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1. Introduction 

Based on the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 
610.12-1990, 1990), “a system can be regarded as a collection of components organized to 
accomplish a specific function or set of functions”. The key point in this definition is the 
interaction among system components. Cassandras & Lafortune (2008) discuss systems 
classification, especially for Discrete Event Systems (DES). In their definition, DES are 
systems that have discrete state space and an event-driven dynamic, i.e., the state can only 
change as a result of instantaneous events occurring asynchronously over time. In this 
context, state-based methods such as Finite State Machines (FSM) and Petri Nets have been 
traditionally used to describe these systems. 
The automation area uses concepts of the theory of systems to control machines and 
industrial processes. Considering an industrial automation process based on Programmable 
Logic Controllers (PLC), the sensors are installed in the plant and generate events that 
represent input variables to the PLC. The actuators are associated with the actions produced 
by the PLC program and represent output variables. Industrial controller programming is 
currently performed by qualified technicians using one of the five languages defined by 
IEC-61131-3 (1993) standard and who seldom have knowledge of modern software 
technologies. Furthermore, controllers are often reprogrammed during plant operation life-
cycle to adapt them to new requirements. As a result, “for practically no implemented 
controller does a formal description exist” (Bani Younis & Frey, 2006). In general, PLC are 
still programmed by conventional “trial-and-error” methods and there is no written 
documentation on these systems. 
On the other hand, software reusability and composability have been discussed since the 
80’s, with the use of object-oriented methods (Boehm, 2006). In the Industrial area, the IEC-
61499 (2005) standard allows reuse of application parts (function block, sub-application) in 
different applications. Software reuse is a complicated problem and depends not only on the 
means provided by the modeling language, but also on the overall application structure. 
In the Computer Science area, several models guide the software development process such 
as the Waterfall Model (Royce, 1970), a sequential software development model in which 
development is seen as sequence of phases; the Spiral model (Boehm, 1988), an iterative 
software development model which combines elements of software design and prototype 
stages; and agile methods, which emerged in the 1990. Examples of the latter are: Adaptive 
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Software Development, Crystal, Dynamic Systems Development, eXtreme Programming (XP), 
Feature Driven Development, and Scrum. B. Boehm (2006) presents an overview of the best 
software engineer practices used since 1950 (decade to decade) and he identifies the historical 
aspects of each tendency. 
In short, an application life-cycle can be divided in three phases: Modeling - Validation - 

Implementation (see Figure 1). Modeling is phase that demands more time in application 
lifecycle. The “Modifications” arc represents multiple iterations that can occur in software 
modeling processes. The “Reengineering” arc represents the research area, which 
investigates the generation of a model from legacy code. Our focus is in forward 
engineering, which investigate the model generation from requirements specified by users. 
 

 

Fig. 1. Application life-cycle: overview. 

In literature, there are several approaches that present methodologies, languages, and 
patterns for modeling industrial applications, especially for Discrete Event Systems (DES) 
(Cassandras & Lafortune, 2008). The two most common approaches are Finite State Machines 
(FSM) and Petri nets; both allow for formal verification of the correctness of a control system. 
However, despite significant research advances in recent years, these formal techniques 
have not been widely employed in industry (Endsley et al., 2006). We believe that such 
approaches are still low-level formalisms, resulting in large and unwieldy systems. The 
Statecharts formalism, described by David Harel (1987), makes the specification and design 
of complex DES easier. It extends conventional finite state machine with notions of 
hierarchy, concurrency, and communication. 
Owing to the aforementioned problems, this work discusses a methodology for plant and 
control modeling and validating of the manufacturing systems that include sequential, 
parallel and timed operations, using a formalism based on Statecharts, denominated Basic 
Statechart (BSC). For the validation phase, simulations were executed through the 
execution environment developed by the Jakarta Commons SCXML Project (SCXML, 2006), 
and, as the control software model does not represent the controller itself, a translation from 
this model into a programming language accepted by the PLC was also carried out. In this 
study, Ladder diagrams were used because it is one of the languages defined by international 
IEC-61131-3 standard most widely used in industry. However, these models can be 
translated into any IEC-61131-3 standard language. 
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The remainder this work is organized as follows: Section 2 discusses about the main aspects 
of the Statecharts in modeling of automation systems and we introduce the semantic of the 
BSC using only characteristics relevant to the industrial area. Section 3 describes in general 
the methodology proposed by this contribution. In Section 4, we discuss an algorithm for 
translating the control model described in Basic Statecharts into Ladder diagrams, thereby 
enabling tests with actual PLCs. In Section 5, one typical example of application in the 
manufacturing area is discussed as case study to illustrate our ideas. In the last section, we 
conclude with a discussion about future projects. 

2. Basic statecharts 

Automata-based methods have been widely used to model DES, especially by the 
Supervisory Control Theory (Ramadge & Wonham, 1989). Automata represent mathematical 
abstractions that explicitly enumerate all the states of the system. To construct complex 
systems, the Automata are formally composed through systematic operations such as 
product and parallel composition. Moreover, they facilitate the analysis of system properties 
related to the validation and verification processes. However, the main drawback of the 
approach is inherent in the graphic representation of the model, due to the exponential 
growth of the number of states in the composition operations (Cassandras & Lafortune, 
2008). 
Statecharts formalism was described by David Harel in the 1980s and it extends conventional 
automata with notions of hierarchy, concurrency, and broadcast communication. Thus, 
Statecharts facilitate the specification and design of complex DES. Hierarchy and 
concurrency are represented through OR-decomposition and AND-decomposition, 
respectively. It is worth mentioning that Statecharts do not explicitly enumerate all the 
system states. Therefore, an implicit combination of the parallel states must be performed to 
obtain the real configuration of the model; that is, the real state of the system. Moreover, 
Statecharts have a compact graphic representation that can be translated into automata, 
according to the description in (Drusinsky & Harel, 1989). 
The absence of a formal semantic of the original Statecharts makes the verification of these 
models very complex to carry out. In an attempt to minimize this problem, several Statechart 
variants were defined. Michael von der Beeck (1994) makes a comparison between 20 
variants, and discusses a number of problems related to the original Statecharts. In addition, 
the broadcast communication of the Statecharts allows a triggered event in one state to affect 
another state that has no dependent relation with the former. Another drawback of the 
original Statecharts is that they allow interlevel transitions without imposing any constraints, 
a situation that can generate unstructured models. 
To incorporate the advantages of the original Statecharts and to avoid the aforementioned 
problems, we propose a formalism to model DES based on UML/Statechart diagrams, but 
with a more limited syntax and semantic, denominated Basic Statechart (BSC). 
The Basic Statecharts use the syntax of UML/Statecharts with some variations; for example: i) 
absence of history connectors; ii) inclusion of input/output data channels to allow explicit 
communication between the components and to avoid broadcast messages in the system; 
and iii) the transitions are represented by the expression “[condition]/action”, where the 
conditions are composed using variables, data channels and the logical operators AND, OR 
and NOT; and, the actions allow one to change the value of these variables. The semantic of 
Basic Statecharts is more restrictive than that of UML/Statecharts to avoid conflict and 
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inconsistency in model evolution. We believe that this semantic is more appropriate for 
modeling industrial systems. 
A BSC is composed of a collection of components and a BSC component is a structure used 
to model the behavior of a system element. A component can contain states, input/output 
channels, internal variables, and other components, which can be called subcomponents. A 
data channel is a resource used to communicate between system components. The input 
data channels are implicitly associated with internal variables and thus their values are 
maintained during the entire execution cycle. They can be used to change the value of guard 
condition from the component or external entity, such as control software or a simulation 
environment. The output data channels are also associated with internal variables; 
however, their values are updated only at the end of the execution cycle. They are used to 
publish the status of internal elements from one component to another. 
The conceptual model describing the relationship between the elements that make up a BSC 
diagram is shown in Figure 2. 
 

 

Fig. 2. Basic Statecharts: conceptual model. 

The evolution of the BSC dynamic behavior is performed by sequential steps, called the 
execution cycle or macrostep. One constraint that is ensured by the BSC is that a component 
composed of basic states can only trigger one transition in each execution cycle (macrostep). 
As with original Statecharts, each macrostep in BSC can be divided into several microsteps; 
however, the actions performed when one transition is triggered only update the variables 
defined in the component data area. Moreover, the BSC run accordance with definition 
order of the components. Thus, in an execution cycle only one component can affect the 
components subsequently defined in the model. This point represents a difference between 
the proposed approach and the Harel diagrams specified by UML. Basic Statecharts make the 
definition of validation techniques more practical, because their syntax and semantic are 
more constrained than those of the original Statecharts. 
A macrostep of a BSC execution is finished when all the components have been analyzed. 
The BSC communication mechanism follows a publish/subscribe pattern: the variables 
associated to output channels are published in a global area, and the variables associated to 
input channels are consumers of these data. It is important to note that a component can be 
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both publisher and subscriber of a same data item. However, the published value in one 
step is only consumed in the next step. It is also valid for different components. Moreover, 
one published value can be consumed by several components in a same step, but the value 
of all components is guaranteed to be the same. 

3. Plant and control: modeling and validation 

In industrial applications, normally the controller software is verified in conjunction with a 
model of the plant in which it operates. So, it is necessary to obtain an accurate model to 
maintain fidelity with the real plant (relation one-to-one). 

3.1 Plant: modeling 

For plant modeling, our methodology is based on the hybrid approach - bottom-up and top-
down. More specifically, it proposes to model the basic elements, grouping them into larger 
structures. This process is repeated until it generates the correct model of application. The 
methodology consists of three phases described as follows: 
1. Modeling the basic application elements or using models already defined in a 

component repository; 
2. Decomposing the basic states in substates, if necessary; 
3. Representing all automation plant components as parallel states; 
Phases 1 and 2 consist of modeling and refinements of the basic elements which compose 

the application. They can be run several times as an iterative process. In each iteration, we 

work with components which are more and more complex. Further, these components can 

be grouped in a repository. The third phase determines that all application components 

must be executed at the same time, in a parallel way, where the communication between 

them is made by input/output channels. 

We will present how our methodology works below. 

3.1.1 Basic components: patterns 

For automation systems, many components follow an On/Off pattern, for example, valves 

and sensors. Figure 3-a shows the dynamic behavior of this pattern, which can be in states: 

“Off” or “On”, and two transitions to change from state: “[g1]” from “Off” to “On” and 

“[g2]” from state “On” to “Off”. Other components require adjustment in modeling to 

include new characteristics. For example: a temporary state (Wait) between the states “On” 

and “Off” (see Figure 3-b). 

 

 
 

Fig. 3. On/Off patterns: basic model. 
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3.1.2 Cylinder component 

In the manufacturing field, one of the most common components is the pneumatic cylinder 
that can be composed of more simple components (valves, arms and sensors) and can have 
displacement sensors/end-position initiators. 
Figure 4 depicts a single-action cylinder with advancing controlled by the valve, return 
carried through springs, and one end-position sensor which is triggered when the cylinder 
arm gets the full advance. The generic notation “[g]/A” in a transition means that: when a 
guard condition g is true, the action A will be executed. Therefore, if an action in a 
component X1 updating one variable used in guard condition of a component X2, then we 
will say that: X2 depends on component X1. According to figure, the transition “[ch]/v1=1” and 
“[v1]/tm1=1” indicate that: the cylinder arm depends on the valve, i.e., the arm advances 
while the valve remains open. When the valve is closed through the action “ch=0”, the 
cylinder arm gets “Returned”, in function of transitions “[¬v1]/tm1=0” or “[¬v1]/v2=0”.  
The cylinder arm has the following behavior: when the variable v1 gets true, the arm gets to 
“Advancing” in a specified time, which depends on technical characteristics and it is 
represented by “*” in the figure. If the valve is closed before this specified time (event 
tm1.tm), the cylinder arm gets to “Returned” and nothing happens to the sensor. If the event 
tm1.tm occurs, then the arm gets to “Advanced” and the active state of the sensor passes 
from “False” to “True”, implicitly. So, when the valve is closed, the arm gets “Returned” 
and the sensor passes from “True” to “False”. 
 

 

Fig. 4. Single-action cylinder: basic model. 

The scenario that describes the desired operation of the cylinder is very simple: one external 
event allows the opening of the valve when the channel gets equal 1 (ch=1); then the 
transition “[ch]/v1=1” is run; and after the sensor detects the total advance of the cylinder-
arm, the valve must be closed (data channel equals 0, i.e., ch=0); then the transition 
“[¬ch]/v1=0” is run. The events to open/close the valve represent the control police that is 
run by the model and define the dynamic cylinder. 

3.2 Control software: modeling 

In the manufacturing area, actuator components are controlled through events that are 
triggered by devices, such as buttons, sensors, and timers, which are defined in the control 
model using temporary variables. The controller is modeled through the composition of 
components; i.e., complex models are constructed from simpler models. The basic 
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components are: a) actuators that are modeled using components with two states: OFF and 
ON; b) timers that are modeled using components with three states: OFF, START and ON - 
the state “START” starts the timer and the transition “[tm1.tm]” from state “START” to state 
“ON” triggers the end of the timer event; and c) variables that are associated with sensors 
and temporary elements. Figure 5 shows the basic model for these elements. In this figure, 
g1, g2, and g3 are guard conditions. The data model area in Figure 5-c defines two Boolean 
variables (s1 and s2), both with the “false” value, using the syntax of the SCXML 
specification that was implemented by the Jakarta Project Commons SCXML (SCXML, 2006). 
This project provides a generic event-driven state machine based on the execution 
environment, borrowing the semantics defined by SCXML, which represents the Statechart 
diagrams by a XML file. 
 

 

Fig. 5. Actuators: basic model. 

Operational requirements of the actuators are inserted into the model as transitions between 
the states, in the following general form: “[guard condition] / action”. The guard conditions 
are Boolean expressions composed of data channel and internal variables, interconnected 
through logical connectors ¬ (negation), || (disjunction) and & (conjunction). The actions 
can be, for example, an assignment statement to set a value in the variable and/or data 
channel. Therefore, operational requirements are constraints in the model to implement 
dependencies and/or interactions between the components. Such constraints allow us to 
define sequential and parallel behavior in the model; this will be described in the next 
subsections. 

3.2.1 Sequential operation 

Consider a plant composed of two actuators (Ai and Aj) that run sequentially one after the 
other, i.e., Ai;Aj. This sequence is run continuously in a cyclical way until user intervention. 
The sequential behavior of Ai and Aj is obtained through the execution of actions in actuator 
Ai, which generates internal event triggers in actuator Aj. In general, an action in an actuator 
can cause state changes in other actuators. 
Figure 6 shows the Basic Statechart diagram for modeling the sequential behavior between 
actuators Ai and Aj discussed above. In this figure, ch1, ch2 and ch3 are input data channels; 
ch1, Ai and Aj are output data channels, and “ev” is an internal variable. Note that a same 
channel can be both input and output channel in a model. This is possible because the 
channels are associated implicitly with internal variables. These elements are used to 
generate the desired model behavior. In this case, the “ev” variable is used as an action by 
actuator Ai, which indicates the end of its actuation. It is perceived by actuator Aj, which 
starts its operation, generating the sequential behavior between them. Note that the data 
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model area is not represented in the figure. At the end of Aj actuation, data channel ch1 is 
updated, generating the cyclical behavior of the model. In its initial configuration, all the 
actuators of the model are set to “Off”. The system starts its operation when data channel 
ch1 is equal to 1 (Boolean value “true”), a situation that can be simulated when the operator 
pushes a “start” button on the Interface Human-Machine (IHM), for example. 
 

 

Fig. 6. Control model: sequential operation. 

3.2.2 Parallel operation 

Parallelism, an inherent characteristic of original Statecharts, is accomplished through AND-
decomposition. However, the component synchronism demands additional mechanisms. 
Consider a plant composed of three actuators (Ai, Aj and Ak), where Ai and Aj run in 
parallel, but Ak can only run after the execution of the two first components, i.e., 
(Ai||Aj);Ak. This sequence is run continuously in a cyclical way until operator intervention. 
The parallel behavior of Ai and Aj is obtained naturally; however, internal variables must be 
used to generate internal event triggers in actuator Ak to indicate the end of execution in 
other actuators. Thus, Ak must wait for these updates to start its operation. After the Ak run, 
these internal variables must be updated to allow the execution of a new cycle in the system. 
Figure 7 shows the Basic Statechart diagram for modeling the parallel behavior between the 
aforementioned actuators. In this figure, chi(i = 1..5) are input data channels, Ai, Aj and Ak 
are output data channels, evi and evj are internal variables. These elements are used to 
generate the desired application behavior. In this case, the variable evi is updated as an 
action by actuator Ai, indicating the end of its actuation, and the variable evj is updated to 
indicate the end of Aj actuation. These updates are perceived by actuator Ak, which starts its 
operation, generating the synchronism between them. At the end of Ak actuation, the evi 
and evj must be “reset” to generate the cyclical behavior of the model. In its initial 
configuration, the model must have all actuators set to “Off”. 

3.2.3 Timed operation 

Timers and counters are quite common in industrial applications; for example: i) an actuator 

must execute for a specific time; ii) an actuator must execute only after a specific time; iii) 

the system must execute k times before triggering an alarm; and so on. Timers and counters 

are modeled through basic components and their current values can be used to set the guard 

conditions of the transitions in BSC. Furthermore, they can be started and/or reset by some 

action of the model. 
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Fig. 7. Control model: parallel operation. 

Timers are controlled by a global real-time clock that executes in parallel to the system 

model, and they are updated only at the beginning of each execution cycle. Thus, when a 

timer is enabled in a component, the timing process is initiated in the next execution cycle. 

When the timer reaches or surpasses its specified limit, an internal variable tm is made true 

(tm = true) to indicate end of timing. In the timer, creating must define the time limit value 

in time units. 

Consider a plant composed of an actuator Ai and a timer Tk, where Ai must act for t seconds 

before turning off. Figure 8 shows the Basic Statechart for modeling the temporal behavior of 

actuator Ai, controlled by timer Tk. In this figure, ch1 and ch2 are input data channels used to 

start the operation of actuator Ai and of timer Tk, respectively, and tk.tm is an input data 

channel used to indicate the timeout of Tk. It is important to mention that the timers are 

updated as a global action of the model, and the timer Tk is started when action tk = 1 is 

executed. 

 

 
 

Fig. 8. Control model: timed operation. 
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The guard condition “ev” used to turn off actuator Ai becomes true when timer Tk reaches 
or surpasses the specified limit (condition tk.tm). Thus, the constraint that defines that 
actuator Ai must execute for a specific time is ensured. 

3.3 Control software: validation 

The approach for modeling the control software discussed in Section 3.2 maintains the 
description and specification aspects built into the Basic Statechart model. Transitions, guard 
conditions, and implicit actions are used to describe system constraints. Thus, the approach 
allows us to analyze some controller properties using the reachability tree of the formal 
model. Moreover, simulated environments can be used to validate the control model along 
with the plant model. 
The reachability tree of the model allows us to analyze a number of properties, such as: i) 
reinitiability – for each cfgi state configuration reached from the initial cfg0 configuration, is 
it possible to return to cfg0 by a sequence of events? ii) vivacity – does the controller act in 
all of the components in the model? iii) deadlock – is there a cfgi state configuration in 
which progress cannot be made because no transition can be triggered? 
Masiero et al. (1994) propose an algorithm to create a reachability tree for Statecharts. Here, 
we briefly discuss an adaptation of this algorithm to analyze the aforementioned structural 
properties. This algorithm was implemented using Java language and the SCXML execution 
environment, with the following modifications: 

• The set that contains all possible transitions for a given configuration includes only the 
transitions with events controlled by an external agent, and with timed events triggered 
automatically by the components. 

• To obtain a new configuration of the model by triggering a transition, the internal 
variables are implicitly updated and, therefore, can trigger other transitions 
automatically in the model. This characteristic decreases the number of states produced 
in the reachability tree. 

• The part of the algorithm that describes the history connectors is completely excluded, 
because Basic Statecharts do not include such characteristics. 

The use of this algorithm allows a formal analysis of system behavior (control + plant) to 

verify and validate a number of properties. It is important to note that a plant model is 

required, and it may be represented in a given formalism; for example, automata, Petri net 

or Statecharts. Moura et al. (2008) propose a systematic procedure for modeling complex 

plants using Statecharts and discuss some aspects of control modeling. However, they 

presented only a descriptive view of that process. 

In this work, we chose Basic Statecharts to model plant behavior, without losing generality. 

Therefore, the system (control + plant) can be described as parallel composition between the 

controller and plant. The main advantage of this approach is that sensor and actuator 

characteristics become internal events of the system. Thus, the intrinsic properties of the 

system, such as reachability, deadlock, and reinitiability become intrinsic and extrinsic 

properties of the controller. 

Another advantage of this approach owes to the fact that it maintains controller and plant 
functionality explicitly separated. Here, unlike other approaches, such as the R & W 
approach (Supervisory control), the controller synthesis produces more compact models. In 
the next section we present an algorithm for translating the control model described in Basic 
Statecharts into one PLC language (in this case, Ladder diagram). 
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4. Control software: implementation 

Given that the control model does not represent the controller software itself, the translation 
from this model into a programming language accepted by the PLC must also be performed. 
Ladder diagrams were used because it is one of the languages defined by international IEC-
61131-3 standard most widely used in industry. The translation is performed systematically 
by a method that analyzes one component at a time, according to its type (actuator or 
timer). 
The states (“OFF” and “ON”) in the actuators are represented in the Ladder through 
auxiliary contacts (flip-flop Reset and flip-flop Set), respectively. Each control model transition 
results in a “rung” of the Ladder, as follows: the source state must be added to the condition, 
and the target state represents the action that must be executed. Let A be the generic 
actuator shown in Figure 5-a, where transitions “[g1]/A=1” and “[g2]/A=0” generate lines 3 
and 4, respectively, of the Ladder diagram, as shown in Figure 9. In this figure, c1, c2, and c3 
are auxiliary variables that are computed from the guard conditions of the model (i.e., g1, 
g2, and g3, respectively). This mapping is made because the guard conditions can be 
complex. 
The timers were translated as follows: one “rung” to transition from the “OFF” to “START” 
state, which allows us to start up the timing; one “rung” to specify the timer itself, with one 
element that indicates the end of the specified time, which can be used in other Ladder lines, 
 

 

Fig. 9. Actuators: Ladder diagram. 
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according to the application; and another “rung” to reset the timer. The generic timer shown 
in Figure 5-b generates lines 5 to 8 of the Ladder diagram (see Figure 9). In this figure, the 
parameters “HAB” and “T” of the block TMR represent identifiers used to set up as follows: 
HAB lets it enable/disable, and T lets us define the time limit value of this block. The 
variables that represent the sensors and or auxiliary contacts can be freely used in the guard 
conditions and actions of the Ladder code, according to the transitions of the model. 
However, as the guard conditions of the transitions (in each Ladder line) must be guaranteed 
by at least one PLC-scan cycle, all conditions must be evaluated and stored in auxiliary 
variables at the beginning of each PLC-scan cycle (see lines 0, 1 and 2 in Figure 9). 
Moreover, it is important to note that to avoid non-determinism in the system, the guard 
conditions for a same source state must be mutually exclusive. This constraint can be 
established during model building and the user can be notified by warning messages. But, 
as the conditions must be mutually exclusive to a same source state, these Ladder lines 
specifically cannot be generated in any order, because inconsistencies can occur in one PLC-
scan cycle; for example, turning on/turning off an actuator. To avoid such inconsistencies, 
the temporary state of the actuators must be stored in auxiliary variables, and at the end of 
the cycle, these variables must be updated for the corresponding outputs (see lines 9 and 10 
in the Figure 9). 
 

 

Algorithm 1. Translation from the control model into a Ladder diagram 

{Let there be n actuators, m timers, t transitions} 
{Guard conditions analysis} 
for i = 1 to t do 

Compute guard(i) {Guard condition of the i-th transition} 
end for 
{Actuator’s logic} 
for i = 1 to n do 

for j = 1 to T[Ai] do 
if target( j) = Ai.ON then 

AiTemp.set := source( j) AND guard( j) 
else 

AiTemp.reset := source( j) AND guard( j) 
end if 

end for 
end for 
{Timer’s logic} 
for i = 1 to m do 

Tmi.set := guard(enableTimer(Tmi)) 
CreateTimer(Tmi, limit(Tmi)) {Function block: Timer} 
tmi.tm := Tmi.enable() AND Tmi.timeout() 
Tmi.reset := tmi.tm 

end for 
{Update actuators from temporary variables} 
for i = 1 to n do 

Ai.set := AiTemp 
Ai.reset := ¬AiTemp 

end for 
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The complete algorithm used to translate the control model into Ladder code is presented in 
Algorithm 1. In this algorithm, some terms have been used to facilitate the understanding, 
such as: 

• guard(t) is the guard condition of the t-th transition; 

• source(t) is the source state of the t-th transition; 

• target(t) is the target state of the t-th transition; 

• T[Ai] is number of transitions of actuator Ai; 

• Ai.ON is a constant to represent the ’ON’ state of actuator Ai; 

• enableTimer(Tmi) is the transition that allows us to start up the timing of the i-th timer; 

• Tmi.limit(<value>) is the time limit of the i-th timer; 

• Tmi.enable() is a function to indicate if the i-th timer is enabled; 

• Tmi.timeout() is a function to indicate when the i-th timer reaches the end of the 
specified time. 

 

5. Case study: manufacturing cell 

This section presents a case study that realizes a simulation of a manufacturing cell (see 
Figure 10-a), which is a typical example of the manufacturing sector where the devices can 
run in a simultaneous mode. This example is well explored in Supervisory Control Theory by 
Queiroz & Cury (2002). The problem with to these systems is the need for synchronization 
points between parallel blocks. 
The execution flow, with a possible operation of the devices for this system, is shown in 
Figure 10-b. It is interesting to note that the four device actuators can run simultaneously 
and that the table must be run only after the execution of these devices. Thus, a 
synchronization point between devices and the table must be created to enable proper 
system operation. 
 

 

Fig. 10. Manufacturing cell: simulation environment. 

Consider the run scenario described below: 

• BELT: If there is a piece in the input buffer (initial position of the belt) and none in 
position P1, the belt must be turned on; later, when the piece is at position P1 the belt 
must be turned off. The if ... then clauses of this specification are: 

• If inputbuffer & ¬P1 then BeltOn; 
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• If P1 then BeltOff; 

• DRILL: If there is a piece in position P2, the drill and a timer component timerT1 must 
be turned on; at the end of timeout, the drill must be turned off. The if ... then clauses of 
this specification are: 

• If P2 then DrillOn & tm1On; 

• If tm1.tm then DrillOff; 

• TEST: If there is a piece in position P3, the test and a timer component timerT2 must be 
turned on; at the end of timeout, the test must be turned off. The if ... then clauses of this 
specification are: 
• If P3 then TestOn & tm2On; 
• If tm2.tm then TestOff; 

• ROBOT: The robot removes a piece from position P4, and stores it. If there is a piece in 
position P4, the robot and a timer component timerT3 must be turned on; at the end of 
timeout, the robot must be turned off. The if ... then clauses of this specification are: 
• If P4 then RobotOn & tm3On; 
• If tm3.tm then RobotOff; 

• TABLE: The table rotation is controlled by the single-action cylinder and the total 
advance of the cylinder arm generates a 90 degree turn. Thus, after the execution of the 
four devices, the cylinder must be activated to obtain a new system configuration. The 
return of the cylinder-arm should occur when the sensor detects the total advance of the 
cylinder-arm. The if ... then clauses of this specification are: 
• If BeltEnd & DrillEnd & TestEnd & RobotEnd then ValveOn; 
• If SensorOn then ValveOff; 

The belt model follow the Alter On/Off  pattern (see Figure 3-b), whereas the drill, the test, 
and the robot models follow the On/Off pattern (see Figure 3-a). The table behavior is 
modeled through of single-action cylinder (see Figure 4). In each table position, there is one 
sensor for simulating piece in the place. Thus, the complete plant model is generated by 
representation, in parallel way, of the four devices and the cylinder, as can be shown in 
Figure 11. 
Other constraints imposed on the model are: 
1. Each device must execute only once before a table rotation; 
2. If in a configuration there is no piece in the input buffer or in positions P2, P3, and P4, 

then the belt, the drill, the test, and the robot must not be turned on; 
3. The table rotation must only be performed if there is at least one piece in positions P1, 

P2, or P3. 
The inclusion of these constraints in the controller model is carried out by determining new 
transitions between states and/or changes in the guard conditions of the existing transitions. 
Initially, to create the control model for this case study, extra variables must be included to 
ensure synchronism between the devices and, therefore, the constraint imposed on table 
rotation, i.e., the table cannot rotate while the devices are running. In this case, the variables 
E1, E2, E3, and E4 indicate the “end-of-operation” of the belt, drill, test, and robot, 
respectively. These variables must be set to “true” for each of the devices. According to cell 
operation, the table must only be rotated when all of devices have concluded their 
operations, i.e., when the variables Ei = true (i = 1,...,4). After the table rotates 90 degrees, 
these variables must be reset to allow new operations in the system. These variables are also 
used in the transitions to turning on/turning off the actuators; for example, the drill must 
only be turned on if the E2 control variable is equal to “false”. 
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Fig. 11. Manufacturing cell: plant model. 

Extra transitions to ensure constraints 2 and 3 must be included in the model. For example, 

if there is no piece in position P2, then the drill must not be turned on, but the E2 variable 

must be set to “true” to indicate end-of-operation of the phase. Similar ideas are applied to 

other actuator devices. In the table model, if there is no piece in positions P1, P2 or P3, then 

the table must not rotate (constraint 3); however, variables E1, E2, E3, and E4 must be set to 

“false” to allow new operations in the devices. Thus, if there is no piece in the 

manufacturing cell, the model will continually alternate the value of E1,...,E4 between  

 

 

Fig. 12. Manufacturing cell: control plant. 
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“false” and “true”. The complete BSC model of the controller software is shown in Figure 
12. Guard conditions g1, g2,...,g15 are presented in Table 1, where the variable IN indicates 
the presence or absence of a component in the input buffer. Note that the data area is not 
represented in the figure, but the IO channels can be easily identified; Ei (i = 1,...,4) are 
internal variables, and P1,...,P4, IN, S1 represent sensors installed in the plant. 
 

g1 ¬P1 & ¬E1 & IN 

g2 P1 

g3 ¬P1 & ¬E1 & ¬IN 

g4 P2 & ¬E2 

g5 tm1.tm 

g6 ¬P2 & ¬E2 

g7 P3 & ¬E3 

g8 tm2.tm 

g9 ¬P3 & ¬E3 

g10 P4 & ¬E4 

g11 tm3.tm 

g12 ¬P4 & ¬E4 

g13 E1&E2&E3&E4 & (P1 || P2 || P3) 

g14 S1 

g15 E1&E2&E3&E4 & ¬P1 & ¬P2 & ¬P3 

Table 1. Controller: guard conditions. 

This example is composed of the belt with three possible states, three devices with two 

states each, and one cylinder linked to the table, which also has three states. The model with 

no control has 72 states, i.e., 3 x 2 x 2 x 2 x 3 = 72 distinct configurations, and the controlled 

model (control + plant) has 210 different states, in function of three timers included in the 

control model for simulating the processes of drilling, testing and moving the piece to 

storage. However, these 210 configurations act only in 26 distinct configurations, where: i) 

24 possibilities of actuation of devices: 3 x 2 x 2 x 2 = 24 with the table in position stop 

(cylinder in configuration [Off, Returned, False]); and ii) 2 possibilities for rotating the table 

with the four devices in state Off. The reachability tree analysis has shown that the model 

ensures the properties of reinitiability, vivacity, and that there is no deadlock. But, this 

analysis is out of scope of this work. 

6. Conclusion 

In this work we presented a methodology for systematizing the process of plant and control 
modeling of manufacturing systems. Our proposal uses a formalism based on Statecharts 
diagrams, called Basic Statecharts (BSC). The plant modeling has three phases which can be 
executed as many times as necessary. In general, this methodology represents a hybrid 
approach - bottom-up and top-down, allowing components reuse and keeping a one-to-one 
relation between plant and model (i.e., it is faithful to the actual system). The control model 
is generated also using Basic Statecharts. Thus, the main contributions of this work are the 
following:  

• A methodology to model plants and industrial control logics using Basic Statecharts;  
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• A procedure to integrate plant and control models in order to analyze and/or validate 
several structural proprieties of the modeled system, such as deadlock absence, 
vivacity, and reinitiability. This is very important in the project phase of every 
industrial controller;  

• An algorithm to translate the control logics described in Basic Statecharts into Ladder 
diagrams.  

One typical example of the manufacturing application was described as a case study to 
illustrate our proposal. 
A prototype using Java language is currently being developed to create and simulate 
models generated by our methodology. The aim is to test how much easier and natural the 
creation of industrial applications will become, as well as to produce more “user-friendly” 
documentation for the designers, giving more autonomy to the development and 
maintenance teams. 
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