxpb iki == . Note that in the 

original UMDA the computation of the parameter kib ,  is basically done by counting bits of a 

variable of the selected set.   
The UMDA is quite simple to adapt to the relative frequencies given by the empirical 
selection distribution. The pseudo-code of the ES-UMDA (ES=Empirical Selection) 
parameter computation is shown in Table 7. 

6.2 UMDAc 
The Univariate Marginal Distribution Algorithm for continuous domains (UMDAc) was 
introduced by Larrañaga et al. (Larrañaga et al., 1999). It uses a univariate model, in the 
specific case of UMDAGc, there are n univariate Gaussian distributions (for a n-dimensional 

problem). Two parameters are needed for the Gaussian at each dimension i, the mean iμ  

and the standard deviation σi. The computation of both parameters is simply done by 
weighting each point by its corresponding relative frequency (probability) as shown in 
Table 8. 
 

1 For (i=1 to n) { 
2  

∑
=

⋅=
||

1

,
ˆ

X

j

ij
S
i xpμ  

3  

∑
=

−⋅=
||

1

2
,

2 )(ˆ
X

j

iij
S
ii xp μσ  

4 }   

Table 8. Pseudo-code for the ES-UMDAc parameter computation. 

6.3 K2-Bayesian-network based EDA 
Bayesian networks have been successfully used in EDAs, for instance the Bayesian 
Optimization Algorithm (BOA) introduced by Pelikan et al. (Pelikan et al., 1999). A BOA-
like algorithm based on the K2 algorithm (Cooper & Herskovits, 1992) is presented. The 
parameter computation has been modified to use the empirical selection distribution. The 
K2 is a greedy heuristic search method, for maximizing the probability P(BS,D) of the 
structure BS and the data D. For maximizing P(BS,D) the K2 maximizes ),( iig π , which is a 

measure related with the probability of xi given a set of parents πi. 

 ∏∏
==

−+
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=
ii r
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ijk
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j iij

i
i N

rN

r
ig

11

!
)1(

)1(
),( π , (17) 

where xi has ri possible discrete values. Each variable xi in Bs has a set of parents, which are 
represented by a list of variables πi. Nijk is the number of cases in D in which the variable xi 
has the value vik, and πi is instantiated as wij. wij denotes the j-th unique instantiation of πi 

relative to D, and qi is the number of such unique instantiations of πi. ∑
=

=
ir

k

ijkij NN
1

. For a 

deeper explanation of the K2 algorithm the reader is directed to (Cooper & Herskovits, 
1992). 
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Learning a Bayesian network with the K2 is a counting process of point instances. Then, in 

order to compute Equation 17 an integer frequency for each point is needed. For obtaining 

an integer frequency, let us define a sample size for the selection method, say |ˆ|S . When 

using the empirical selection distribution we have a relative frequency S
lp̂  associated with a 

point xl, if that point is such a case for ijkN , then, instead of summing a single case we will 

sum )ˆ|ˆ(|integer S
lpS ⋅ . As |ˆ|S  grows, the approximation of the K2 Bayesian network to the 

empirical selection distribution will be more accurate, but the computational cost of 

Equation 17 increases as well. Once the K2 Bayesian network structure has been learned, the 

frequencies S
lpS ˆ|ˆ| ⋅  must be used to compute the conditional probabilities. 

6.4 EMNAglobal 
The EMNAglobal was introduced by Larrañaga et al. (Larrañaga et al., 2001). It is based on the 

estimation of a multivariate normal density function. This model can represent linear 

dependencies between normal variables in the covariance matrix. The pseudo-code of the 

ES-EMNAglobal parameter computation is shown in Table 9. Note that it is quite easy to 

insert the empirical selection distribution in univariate as well as multivariate algorithms, 

also it is inserted in discrete and continuous domains with a minimum analytical and 

computational effort.  
 

1 For (i=1 to n) { 
2  

∑
=

⋅=
||

1

,
ˆ

X

j

ij
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i xpμ  

3  For (k=1 to i) { 
   

∑
=

−−⋅=
||

1

,,, ))((ˆ
X

j

ikjiij
S
iki xxp μμσ  

   
kiik ,, σσ =  

  }  
4 }   

Table 9. Pseudo-code for the ES-EMNAglobal parameter computation. 

7. Experiments and performance analysis 

This section provides a set of experiments to address the performance and advantages of the 

empirical selection distribution. Two kinds of experiments are presented: 

1. Graphically we show that the search distribution based on the empirical selection 
distribution constitutes a robust and better approximation to the selection model.  

2. Using the EMNAglobal (Larrañaga et al., 2001) and the BMDA (Pelikan & Mühlenbein, 
1999), we show the impact of the empirical selection distribution on the EDA 
performance. 

7.1 Graphical comparison 
For better plots, the unidimensional objective function shown in Figure 3 is used. This 
analysis contrasts the three concepts discussed in the introduction: the ideal EDA, the 
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standard EDA, and the EDA  with the empirical selection distribution, combined with the 
four discussed selection methods.  
Even though the exact selection distribution can be computed for the ideal EDA, to perform 
the correct comparison we use a predefined Gaussian model for the three approaches.  We 
show the Gaussian approximation with a very large population (considered as infinite), 
contrasted with the approximation computed by using the selected set from a standard 
sized population, and the approximation computed by using the empirical selection 
distribution. The experiments are designed as follows:  

• The ideal EDA. A very large population (104 individuals) equally spaced is used, then, 
a larger selected set (105) is extracted using the selection method. Using the huge 
selected set (105 individuals) the parameters of the search distribution are computed. 
This approximation will be called the exact approximation. A special case is the 
truncation method which uses the same population size, but a smaller selected set is 

obtained by truncating at 9.0=θ . 

• The standard EDA. A relatively small population (30 individuals) is randomly drawn, 
the selection method is applied delivering the selected set used to compute the search 
distribution. Most of the selection methods add randomness to the procedure (except 
the truncation method which delivers a deterministic selected set), as a consequence the 
search distributions could differ after applying the selection method to the same 
population several times. Thus, we present the different search models computed when 
selecting 10 selected sets of 15 individuals from the same population. 

• The EDA with the empirical selection distribution. Using the same population of 30 
individuals used by the standard EDA, the empirical selection distribution is used to 
compute the search distribution parameters. Notice that the empirical selection 
distribution is unique for a given population as well as the search model delivered by 
this method. 

 

 

Fig. 3. Unidimensional objective function used for the graphical experiments. 

Truncation selection. The truncation method shown in Figure 4(a) is basically the same for 
the standard EDA and the empirical selection distribution, because the points used are the 
same in both approximations. Thus, in this case the empirical selection performs at least as 
well as the standard selection method. 
Boltzmann selection. As shown in Figure 4(b), the empirical selection method delivers a 
very good approximation to the exact model. The search models computed by the standard 
EDA approximation are a belt of Gaussians.  The empirical selection approximation is at the 
middle of this belt, it is less affected by a single point or small set of points (robustness). It is 
possible that the randomness of the standard selection method guides the search to a better 
optimum approximation. In general, it is not the expected behaviour, given its difference 
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with the exact model, the small size of the selected set (usually 50% of the population) and 
the consequent loss of information which favors the tendency of being biased to sub-optimal 
regions. Also, it is expected that the behaviour of the Boltzmann selection varies according 

to the β  value. The empirical selection computes the same search model from the same 

population, thus, a more stable behaviour is expected in contrast with the standard EDA. 
This could be especially useful when designing annealing schedules, because with the 
empirical selection distribution a similar performance under similar conditions is expected. 
 

  

(a) (b) 

  

(c) (d) 

Fig. 4. Selection methods: (a) truncation, (b) Boltzmann, (c) proportional and (d) tournament. 
Search distributions for: 1) The exact approximation with dashed line, 2) the standard EDA 
approximation with doted lines, and 3) the empirical selection approximation with solid 
line. The objective function (solid line), and the population used for practica EDAs (circles). 
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Proportional selection. The proportional selection does not use extra parameters, therefore, 
no expensive parameter tuning is required. At the same time, however, there is no way to 
control the high selection pressure exerted over the fittest individuals that usually lead the 
population to premature convergence. Thus, a search distribution which better represents 
the selection method could be useful, also a more predictable search model is useful when 
tuning other controls such as the population size, because the expected behaviour could be 
better inferred. Figure 4(c), shows the search densities (points) computed when applying the 
selection method 10 times on the same population. Notice that these models are easily 
biased to different regions, most of them suboptimal. 
Binary tournament selection. The binary tournament selection seems to be the most robust 
selection method according to Figure 4(d). The plot shows that this selection delivers 
Gaussians more similar than those delivered by other selection methods. This selection can be 
used as a reference for the expected performance of an EDA, considering the robustness, and 
the good performance of this selection according to the experiments in the next section.  The 
parameter tuning for other selection methods can be done trying to obtain at least the same 
performance as the binary tournament selection. It is parameter free, and it is less sensible to 
large objective values in the population. As shown in Figure 4(d) the empirical selection 
distribution computes an accurate approximation when compared with the exact method. 

7.2 Performance comparison 
It has been previously shown that the estimation of the search distribution according to the 
empirical selection distribution accurately approximates the exact search distribution.  Other 
claim is that the empirical selection distribution preserves some building blocks that can not 
be preserved by the standard EDA, due to the fact that the last one only uses a part of the 
population, while the empirical selection based EDA use the whole population in most of 
the cases.  To support these arguments, we present experiments using the bivariate marginal 
distribution algorithm (BMDA) (Pelikan & Mühlenbein, 1999), and the EMNAglobal 
(Larrañaga et al., 2001), as well as the counterparts based on the empirical selection 
distribution: the ES-BMDA and ES-EMNAglobal.  

7.3 Test 1. The EMNAglobal 
We present a comparison using the EMNAglobal and three problems widely used to test 
EDAs performance (Larrañaga et al., 2001): Sphere, Griewangk and Rosenbrock. In order to 
maximize the functions and convert them to have positive objective values, an objective 
function g(x) is adjusted as: f(x)=-g(x)+1.8e7, and f(x) is used as the fitness function. 
Experiments description: 30 independent runs are performed with 50 variables, the domain 
for all variables is [-600,600], the population size is 2000,  selecting 1000 individuals for the 
standard EMNA. Truncation is  50% of the population, and elitism according to the general 
EDA in Table 6. The annealing schedule for the Boltzmann selection is fixed by initializing 

00 =β , n/100=Δβ , and βββ Δ+= −1tt . For the Rosenbrock function n/50=Δβ . For the 

Boltzmann and proportional selections the objective function is normalized by applying 
f(x)=g(x)-gmin/(gmax-gmin+1), in order to avoid numerical problems.  
Stopping criterion: 300 000 function evaluations.  
Results: Table 10 compares the results obtained by the standard EMNA (denoted by St.), 
and the Empirical Selection based EMNA (denoted by ES). We report the mean and 
standard deviation of the objective function as well as the result of a hypothesis test based 
 

www.intechopen.com



Efficient Estimation of Distribution Algorithms by using the Empirical Selection Distribution  

 

245 

 

n  Truncation Boltzmann Proportional 
Binary 

Tournament 
Sphere 

St 5.048e-9 (1.158e-9) 2.168e-6 (7.745e-7) 7.703e-2 (2.666e-2) 6.219e-9 (1.234e-9) 

ES 5.159e-9 (1.105e-9) 2.370e-6 (5.901e-7) 6.738e-2 (2.347e-2) 5.762e-9 (1.395e-9) 

10 

Hyp. Test N N N N 

St 3.767e-8 (7.306e-9) 9.924e-1 (1.356) 7.365 (2.314) 6.607e-8 (1.166e-8) 

ES 3.790e-8 (6.003e-9) 1.092 (2.298e+0) 6.661 (1.071) 7.628e-8 (1.074e-8) 

20 

Hyp. Test N N N St 

St 1.093e-7 (1.123e-8) 2.725e+1 (1.804e+1) 2.018e+2 (1.524e+2) 1.660e-5 (1.914e-6) 

ES 1.091e-7 (7.991e-9) 1.726e+1 (1.503e+1) 5.549e+1 (1.005e+1) 3.520e-5 (3.874e-6) 

30 

Hyp. Test N ES ES St 

St 2.213e-7 (1.673e-8) 1.060e+2 (4.624e+1) 1.283e+3 (6.554e+2) 1.889e-3 (2.983e-3) 

ES 2.239e-7 (1.682e-8) 6.394e+1 (4.757e+1) 2.142e+2 (2.060e+1) 1.094e-3 (1.099e-4) 

40 

Hyp. Test N ES ES ES 

St 1.999e-6 (2.266e-7) 4.289e+2 (1.779e+2) 4.735e+3 (1.379e+3) 3.543 (5.801) 50 

ES 1.712e-6 (2.082e-7) 1.826e+2 (9.569e+1) 5.357e+2 (6.471e+1) 1.111e-2 (1.032e-3) 

 Hyp. Test ES ES ES ES 
Griewnagk 

St 9.356e-10 (2.077e-10) 0.36098 (0.18955) 0.3194 (0.05671) 1.062e-9 (3.608e-10) 

ES 9.231e-10 (2.251e-10) 0.17173 (0.09324) 0.3343 (0.06324) 1.114e-9 (2.647e-10) 

10 

Hyp. Test N ES N N 

St 4.921e-9 (5.351e-10) 0.19738 (0.19323) 0.6325 (0.07413) 1.003e-8 (1.788e-9) 

ES 4.968e-9 (6.329e-10) 0.06382 (0.08591) 0.6553 (0.04763) 1.207e-8 (1.526e-9) 

20 

Hyp. Test N ES ES St 

St 1.044e-8 (1.007e-9) 0.13667 (0.11265) 1.0302 (0.06677) 1.125e-6 (1.846e-7) 

ES 1.004e-8 (9.885e-10) 0.03527 (0.05150) 0.9466 (0.03131) 2.223e-6 (3.029e-7 

30 

Hyp. Test N ES ES St 

St 1.817e-8 (1.357e-9) 0.26945 (0.12897) 1.3946 (0.19001) 6.056e-4 (2.088e-3) 

ES 1.809e-8 (1.694e-9) 0.05683 (0.05088) 1.0543 (0.00679) 4.868e-5 (5.506e-6) 

40 

Hyp. Test N ES ES ES 

St 7.568e-8 (1.352e-8) 0.54303 (0.24312) 2.3571 (0.46186) 1.036e-1 (1.265e-1) 50 

ES 6.852e-8 (1.364e-8) 0.17259 (0.07979) 1.1365 (0.02057) 3.899e-4 (3.021e-5) 

 Hyp. Test ES ES ES ES 
Rosenbrock 

St 9.292 (7.714) 6.795 (0.5562) 1.125e+05 (65566) 7.647 (0.2958) 

ES 8.929 (3.113) 6.862 (0.4907) 1.133e+05 (56613) 7.880 (0.7487) 

10 

Hyp. Test N N N St 

St 20.131 (5.753) 19.404 (2.4900) 1.313e+07 (7154997) 17.915 (0.9468) 

ES 19.339 (4.762) 18.386 (1.1359) 9.138e+06 (2823051) 17.657 (0.8191) 

20 

Hyp. Test N ES ES N 

St 28.865 (1.218) 35.728 (7.9373) 1.656e+08 (154793875) 31.681 (8.1603) 

ES 30.695 (6.149) 35.246 (5.2851) 5.800e+07 (16388688) 27.852 (0.6024) 

30 

Hyp. Test N ES ES ES 

St 42.413 (4.465) 71.699 (18.6654) 5.469e+08 (269436266) 84.128 (52.2806) 

ES 41.709 (3.324) 53.984 (8.8081) 1.845e+08 (53383769) 40.544 (3.1687) 

40 

Hyp. Test N ES ES ES 

St 65.604 (13.422) 1109.840 (3713.7494) 1.183e+09 (641262869) 2594.724 (3675.9199) 50 

ES 60.987 (9.248) 93.034 (16.7544) 3.695e+08 (82888904) 61.753 (4.9202) 

 Hyp. Test N ES ES ES 
 

Table 10. Performance comparison between the standard EMNAglobal (St) and the empirical 
selection distribution based EMNAglobal (ES). 
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on the Bootstrap methodology with a significance of 5% (Efron & Tibshirani, 1993). We test 
that the mean of the ES-based EMNAglobal is less than the mean of the standard EMNAglobal, 
and vice versa.  An N below the mean and standard deviation means that neither is better, 
St means that the standard EMNAglobal is the best, an ES that the empirical selection based 
EMNAglobal is the best. The conditions of the experiment are maintained while the 
dimensions are growing, the purpose is to show that the empirical selection in general 
performs better, and can use the information efficiently. Note that the standard EDA (St-
EDA) and the Empirical Selection EDA (ES-EDA) are very similar in lower dimensions, but 
for higher dimensions the ES-EDA clearly outperforms the St-EDA. The explanation is that 
the population size is not growing with the dimensions, thus, for lower dimensions the 
selected set size is enough to adequately estimate the search distribution, but for higher 
dimensions the information is not sufficient, or it is not efficiently used.  The runs where the 
St-EDA outperforms the ES-EDA (tournament 20 and 30 variables), can be explained by 
selection pressure issues. The St-EDA uses a subset of the best individuals in the population, 
no matter which selection method is used. On the other hand, the ES-EDA uses all the 
points, so for the same parameters the variance of the ES-EDA will be greater than the St-
EDA, because the whole population covers a wider region than the selected set. So, the 
convergence of the St-EDA is faster, and the exploration is concentrated in a smaller region, 
resulting in a poor performance for higher dimensions as shown in Table 10. Notice that 
even the hypothesis test says that the St-EDA is better in 4 cases, the ES-EDA finds solutions 
very close to the optimum in all cases. 

7.4 Test 2. The BMDA 

The BMDA works in discrete domains, in this case a binary domain. It builds a graphical 

model with bivariate dependencies, the dependencies are considered according a 2χ  

hypothesis test. The 2χ  computation uses empirical probabilities, thus, the ES-BMDA 

computes these empirical probabilities by summing the relative frequencies S
ip̂  given by the 

empirical selection distribution formulae. For example, if we need to compute the marginal 

probability of the variable jx  takes the value of 1, say )1( =jxp , if an individual i in the 

population is an instance of 1=jx  then we sum S
ip̂ , the standard procedure at the end 

divides the sum over the total number of individuals, when using the empirical selection 

this normalization is not necessary. This test is performed by using the deceptive function of 

order 3 shown in Equation 18, which was also used for the experiments in the original paper 

of the BMDA (Pelikan & Mühlenbein, 1999). 

 ∑
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where x is a bit string, π  is any permutation of order n, and f3 is defined in Equation 19.  
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For n = 30 we use π = { 6, 27, 18, 20, 28, 16, 1, 23, 24, 3, 2, 13, 8, 5, 17, 11, 29, 15, 30, 9, 25, 12, 

19,  22,  4,  10,  14, 21, 26). For n = 60, π = { 49, 31, 40, 59, 5, 23, 57, 37, 47, 19, 27, 30, 8, 56, 3, 

36, 45, 17, 41 , 33, 21, 53, 39, 51, 50, 29, 16, 10, 24, 55, 15, 32, 7, 13, 2, 52, 14, 60, 12, 22, 34, 25, 
35, 1, 28, 18, 20, 9, 38, 26, 46, 58, 42, 43, 44, 48, 6, 4, 11}. The deceptive function correlates 
subsets of 3 variables. Pelikan and Mühlenbein (Pelikan & Mühlenbein, 1999) shown that 
the BMDA is capable of solving this problem that can not be solved by the simple GA. Our 
purpose is to show that the ES-BMDA is more efficient than the standard BMDA and can 
use the information in the whole population, thus it is capable of finding and using more 
correlations to approximate the optimum. 
Experiments description: We reproduce the settings of the original BMDA paper (Pelikan & 
Mühlenbein, 1999). 30 independent runs are performed with 30 and 60 variables, the 
population size is 1300, selecting 1000 individuals for the standard EDA. 50% of the best 
individuals are preserved no matter which selection is used (as in the original paper) for the 
BMDA and the ES-BMDA. Truncation is 50% of the population, and elitism according to the 
general EDA in Table 6. The annealing schedule for the Boltzmann selection is fixed by 

initializing 00 =β , 1=Δβ , and βββ Δ+= −1tt . For the Boltzmann and proportional 

selections the objective function is normalized by applying f(x)=g(x)-gmin/(gmax-gmin+1), in 
order to avoid numerical problems.  
Stopping criterion: To reproduce the results of the original BMDA we use the ordering 

parameter as stopping criterion (Pelikan & Mühlenbein, 1999). The ordering parameter is 

defined in Equation 20, where p is the vector of univariate marginal frequencies pi(1). When 

95.0)( >pχ  we stop the algorithm that means that the univariate probabilities are almost 1 

or 0. 
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Results: Table 11 compares the results obtained by the standard BMDA (denoted by St.), 
and the Empirical Selection based BMDA (denoted by ES). We report the mean and 
standard deviation of the evaluations and objective function, as well as the result of a 
hypothesis test based on the Bootstrap methodology with a significance of 5% (Efron & 
Tibshirani, 1993). We test that the mean of the ES-BMDA is less than the mean of the 
standard BMDA, and vice versa, for 30 and 60 variables. For the evaluations test we only use 
the runs in which the optimum is found. The evaluations comparison is not perform for 60 
variables, because most of the runs did not find the optimum. The results bring out evidence 
about the arguments that the empirical selection based EDAs are more efficient, and that the 
use of the information in the whole population is an advantage to build optimal solutions, 
because as shown the ES-BMDA needs less evaluations than the St-BMDA, also, the ES-
BMDA is more effective to find the optimum in the 60 dimension runs, so, with the same 
resources (population size) the ES-BMDA can deliver better results. 

8. Perspectives, future work and conclusions 

EDAs researchers have approximated the selection distribution since the first approaches 

(Mühlenbein, 1997; Bosman & Thierens, 2000). This chapter proposes a general method for 

this purpose. Most of the search distributions used by EDAs are parametric, and the  
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n  Truncation Boltzmann Proportional 
Bin.ary 

Tournament 

Deceptive Function of Order 3,Objective Function 

St 10 (0) 9.993333(0.02537081) 9.997 (0.01825742) 9.997 (0.01825742) 

ES 10 (0) 10 (0) 9.997 (0.01825742) 9.997 (0.01825742) 

30 

Hyp. 
Test 

N N N N 

St 19.79 (0.1213431) 19.73 (0.1368362) 19.60667 (0.1818171) 19.81 (0.1028893) 

ES 19.84 (0.1101723) 19.85(0.1252584) 19.80667(0.1080655) 19.85333(0.1166585) 

60 

Hyp. 
Test 

N ES ES N 

Evaluations 

St 14841.67(783.7887) 14300(482.8079) 24526.67(1497.223) 15925(609.5151) 

ES 14755(619.0023) 14148.33(441.2919) 22923.33(869.2777) 15578.33(578.4467) 

30 

Hyp. 
Test 

N N ES ES 

Number of times the optimum was reached (in 30 runs) 

St 30 28 29 29 30 

ES 30 30 29 29 

St 3 2 0 3 60 

ES 6 9 3 7 

Table 11. Performance comparison between the standard BMDA (St) and the empirical 
selection distribution based BMDA (ES). 

parameters are learned from a sample by counting frequencies. Thus, in addition to the 

presented algorithms, any other search distribution which uses frequencies can be modified 

to use the empirical selection distribution. For instance bivariate models (Pelikan & 

Mühlenbein, 1999) and histograms (Tsutsui et al., 2001) are completely based on frequencies. 

Another important line of study are clustering based algorithms (Larrañaga & Lozano, 

2001), for example the k-means algorithm is based on distances. When using the empirical 

selection distribution in clustering, instead of using a single point in the position ix , we use 

its relative frequency ),(ˆ txp i
S . This measurement will move the mean of the cluster to the 

regions with highest fitness values, helping to perform a better search. 

Important issues in EDAs such as diversity and premature convergence can be tackled using 

the empirical selection distribution. Studies on convergence phases (Grahl et al., 2007) have 

shown that the maximum likelihood estimated variance might not be  the best to perform an 

optimum search. Thus, a possible line of work is: how to favor diversity using the empirical 

selection distribution? A possibility is by simply modifying the fitness function into the 

empirical selection distribution formulae. This line of work may be an alternative to recent 

proposals on variance scaling (Grahl et al., 2006; Bosman et al., 2007). 

Multi-objective applications and how to insert the Pareto dominance in the selection 

distribution is another possible research line. With respect to this topic the Pareto ranking 

seems to be the most natural way of tackling this important issue. 

Ever since the very first proposed EDAs (Baluja, 1994) to the most recent works (Pelikan et 

al., 2008), incremental learning has been applied to the learning distribution phase. Future 

work must contemplate how to insert the empirical selection distribution into incremental 

approaches, or how to use historical or previous empirical selection distributions. 
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The selection methods presented are just a sample of the possibilities, other methods such as 
combined truncation-proportional, truncation-Boltzmann, 3-tournament, etcetera must be 
explored. 
Finally, the advantages of the presented method are summarized as follows:  

• it is easy to implement.  

• It has a wide range of applications. 

• It has low computational as well as analytical cost. 

• It avoids being wrongly biased by a single solution or a small set. 

• It uses all the information from the population to accurately approximate the selection 
distribution. 

• The perspectives, future use and applications are promising, and the possible lines of 
work are really extensive. 
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