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1. Introduction 

The design and realisation of lasers involves two main steps: the development of the gain 
medium and the development of the optical resonator. Naturally, both have a major impact 
on the device performance. The light that passes through the active medium and lies within 
a certain frequency range is amplified. The resonator confines the light and defines the way 
it travels through the gain medium. 
The focus of the present work is the design and realisation of micro resonators based on 
photonic crystals (PhCs). The key feature of PhCs is the possibility to design the dispersion 
relation for electromagnetic waves by patterning on a wavelength scale Joannopoulus et al. 
(2008). The optical properties of the resonator can be manipulated without almost any 
restrictions. Essential device parameters such as emission frequency, lasing far-field or 
cavity quality-factor (Q-factor) are balanced simultaneously. The PhCs are incorporated 
directly into the active region of a terahertz (THz) quantum-cascade laser (QCL) Köhler et 
al. (2002). The use of THz-QCLs allows for an easy experimental realisation of the desired 

resonator geometry. The large emission wavelength on the order of 100 μm allows for a 
simple processing using optical lithography and sets high tolerances for the fabrication. 
We present two different schemes for PhC laser resonators in theory and experiment. The first 
one uses a bulk active region which is surrounded by a PhC-mirror. The light is confined by 
the mirror and amplified in the central gain region. The spatial separation of the two main 
laser components allows for a simpler fabrication. However, it comes at the expense of larger 
devices. The second resonator type uses the PhC directly as the gain medium. It is fabricated 
from the active region of a THz-QCL, making the bulk gain region redundant. The device 
performance is greatly enhanced in terms of emission frequency control.  

2. Active region of the THz quantum-cascade lasers 

The basic building block of every QCL is a superlattice, materials with different bandgaps 
are grown on top of each other. If the thickness of the individual layers is in the range of a 
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few nm’s, a further quantisation of the electron states can be achieved. The theoretical 
fundamentals are from the 1970’s mainly by R. Tsu and L. Esaki Tsu & Esaki (1973); Tsu et 
al. (1974). The idea to use intersubband transitions as an active laser medium has been 
proposed in 1971 by R. F. Kazarinov and R. A. Suris Kazarinov & Suris (1971). The essential 
point is the possibility to design the electron wave functions by carefully selecting the 
thickness of the individual layers. We are able to control all the parameters in the active 
region, such as the dipole matrix element, the upper state life time or the transition energy 
independently of the used material system. All these parameters become independent of the 
used material system. To increase the gain further, identical cascades are grown on top of 
each other. Electrons from the ground state in one cascade are injected into the upper laser 
state of the next cascade, allowing for electron recycling. All these advantages and the 
opportunities in design have made QCLs the preferred monolithic source in the MIR and 

THz spectral region, covering wavelengths from 3 to 300 μm. 
The physical nature of the QCLs has another direct consequence, which is essential for  
this work. QCLs are unipolar devices, only one carrier type is involved in the current 
transport and the light generation. This makes QCLs insensitive to surface effects allowing 
for the realization of almost any resonator geometry. In contrast, the light generation in 
classical bandgap lasers is based on an electron-hole recombination across the bandgap. 
Therefore, an increase in device surface leads to a strong increase in surface leakage currents 
which in the end limits the device performance. 
The active region we are using is based on a gallium-arsenide (GaAs) / aluminium-gallium-
arsenide (AlGaAs) heterostructure. The barriers have an Al-content of 15 % leading to a 
typical height of 110 meV. A calculated bandstructure at lasing field is shown in Fig. 1(a), 
one cascade consists of only four wells. The optical transition in this design is vertical, 
leading to stronger coupling of the upper and lower laser state and reduced sensitivity to 
interface roughness. The 2.7 nm thin barrier, in between the double well, has the strongest 
influence on the transition energy. An increased thickness leads to a red-shift in the 
emission frequency as the anti-crossing between the upper and lower laser states is reduced. 
 

 
                                              (a)                                                                          (b) 

Fig. 1. (a) Calculated bandstructure at the lasing field of 9.8 kV/cm. The lasing states are 
marked with bold lines (purple=2, blue=3, orange=4). One cascade is marked with the grey 
box. (b) Field dependence of the dipole matrix elements. Only the transitions 3→2 and 4→2 
have a relevant coupling strength, the other transitions are optically not active. 
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The lower laser state is depopulated via a resonant LO phonon emission allowing us to 
achieve scattering times of around 0.5 ps Williams et al. (2002). Thereby, a stable population 
inversion can be achieved. The large separation of 36 meV between the lower laser state and 
the ground state reduces the thermal back filling strongly. Nevertheless, the operating 
temperature of THz-QCLs is still limited to cryogenic levels. The highest operating 
temperature reported currently is 186 K Kumar et al. (2009). 
One should keep in mind that the optical parameters of the active region depend on the 
applied field. The coupling strength between the upper and the lower laser state varies with 
the field. For values below 9.5 kV/cm the transition 4 → 2 is the dominant one, for higher 
fields 3→2, as illustrated in Fig. 1(b). The emission energy shows a blue-shift with increasing 
field for all the transitions due to the Stark effect. A larger applied field leads to a stronger 
separation of the electron states. 

3. Plasmonic waveguides 

The waveguide is responsible for the confinement of the optical mode, it guarantees the 
overlap with the gain region. For traditional bandgap lasers, waveguides based on total 
internal reflection are used. The gain region has a higher refractive index than the 
surrounding medium. However, this concept only works for waveguide thicknesses larger 
than the optical wavelength involved. For THz-QCLs this is almost impossible to achieve. 

The wavelengths are in the range of 60 to 300 μm in general. With the available growth 
techniques such as molecular beam epitaxy or metal-organic chemical vapour deposition, it 
is not practical to grow a heterostructure with the desired thickness and still to maintain the 

precision required. Typically, we are limited to 10 or 15 μm thick heterostructures. Such 
waveguides cannot rely on total internal reflection. The solution is the use of plasmonic 
waveguides. 
To be more precise, the waveguides for THz-QCLs rely on surface plasmons. As any other 

surface wave, surface plasmons are bound to an interface and decay exponentially into both 

media. For propagation, it is necessary that the refractive index has different sign on both 

sides of the interface. A conventional semiconductor which is undoped or low doped has a 

positive refractive index. Metals or highly doped semiconductors, which act quasi-metallic, 

have a negative refractive index in the THz spectral region. Therefore, if the active region is 

sandwiched between two, thin metallic or quasi-metallic layers, an efficient waveguide is 

formed. This concept is well known from the microwave technology, where micro strip 

waveguides are used successfully Käs & Pauli (1991). 

In this work we use the so-called double-metal (DM) waveguide Kohen et al. (2005). The 

entire structure consists of two gold layers and the active region in between. For an electrical 

contact between the metal and the semiconductor we use 100 nm thin highly doped n+-

contact layers. As the THz-mode hardly penetrates the metal, a confinement of almost 100 % 

is realised. Simulations for a 15 μm thin and 100 μm wide DM waveguide are shown in Fig. 

2. As the waveguide is much thinner the wavelength, only the first order mode in vertical 

direction can propagate. This mode shows an almost constant mode profile along the 

vertical axes. It has to be stressed that also the lateral confinement is excellent. The mode 

hardly leaks out of the waveguide into the surrounding air. Another advantage is the high 

reflectivity of 90 % for untreated facets due to the impedance mismatch between the 

waveguide and the free space Maineult et al. (2008). 
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Fig. 2. Two-dimensional simulation of a DM waveguide using Comsol Multiphysics 
(www.comsol.com). The mode profile is almost constant in the vertical direction. Despite 
the finite width of the ridge, there is no significant leakage in the lateral direction. 

4. Photonic crystal theory 

Section 2 described the design of the active region itself. The heterostructure designed can 

be interpreted as artificial crystal for electrons manipulating the electron wave functions. 

PhCs on the other hand can be seen as artificial crystals for light. The full dispersion relation 

for electromagnetic waves becomes designable. The combination of QCLs and PhCs allows 

us to design all aspects of the laser in terms of gain medium and optical resonator. 

4.1 Mathematical description of photonic crystals 

We will describe the optical properties for a classical system, the quantisation of the 

electromagnetic field can be neglected in this case. We use the Maxwell’s Equations Jackson 

(1999) with some significant simplifications. 

• There are no free charges or currents present in the system. 

• We restrict ourselves to purely dielectric media: dispersion is neglected, non-linearity is 
neglected, the refractive index is independent of time and the relative permeability is 
set to 1. Therefore, we are able to write the relative permittivity  solely as a function 
of position. 

• The involved fields vary harmonically in time, which allows us to replace any 

derivative in respect to time ∂/∂t by —iω. 
All this simplifications allows us to decouple the Maxwell’s Equation resulting in two 

independent equations for the electric field  and for the magnetic field  

 
(1) 

 
 

(2) 

For mathematical convenience normally the equation for the magnetic field is solved and 
then used to calculate the electric field. We want to obtain the solution for the PhC, which is 
a periodic system. According to Bloch’s Theorem, the solution has to have the same 
periodicity as the crystal, giving us the basic solution to our problem: 
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(3) 

where  is the Bloch wave vector and  the so-called Bloch function. We know that 

almost any periodic function can be written as a sum of harmonic functions. This defines the 
basic form for our unknown Bloch function: 

 
(4) 

where  is the sum over all reciprocal lattice vectors and  are the Fourier coefficients. 
After lengthy calculations, we have simplified a set of partial differential calculations into a 
set of linear equations. Now the Fourier coefficients become accessible: 

 
(5) 

The Fourier transform of the inverse dielectric function  can be calculated very efficiently 

with the Fast-Fourier Transformation giving us an easy-to-use tool for the design of PhCs. 

4.2 Limitations of the mathematical description 

As already mentioned, due to all these simplifications the results are valid only for ‘perfect’ 
systems. The PhC is infinitely large and consists of perfectly linear and loss-less materials. 
However, these limitations are not very critical for our devices. Due to the excellent 
coupling between the mode and PhC, even a small resonator behaves similar to the ideal 
PhC. The frequency dependent gain can be implemented by perturbation theory using a 

complex permittivity in the form ε = ε ’+ iδ. For realistic THz-QCL it is not even necessary as 

the error due to the gain is negligible Nojima (1998b). 

4.3 Design of photonic crystals 

The PhC used for the resonator experiments has always the same basic structure, a 
schematic is shown in Fig. 3(a). It consists of isolated, free-standing pillars which are 
surrounded by air. Such structures typically show full bandgaps for TM-polarised light 
Johnson et al. (1999), which is the polarisation of light emitted by a QCL. The PhC is 
embedded in a DM waveguide for the real devices. For the simulations we use 2D 
simulations of infinitely high rods which significantly reduces the computational effort. As 
the waveguide allows only one vertical mode with an almost constant mode profile to 
propagate, there is virtually no dependence in the vertical direction. Experiments by 
Schartner et al. (2006) show that 2D-PhCs in plasmonic waveguides can be simulated using 
only 2D simulations and achieving very accurate results. 
We use a ratio r/a of 0.3 for the calculations, where r is the radius of the pillars and a the 
period of the PhC. The refractive index for the pillars is set to 3.65, an experimental value for 
GaAs at 3 THz Yasuda & Hosako (2008). For now, the system is set ideal, i.e. the system is 
loss-less and infinitely large. The calculated bandstructure in Fig. 3(b) shows the expected 
full bandgaps for TM-modes. The first one spans from 0.21 to 0.3 [fa/c], the second one from 
0.39 to 0.51 [fa/c], where f is the frequency and c the speed of light. Frequencies which lie 
inside the bandgap cannot propagate through the PhC. The only possible solution for the 
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Maxwell’s Equations are waves with a complex -vector, in other words exponentially 
decaying waves. 
 

 
                                 (a)                                                                                    (b) 

Fig. 3. (a) Schematic of the PhC used. The isolated high-index pillars are arranged in a 
hexagonal lattice and surrounded by air. (b) The band structure for the ideal PhC. The first 
eight bands are presented, the full bandgaps for TM-polarised light are clearly visible. 

5. Photonic crystal mirror devices 

The first set of devices consists of two parts, a bulk gain region is surrounded by a PhC 

mirror. A schematic of the resonator is illustrated in Fig. 4. The PhC works as a frequency 

selective mirror allowing for tuning the emission frequency from the gain maximum into the 

bandgap of the PhC. The parameters of the PhC are identical to the previous section. The 

period is varied from 22 to 35 μm while r/a is 0.3. The entire device is embedded into a DM 

waveguide ensuring a strong interaction between the mode inside the gain region and 

inside the PhC. The thickness of the waveguide is equal for the different periods, it is 

defined by the thickness of the active region of 15 μm. 

5.1 Simulation results for photonic crystal mirrors 

For the simulation of the real device, the plane-wave expansion method (PWE) method is 

not well suited. The bulk gain region can be seen as a defect which breaks the periodicity of 

the PhC. So-called ‘super-cells’ allow for an incorporation of the defect while maintaining 

periodic boundaries by an artificial increase of the computational cell. However, the 

artificial increase leads to band folding, the number of possible bands is increased making 

the identification of individual bands difficult Feng & Arakawa (1997); Kuzmiak & 

Maradudin (1998); Zhi et al. (2003). 

To avoid these problems FDTD-calculations using the open-source package MIT 
Electromagnetic Equation Propagation (MEEP) are performed for our resonators Farjadpour et 
al. (2006). We restrict ourselves again to 2D-simulations of a hexagonal core which is 
surrounded by two rows of pillars. The core is large enough to support modes on its own. 
Therefore, we have also simulated reference cavities consisting of only the core, the pillars 
have been removed. Now the modes visible can be assigned either to the hexagonal cavity 
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Fig. 4. Schematic of the PhC-mirror device Benz et al. (2007). The bulk gain region is 
surrounded by a PhC which acts as a frequency selective mirror. The device is embedded in 
a DM-waveguide to ensure a strong modal coupling between the gain region and the PhC. 
 

 

Fig. 5. Simulated and measured spectra for the PhC-mirror devices Benz, Deutsch, Fasching, 
Unterrainer, Andrews, Klang, Schrenk & Strasser (2009). The dotted lines represent 
simulations for the bare cavity and the full device respectively. The solid lines show 
measured spectra for different periods of the PhC. 

or to the PhC. The calculated spectra in Fig. 5 show clearly that additional modes appear 
due to the PhC. For higher frequencies, the number of possible modes increases strongly, as 
the wavelength becomes smaller while the resonator size remains unchanged. Due to the 
strong optical coupling with the PhC, it is enough to use only two rows of pillars to achieve 
the frequency control. 

5.2 Experimental results for photonic crystal mirrors 

We have used the same active region to process devices with different periods, the 
corresponding spectra are shown in Fig. 5. The predicted modes are clearly visible in the 
measurements, corresponding to frequencies of 0.224, 0.256, 0.309 and 0.378 [fa/c]. One 
should keep in mind that the exact position of the frequencies also depends on the size of 
the core as the geometric path is changed for the modes. Nevertheless, the mode position 
overlaps nicely with the calculated bandgaps. This behaviour is expected, as the PhC-

www.intechopen.com



 Frontiers in Guided Wave Optics and Optoelectronics 

 

508 

mirrors shows the lowest losses for frequencies within the bandgap. The devices do not 
show single-mode emission, in general, as broad stop bands are used. Due to the 
inhomogeneously broadened gain with a typical full-width at half-maximum (FWHM) gain 
bandwidth of 130 GHz, multi-mode emission becomes easily possible Kröll et al. (2007). 

The device with a period of 31.05 μm has to be treated separately from the other devices. 

The laser emits between the first two bandgaps at 0.31 [fa/c]. This corresponds to a mode at 

the K-point. Such modes at high symmetry point appear at flat-band regions in the PhC-

bandstructure due to very low group velocity. The long interaction time with the PhC 

results in strong feedback. These regions are especially interesting for resonators without 

any bulk gain region. As they do not require any states inside the bandgap and still allow 

for an excellent frequency selection. 

6. Active photonic crystal laser 

The last resonator type that we are going to investigate is based purely on isolated pillars. 

The specifications for the PhC are identical to the previous sections, the same PhC geometry, 

ratio r/a, refractive index and waveguide. It is important to stress that now the bulk gain 

region has been removed, as shown in Fig. 6. The sub-wavelength, isolated pillars have to 

provide the optical feedback and the required gain. The pillars are fabricated directly from 

the active region of a THz-QCL and again embedded in a DM waveguide. Thereby, we are 

able to achieve a very simple and efficient pumping scheme. Only the pillars underneath the 

top contact are pumped and the electric field distribution is perfectly homogeneous. 

 

 

Fig. 6. Schematic of the active PhC laser Benz, Deutsch, Fasching, Andrews, Unterrainer, 
Klang, Schrenk & Strasser (2009). The pillars are fabricated directly from the active region of 
a THz-QCL, there is no need for an additional bulk gain region. This type of cavity relies on 
PhC band edges rather than on defect states. 

6.1 Simulation results for active photonic crystals 

As there is no defect incorporated, the real device is very close to the ideal PhC. The only 

limitation is the finite size which will be treated later. Starting from the PWE calculations we 

see immediately that lasing inside the bandgap is not possible as there are no allowed states. 

Lasing will occur at the flat band region at the K-point. However, to establish lasing at all it 
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is important to know the mode distribution inside the resonator. It is easy to calculate the 

electric field for the ideal PhC. The corresponding energy distribution shows that 95 % of the 

modal energy overlaps with the active pillars. This is necessary as only the pillars are 

pumped, the surrounding air is, in the best case, transparent. The high modal overlap in 

combination with the strongly reduced group velocity is predicted to give strong gain 

enhancement in this type of structure Nojima (2001; 1998a); Sakoda (1999). 

According to simulations, finite size arrays of isolated pillars support lasing modes on their 

own without the need for any further mirrors Nojima (1999). For our FDTD-calculations we 

arranged 37 pillars in a hexagonal shape. Even this small number of pillars already supports 

a few lasing modes, the calculated spectrum is shown in Fig. 7(a). The mode at 0.19 [fa/c] 

corresponds to the M-point and has a Q-factor of 60, the one at 0.21 [fa/c] to the K-point and 

has a Q-factor of 1000. For frequencies above 0.3 [fa/c] additional modes corresponding to 

higher lying bands show up. In between, the PhC bandgap is nicely visible. These 

calculations predict that these devices should operate in stable single-mode emission at the 

K-point. One should keep in mind that the simulations overestimate the Q-factor of the real 

device. The main limitation is the loss in the gold and the thin n+-layers. These effects are 

naturally ignored in the 2D-simulations. The reduction of the Q-factor due to interface 

roughness, which normally limits the Q-factor for PhC in the visible Asano et al. (2006); 

Srinivasan & Painter (2002; 2003), is not a  problem as the processing imperfections are 

much smaller than the wavelength. 

6.2 Experimental results for active photonic crystals 

As expected, the devices show a stable single-mode emission defined by the PhC. Fig. 7(a) 

shows the emission of devices with a 26.6 and 31.1 μm period respectively. Both devices are 
lasing around 0.23 [fa/c] which corresponds to the K-point or the mode with the 
significantly higher Qfactor. We attribute the discrepancy between experiment and 
simulation to imperfections in the processing, uncertainties in the refractive index of the 
active region and the effects of the DM waveguide. 
Apart from the possibility to predict the emission frequency, one should keep in mind that 

this concept shows a huge tuning range for lasing. The devices with a 26.62 μm period are 

lasing at 2.56 THz, which corresponds almost to the gain maximum of 2.6 to 2.7 THz Benz, 

Deutsch, Fasching, Andrews, Unterrainer, Klang, Schrenk & Strasser (2009). Using a 31.05 

μm period shifts the emission frequency to 2.25 THz. Spectra for both devices at different 

applied fields are shown in Fig. 7(b). This corresponds to a possible tuning range of 400 GHz 

which is significantly larger the typical FWHM gain bandwidth of THz-QCLs of only 130 

GHz Kröll et al. (2007). This is a strong evidence for the theoretically predicted gain 

enhancement in this type of structures. Additionally, it also shows the large potential for this 

kind of resonator. It combines an excellent frequency control with a huge tuning range. 

7. Conclusion 

The design and the realisation of laser resonators is a challenging task. In general, it is 

necessary to balance aspects such as quality factor, laser far-field, threshold and output 

power. Incorporating PhCs allows for a full control of the dispersion relation of the 

resonator. This new flexibility can be used to fulfil all the requirements at the same time. 
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                                            (a)                                                                               (b) 

Fig. 7. (a) Simulated and recorded spectra for the active PhC laser Benz, Deutsch, Fasching, 
Andrews, Unterrainer, Klang, Schrenk & Strasser (2009). The realised devices are both lasing 
at the K-point, close to the predicted emission frequency. (b) Measured spectra for different 
periods of the PhC as a function of the applied bias. Both devices show a stable single-mode 
emission which is independent of the voltage. 

Here, we have presented the design of PhCs for THz-QCLs, which are an ideal system to 
study the behaviour experimentally. The large wavelength allows for simple processing and 
large tolerances. The unipolar nature of QCLs makes the devices insensitive to surface 
leakage. Therefore, it is possible to directly integrate the PhC into the active laser medium. 
The devices presented can be split into two different concepts. The first type of devices are 

based on PhC mirrors. A bulk gain region is surrounded by a PhC mirror. The emission of 

the device is tuned into the bandgap of the PhC, corresponding to the lowest mirror losses. 

These devices show a multi-mode emission in general due to the broad stop bands used. 

Nevertheless, this is an easy concept to be realised. The second type of devices consists of 

the active pillars only, there is no bulk gain region. The sub-wavelength pillars are used to 

create the required gain and the optical feedback. The strong modal confinement in lateral 

and vertical directions allows us to built resonators with dimension comparable to the 

emission wavelength. The excellent optical properties of the resonator also allow us to 

achieve a tuning range of 400 GHz, which is significantly wider than the typical FWHM gain 

bandwidth of THz-QCLs of only 130 GHz. In addition, the number of modes can be reduced 

significantly as narrow band edges are used which are surrounded by wide forbidden 

bands. 

The simulations are in excellent agreement with the experimental results. We are able to 
precisely predict the emission frequencies for both types of cavities. Using the PWE method, 
we can determine the band structure of the ideal crystal including the position of the 
bandgaps. The group velocity and the modal overlap for any mode can be calculated. The 
FDTD-simulations allow us to simulate the entire resonator. There are no restrictions on the 
symmetry of the resonator or the linearity of the used materials. One simulation run 
generates the entire frequency information. The Q-factors can be determined easily. 
Especially for lower frequencies and smaller devices, the predictions are excellent, as the 
number of possible modes remains limited. 
This work was partly supported by the Austrian Scientific Fund FWF (SFB ADLIS, SFB 
IRON, DK CoQuS), the Austrian nano initiative project (PLATON), the EC (TERANOVA) 
and the Austrian Society for Microelectronics (GMe). 
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