
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322388276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3

Control and Plant Modeling for Manufacturing
Systems using Basic Statecharts

Raimundo Moura1 and Luiz Affonso Guedes2
1Federal University of Piaui – UFPI

2Federal University of Rio Grande do Norte – UFRN
Brazil

1. Introduction

Based on the IEEE Standard Glossary of Software Engineering Terminology (IEEE Std
610.12-1990, 1990), “a system can be regarded as a collection of components organized to
accomplish a specific function or set of functions”. The key point in this definition is the
interaction among system components. Cassandras & Lafortune (2008) discuss systems
classification, especially for Discrete Event Systems (DES). In their definition, DES are
systems that have discrete state space and an event-driven dynamic, i.e., the state can only
change as a result of instantaneous events occurring asynchronously over time. In this
context, state-based methods such as Finite State Machines (FSM) and Petri Nets have been
traditionally used to describe these systems.
The automation area uses concepts of the theory of systems to control machines and
industrial processes. Considering an industrial automation process based on Programmable
Logic Controllers (PLC), the sensors are installed in the plant and generate events that
represent input variables to the PLC. The actuators are associated with the actions produced
by the PLC program and represent output variables. Industrial controller programming is
currently performed by qualified technicians using one of the five languages defined by
IEC-61131-3 (1993) standard and who seldom have knowledge of modern software
technologies. Furthermore, controllers are often reprogrammed during plant operation life-
cycle to adapt them to new requirements. As a result, “for practically no implemented
controller does a formal description exist” (Bani Younis & Frey, 2006). In general, PLC are
still programmed by conventional “trial-and-error” methods and there is no written
documentation on these systems.
On the other hand, software reusability and composability have been discussed since the
80’s, with the use of object-oriented methods (Boehm, 2006). In the Industrial area, the IEC-
61499 (2005) standard allows reuse of application parts (function block, sub-application) in
different applications. Software reuse is a complicated problem and depends not only on the
means provided by the modeling language, but also on the overall application structure.
In the Computer Science area, several models guide the software development process such
as the Waterfall Model (Royce, 1970), a sequential software development model in which
development is seen as sequence of phases; the Spiral model (Boehm, 1988), an iterative
software development model which combines elements of software design and prototype
stages; and agile methods, which emerged in the 1990. Examples of the latter are: Adaptive

Source: Programmable Logic Controller, Book edited by: Luiz Affonso Guedes,
 ISBN 978-953-7619-63-3, pp. 170, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Programmable Logic Controller

34

Software Development, Crystal, Dynamic Systems Development, eXtreme Programming (XP),
Feature Driven Development, and Scrum. B. Boehm (2006) presents an overview of the best
software engineer practices used since 1950 (decade to decade) and he identifies the historical
aspects of each tendency.
In short, an application life-cycle can be divided in three phases: Modeling - Validation -

Implementation (see Figure 1). Modeling is phase that demands more time in application
lifecycle. The “Modifications” arc represents multiple iterations that can occur in software
modeling processes. The “Reengineering” arc represents the research area, which
investigates the generation of a model from legacy code. Our focus is in forward
engineering, which investigate the model generation from requirements specified by users.

Fig. 1. Application life-cycle: overview.

In literature, there are several approaches that present methodologies, languages, and
patterns for modeling industrial applications, especially for Discrete Event Systems (DES)
(Cassandras & Lafortune, 2008). The two most common approaches are Finite State Machines
(FSM) and Petri nets; both allow for formal verification of the correctness of a control system.
However, despite significant research advances in recent years, these formal techniques
have not been widely employed in industry (Endsley et al., 2006). We believe that such
approaches are still low-level formalisms, resulting in large and unwieldy systems. The
Statecharts formalism, described by David Harel (1987), makes the specification and design
of complex DES easier. It extends conventional finite state machine with notions of
hierarchy, concurrency, and communication.
Owing to the aforementioned problems, this work discusses a methodology for plant and
control modeling and validating of the manufacturing systems that include sequential,
parallel and timed operations, using a formalism based on Statecharts, denominated Basic
Statechart (BSC). For the validation phase, simulations were executed through the
execution environment developed by the Jakarta Commons SCXML Project (SCXML, 2006),
and, as the control software model does not represent the controller itself, a translation from
this model into a programming language accepted by the PLC was also carried out. In this
study, Ladder diagrams were used because it is one of the languages defined by international
IEC-61131-3 standard most widely used in industry. However, these models can be
translated into any IEC-61131-3 standard language.

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

35

The remainder this work is organized as follows: Section 2 discusses about the main aspects
of the Statecharts in modeling of automation systems and we introduce the semantic of the
BSC using only characteristics relevant to the industrial area. Section 3 describes in general
the methodology proposed by this contribution. In Section 4, we discuss an algorithm for
translating the control model described in Basic Statecharts into Ladder diagrams, thereby
enabling tests with actual PLCs. In Section 5, one typical example of application in the
manufacturing area is discussed as case study to illustrate our ideas. In the last section, we
conclude with a discussion about future projects.

2. Basic statecharts

Automata-based methods have been widely used to model DES, especially by the
Supervisory Control Theory (Ramadge & Wonham, 1989). Automata represent mathematical
abstractions that explicitly enumerate all the states of the system. To construct complex
systems, the Automata are formally composed through systematic operations such as
product and parallel composition. Moreover, they facilitate the analysis of system properties
related to the validation and verification processes. However, the main drawback of the
approach is inherent in the graphic representation of the model, due to the exponential
growth of the number of states in the composition operations (Cassandras & Lafortune,
2008).
Statecharts formalism was described by David Harel in the 1980s and it extends conventional
automata with notions of hierarchy, concurrency, and broadcast communication. Thus,
Statecharts facilitate the specification and design of complex DES. Hierarchy and
concurrency are represented through OR-decomposition and AND-decomposition,
respectively. It is worth mentioning that Statecharts do not explicitly enumerate all the
system states. Therefore, an implicit combination of the parallel states must be performed to
obtain the real configuration of the model; that is, the real state of the system. Moreover,
Statecharts have a compact graphic representation that can be translated into automata,
according to the description in (Drusinsky & Harel, 1989).
The absence of a formal semantic of the original Statecharts makes the verification of these
models very complex to carry out. In an attempt to minimize this problem, several Statechart
variants were defined. Michael von der Beeck (1994) makes a comparison between 20
variants, and discusses a number of problems related to the original Statecharts. In addition,
the broadcast communication of the Statecharts allows a triggered event in one state to affect
another state that has no dependent relation with the former. Another drawback of the
original Statecharts is that they allow interlevel transitions without imposing any constraints,
a situation that can generate unstructured models.
To incorporate the advantages of the original Statecharts and to avoid the aforementioned
problems, we propose a formalism to model DES based on UML/Statechart diagrams, but
with a more limited syntax and semantic, denominated Basic Statechart (BSC).
The Basic Statecharts use the syntax of UML/Statecharts with some variations; for example: i)
absence of history connectors; ii) inclusion of input/output data channels to allow explicit
communication between the components and to avoid broadcast messages in the system;
and iii) the transitions are represented by the expression “[condition]/action”, where the
conditions are composed using variables, data channels and the logical operators AND, OR
and NOT; and, the actions allow one to change the value of these variables. The semantic of
Basic Statecharts is more restrictive than that of UML/Statecharts to avoid conflict and

www.intechopen.com

 Programmable Logic Controller

36

inconsistency in model evolution. We believe that this semantic is more appropriate for
modeling industrial systems.
A BSC is composed of a collection of components and a BSC component is a structure used
to model the behavior of a system element. A component can contain states, input/output
channels, internal variables, and other components, which can be called subcomponents. A
data channel is a resource used to communicate between system components. The input
data channels are implicitly associated with internal variables and thus their values are
maintained during the entire execution cycle. They can be used to change the value of guard
condition from the component or external entity, such as control software or a simulation
environment. The output data channels are also associated with internal variables;
however, their values are updated only at the end of the execution cycle. They are used to
publish the status of internal elements from one component to another.
The conceptual model describing the relationship between the elements that make up a BSC
diagram is shown in Figure 2.

Fig. 2. Basic Statecharts: conceptual model.

The evolution of the BSC dynamic behavior is performed by sequential steps, called the
execution cycle or macrostep. One constraint that is ensured by the BSC is that a component
composed of basic states can only trigger one transition in each execution cycle (macrostep).
As with original Statecharts, each macrostep in BSC can be divided into several microsteps;
however, the actions performed when one transition is triggered only update the variables
defined in the component data area. Moreover, the BSC run accordance with definition
order of the components. Thus, in an execution cycle only one component can affect the
components subsequently defined in the model. This point represents a difference between
the proposed approach and the Harel diagrams specified by UML. Basic Statecharts make the
definition of validation techniques more practical, because their syntax and semantic are
more constrained than those of the original Statecharts.
A macrostep of a BSC execution is finished when all the components have been analyzed.
The BSC communication mechanism follows a publish/subscribe pattern: the variables
associated to output channels are published in a global area, and the variables associated to
input channels are consumers of these data. It is important to note that a component can be

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

37

both publisher and subscriber of a same data item. However, the published value in one
step is only consumed in the next step. It is also valid for different components. Moreover,
one published value can be consumed by several components in a same step, but the value
of all components is guaranteed to be the same.

3. Plant and control: modeling and validation

In industrial applications, normally the controller software is verified in conjunction with a
model of the plant in which it operates. So, it is necessary to obtain an accurate model to
maintain fidelity with the real plant (relation one-to-one).

3.1 Plant: modeling

For plant modeling, our methodology is based on the hybrid approach - bottom-up and top-
down. More specifically, it proposes to model the basic elements, grouping them into larger
structures. This process is repeated until it generates the correct model of application. The
methodology consists of three phases described as follows:
1. Modeling the basic application elements or using models already defined in a

component repository;
2. Decomposing the basic states in substates, if necessary;
3. Representing all automation plant components as parallel states;
Phases 1 and 2 consist of modeling and refinements of the basic elements which compose

the application. They can be run several times as an iterative process. In each iteration, we

work with components which are more and more complex. Further, these components can

be grouped in a repository. The third phase determines that all application components

must be executed at the same time, in a parallel way, where the communication between

them is made by input/output channels.

We will present how our methodology works below.

3.1.1 Basic components: patterns

For automation systems, many components follow an On/Off pattern, for example, valves

and sensors. Figure 3-a shows the dynamic behavior of this pattern, which can be in states:

“Off” or “On”, and two transitions to change from state: “[g1]” from “Off” to “On” and

“[g2]” from state “On” to “Off”. Other components require adjustment in modeling to

include new characteristics. For example: a temporary state (Wait) between the states “On”

and “Off” (see Figure 3-b).

Fig. 3. On/Off patterns: basic model.

www.intechopen.com

 Programmable Logic Controller

38

3.1.2 Cylinder component

In the manufacturing field, one of the most common components is the pneumatic cylinder
that can be composed of more simple components (valves, arms and sensors) and can have
displacement sensors/end-position initiators.
Figure 4 depicts a single-action cylinder with advancing controlled by the valve, return
carried through springs, and one end-position sensor which is triggered when the cylinder
arm gets the full advance. The generic notation “[g]/A” in a transition means that: when a
guard condition g is true, the action A will be executed. Therefore, if an action in a
component X1 updating one variable used in guard condition of a component X2, then we
will say that: X2 depends on component X1. According to figure, the transition “[ch]/v1=1” and
“[v1]/tm1=1” indicate that: the cylinder arm depends on the valve, i.e., the arm advances
while the valve remains open. When the valve is closed through the action “ch=0”, the
cylinder arm gets “Returned”, in function of transitions “[¬v1]/tm1=0” or “[¬v1]/v2=0”.
The cylinder arm has the following behavior: when the variable v1 gets true, the arm gets to
“Advancing” in a specified time, which depends on technical characteristics and it is
represented by “*” in the figure. If the valve is closed before this specified time (event
tm1.tm), the cylinder arm gets to “Returned” and nothing happens to the sensor. If the event
tm1.tm occurs, then the arm gets to “Advanced” and the active state of the sensor passes
from “False” to “True”, implicitly. So, when the valve is closed, the arm gets “Returned”
and the sensor passes from “True” to “False”.

Fig. 4. Single-action cylinder: basic model.

The scenario that describes the desired operation of the cylinder is very simple: one external
event allows the opening of the valve when the channel gets equal 1 (ch=1); then the
transition “[ch]/v1=1” is run; and after the sensor detects the total advance of the cylinder-
arm, the valve must be closed (data channel equals 0, i.e., ch=0); then the transition
“[¬ch]/v1=0” is run. The events to open/close the valve represent the control police that is
run by the model and define the dynamic cylinder.

3.2 Control software: modeling

In the manufacturing area, actuator components are controlled through events that are
triggered by devices, such as buttons, sensors, and timers, which are defined in the control
model using temporary variables. The controller is modeled through the composition of
components; i.e., complex models are constructed from simpler models. The basic

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

39

components are: a) actuators that are modeled using components with two states: OFF and
ON; b) timers that are modeled using components with three states: OFF, START and ON -
the state “START” starts the timer and the transition “[tm1.tm]” from state “START” to state
“ON” triggers the end of the timer event; and c) variables that are associated with sensors
and temporary elements. Figure 5 shows the basic model for these elements. In this figure,
g1, g2, and g3 are guard conditions. The data model area in Figure 5-c defines two Boolean
variables (s1 and s2), both with the “false” value, using the syntax of the SCXML
specification that was implemented by the Jakarta Project Commons SCXML (SCXML, 2006).
This project provides a generic event-driven state machine based on the execution
environment, borrowing the semantics defined by SCXML, which represents the Statechart
diagrams by a XML file.

Fig. 5. Actuators: basic model.

Operational requirements of the actuators are inserted into the model as transitions between
the states, in the following general form: “[guard condition] / action”. The guard conditions
are Boolean expressions composed of data channel and internal variables, interconnected
through logical connectors ¬ (negation), || (disjunction) and & (conjunction). The actions
can be, for example, an assignment statement to set a value in the variable and/or data
channel. Therefore, operational requirements are constraints in the model to implement
dependencies and/or interactions between the components. Such constraints allow us to
define sequential and parallel behavior in the model; this will be described in the next
subsections.

3.2.1 Sequential operation

Consider a plant composed of two actuators (Ai and Aj) that run sequentially one after the
other, i.e., Ai;Aj. This sequence is run continuously in a cyclical way until user intervention.
The sequential behavior of Ai and Aj is obtained through the execution of actions in actuator
Ai, which generates internal event triggers in actuator Aj. In general, an action in an actuator
can cause state changes in other actuators.
Figure 6 shows the Basic Statechart diagram for modeling the sequential behavior between
actuators Ai and Aj discussed above. In this figure, ch1, ch2 and ch3 are input data channels;
ch1, Ai and Aj are output data channels, and “ev” is an internal variable. Note that a same
channel can be both input and output channel in a model. This is possible because the
channels are associated implicitly with internal variables. These elements are used to
generate the desired model behavior. In this case, the “ev” variable is used as an action by
actuator Ai, which indicates the end of its actuation. It is perceived by actuator Aj, which
starts its operation, generating the sequential behavior between them. Note that the data

www.intechopen.com

 Programmable Logic Controller

40

model area is not represented in the figure. At the end of Aj actuation, data channel ch1 is
updated, generating the cyclical behavior of the model. In its initial configuration, all the
actuators of the model are set to “Off”. The system starts its operation when data channel
ch1 is equal to 1 (Boolean value “true”), a situation that can be simulated when the operator
pushes a “start” button on the Interface Human-Machine (IHM), for example.

Fig. 6. Control model: sequential operation.

3.2.2 Parallel operation

Parallelism, an inherent characteristic of original Statecharts, is accomplished through AND-
decomposition. However, the component synchronism demands additional mechanisms.
Consider a plant composed of three actuators (Ai, Aj and Ak), where Ai and Aj run in
parallel, but Ak can only run after the execution of the two first components, i.e.,
(Ai||Aj);Ak. This sequence is run continuously in a cyclical way until operator intervention.
The parallel behavior of Ai and Aj is obtained naturally; however, internal variables must be
used to generate internal event triggers in actuator Ak to indicate the end of execution in
other actuators. Thus, Ak must wait for these updates to start its operation. After the Ak run,
these internal variables must be updated to allow the execution of a new cycle in the system.
Figure 7 shows the Basic Statechart diagram for modeling the parallel behavior between the
aforementioned actuators. In this figure, chi(i = 1..5) are input data channels, Ai, Aj and Ak
are output data channels, evi and evj are internal variables. These elements are used to
generate the desired application behavior. In this case, the variable evi is updated as an
action by actuator Ai, indicating the end of its actuation, and the variable evj is updated to
indicate the end of Aj actuation. These updates are perceived by actuator Ak, which starts its
operation, generating the synchronism between them. At the end of Ak actuation, the evi
and evj must be “reset” to generate the cyclical behavior of the model. In its initial
configuration, the model must have all actuators set to “Off”.

3.2.3 Timed operation

Timers and counters are quite common in industrial applications; for example: i) an actuator

must execute for a specific time; ii) an actuator must execute only after a specific time; iii)

the system must execute k times before triggering an alarm; and so on. Timers and counters

are modeled through basic components and their current values can be used to set the guard

conditions of the transitions in BSC. Furthermore, they can be started and/or reset by some

action of the model.

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

41

Fig. 7. Control model: parallel operation.

Timers are controlled by a global real-time clock that executes in parallel to the system

model, and they are updated only at the beginning of each execution cycle. Thus, when a

timer is enabled in a component, the timing process is initiated in the next execution cycle.

When the timer reaches or surpasses its specified limit, an internal variable tm is made true

(tm = true) to indicate end of timing. In the timer, creating must define the time limit value

in time units.

Consider a plant composed of an actuator Ai and a timer Tk, where Ai must act for t seconds

before turning off. Figure 8 shows the Basic Statechart for modeling the temporal behavior of

actuator Ai, controlled by timer Tk. In this figure, ch1 and ch2 are input data channels used to

start the operation of actuator Ai and of timer Tk, respectively, and tk.tm is an input data

channel used to indicate the timeout of Tk. It is important to mention that the timers are

updated as a global action of the model, and the timer Tk is started when action tk = 1 is

executed.

Fig. 8. Control model: timed operation.

www.intechopen.com

 Programmable Logic Controller

42

The guard condition “ev” used to turn off actuator Ai becomes true when timer Tk reaches
or surpasses the specified limit (condition tk.tm). Thus, the constraint that defines that
actuator Ai must execute for a specific time is ensured.

3.3 Control software: validation

The approach for modeling the control software discussed in Section 3.2 maintains the
description and specification aspects built into the Basic Statechart model. Transitions, guard
conditions, and implicit actions are used to describe system constraints. Thus, the approach
allows us to analyze some controller properties using the reachability tree of the formal
model. Moreover, simulated environments can be used to validate the control model along
with the plant model.
The reachability tree of the model allows us to analyze a number of properties, such as: i)
reinitiability – for each cfgi state configuration reached from the initial cfg0 configuration, is
it possible to return to cfg0 by a sequence of events? ii) vivacity – does the controller act in
all of the components in the model? iii) deadlock – is there a cfgi state configuration in
which progress cannot be made because no transition can be triggered?
Masiero et al. (1994) propose an algorithm to create a reachability tree for Statecharts. Here,
we briefly discuss an adaptation of this algorithm to analyze the aforementioned structural
properties. This algorithm was implemented using Java language and the SCXML execution
environment, with the following modifications:

• The set that contains all possible transitions for a given configuration includes only the
transitions with events controlled by an external agent, and with timed events triggered
automatically by the components.

• To obtain a new configuration of the model by triggering a transition, the internal
variables are implicitly updated and, therefore, can trigger other transitions
automatically in the model. This characteristic decreases the number of states produced
in the reachability tree.

• The part of the algorithm that describes the history connectors is completely excluded,
because Basic Statecharts do not include such characteristics.

The use of this algorithm allows a formal analysis of system behavior (control + plant) to

verify and validate a number of properties. It is important to note that a plant model is

required, and it may be represented in a given formalism; for example, automata, Petri net

or Statecharts. Moura et al. (2008) propose a systematic procedure for modeling complex

plants using Statecharts and discuss some aspects of control modeling. However, they

presented only a descriptive view of that process.

In this work, we chose Basic Statecharts to model plant behavior, without losing generality.

Therefore, the system (control + plant) can be described as parallel composition between the

controller and plant. The main advantage of this approach is that sensor and actuator

characteristics become internal events of the system. Thus, the intrinsic properties of the

system, such as reachability, deadlock, and reinitiability become intrinsic and extrinsic

properties of the controller.

Another advantage of this approach owes to the fact that it maintains controller and plant
functionality explicitly separated. Here, unlike other approaches, such as the R & W
approach (Supervisory control), the controller synthesis produces more compact models. In
the next section we present an algorithm for translating the control model described in Basic
Statecharts into one PLC language (in this case, Ladder diagram).

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

43

4. Control software: implementation

Given that the control model does not represent the controller software itself, the translation
from this model into a programming language accepted by the PLC must also be performed.
Ladder diagrams were used because it is one of the languages defined by international IEC-
61131-3 standard most widely used in industry. The translation is performed systematically
by a method that analyzes one component at a time, according to its type (actuator or
timer).
The states (“OFF” and “ON”) in the actuators are represented in the Ladder through
auxiliary contacts (flip-flop Reset and flip-flop Set), respectively. Each control model transition
results in a “rung” of the Ladder, as follows: the source state must be added to the condition,
and the target state represents the action that must be executed. Let A be the generic
actuator shown in Figure 5-a, where transitions “[g1]/A=1” and “[g2]/A=0” generate lines 3
and 4, respectively, of the Ladder diagram, as shown in Figure 9. In this figure, c1, c2, and c3
are auxiliary variables that are computed from the guard conditions of the model (i.e., g1,
g2, and g3, respectively). This mapping is made because the guard conditions can be
complex.
The timers were translated as follows: one “rung” to transition from the “OFF” to “START”
state, which allows us to start up the timing; one “rung” to specify the timer itself, with one
element that indicates the end of the specified time, which can be used in other Ladder lines,

Fig. 9. Actuators: Ladder diagram.

www.intechopen.com

 Programmable Logic Controller

44

according to the application; and another “rung” to reset the timer. The generic timer shown
in Figure 5-b generates lines 5 to 8 of the Ladder diagram (see Figure 9). In this figure, the
parameters “HAB” and “T” of the block TMR represent identifiers used to set up as follows:
HAB lets it enable/disable, and T lets us define the time limit value of this block. The
variables that represent the sensors and or auxiliary contacts can be freely used in the guard
conditions and actions of the Ladder code, according to the transitions of the model.
However, as the guard conditions of the transitions (in each Ladder line) must be guaranteed
by at least one PLC-scan cycle, all conditions must be evaluated and stored in auxiliary
variables at the beginning of each PLC-scan cycle (see lines 0, 1 and 2 in Figure 9).
Moreover, it is important to note that to avoid non-determinism in the system, the guard
conditions for a same source state must be mutually exclusive. This constraint can be
established during model building and the user can be notified by warning messages. But,
as the conditions must be mutually exclusive to a same source state, these Ladder lines
specifically cannot be generated in any order, because inconsistencies can occur in one PLC-
scan cycle; for example, turning on/turning off an actuator. To avoid such inconsistencies,
the temporary state of the actuators must be stored in auxiliary variables, and at the end of
the cycle, these variables must be updated for the corresponding outputs (see lines 9 and 10
in the Figure 9).

Algorithm 1. Translation from the control model into a Ladder diagram

{Let there be n actuators, m timers, t transitions}
{Guard conditions analysis}
for i = 1 to t do

Compute guard(i) {Guard condition of the i-th transition}
end for
{Actuator’s logic}
for i = 1 to n do

for j = 1 to T[Ai] do
if target(j) = Ai.ON then

AiTemp.set := source(j) AND guard(j)
else

AiTemp.reset := source(j) AND guard(j)
end if

end for
end for
{Timer’s logic}
for i = 1 to m do

Tmi.set := guard(enableTimer(Tmi))
CreateTimer(Tmi, limit(Tmi)) {Function block: Timer}
tmi.tm := Tmi.enable() AND Tmi.timeout()
Tmi.reset := tmi.tm

end for
{Update actuators from temporary variables}
for i = 1 to n do

Ai.set := AiTemp
Ai.reset := ¬AiTemp

end for

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

45

The complete algorithm used to translate the control model into Ladder code is presented in
Algorithm 1. In this algorithm, some terms have been used to facilitate the understanding,
such as:

• guard(t) is the guard condition of the t-th transition;

• source(t) is the source state of the t-th transition;

• target(t) is the target state of the t-th transition;

• T[Ai] is number of transitions of actuator Ai;

• Ai.ON is a constant to represent the ’ON’ state of actuator Ai;

• enableTimer(Tmi) is the transition that allows us to start up the timing of the i-th timer;

• Tmi.limit(<value>) is the time limit of the i-th timer;

• Tmi.enable() is a function to indicate if the i-th timer is enabled;

• Tmi.timeout() is a function to indicate when the i-th timer reaches the end of the
specified time.

5. Case study: manufacturing cell

This section presents a case study that realizes a simulation of a manufacturing cell (see
Figure 10-a), which is a typical example of the manufacturing sector where the devices can
run in a simultaneous mode. This example is well explored in Supervisory Control Theory by
Queiroz & Cury (2002). The problem with to these systems is the need for synchronization
points between parallel blocks.
The execution flow, with a possible operation of the devices for this system, is shown in
Figure 10-b. It is interesting to note that the four device actuators can run simultaneously
and that the table must be run only after the execution of these devices. Thus, a
synchronization point between devices and the table must be created to enable proper
system operation.

Fig. 10. Manufacturing cell: simulation environment.

Consider the run scenario described below:

• BELT: If there is a piece in the input buffer (initial position of the belt) and none in
position P1, the belt must be turned on; later, when the piece is at position P1 the belt
must be turned off. The if ... then clauses of this specification are:

• If inputbuffer & ¬P1 then BeltOn;

www.intechopen.com

 Programmable Logic Controller

46

• If P1 then BeltOff;

• DRILL: If there is a piece in position P2, the drill and a timer component timerT1 must
be turned on; at the end of timeout, the drill must be turned off. The if ... then clauses of
this specification are:

• If P2 then DrillOn & tm1On;

• If tm1.tm then DrillOff;

• TEST: If there is a piece in position P3, the test and a timer component timerT2 must be
turned on; at the end of timeout, the test must be turned off. The if ... then clauses of this
specification are:
• If P3 then TestOn & tm2On;
• If tm2.tm then TestOff;

• ROBOT: The robot removes a piece from position P4, and stores it. If there is a piece in
position P4, the robot and a timer component timerT3 must be turned on; at the end of
timeout, the robot must be turned off. The if ... then clauses of this specification are:
• If P4 then RobotOn & tm3On;
• If tm3.tm then RobotOff;

• TABLE: The table rotation is controlled by the single-action cylinder and the total
advance of the cylinder arm generates a 90 degree turn. Thus, after the execution of the
four devices, the cylinder must be activated to obtain a new system configuration. The
return of the cylinder-arm should occur when the sensor detects the total advance of the
cylinder-arm. The if ... then clauses of this specification are:
• If BeltEnd & DrillEnd & TestEnd & RobotEnd then ValveOn;
• If SensorOn then ValveOff;

The belt model follow the Alter On/Off pattern (see Figure 3-b), whereas the drill, the test,
and the robot models follow the On/Off pattern (see Figure 3-a). The table behavior is
modeled through of single-action cylinder (see Figure 4). In each table position, there is one
sensor for simulating piece in the place. Thus, the complete plant model is generated by
representation, in parallel way, of the four devices and the cylinder, as can be shown in
Figure 11.
Other constraints imposed on the model are:
1. Each device must execute only once before a table rotation;
2. If in a configuration there is no piece in the input buffer or in positions P2, P3, and P4,

then the belt, the drill, the test, and the robot must not be turned on;
3. The table rotation must only be performed if there is at least one piece in positions P1,

P2, or P3.
The inclusion of these constraints in the controller model is carried out by determining new
transitions between states and/or changes in the guard conditions of the existing transitions.
Initially, to create the control model for this case study, extra variables must be included to
ensure synchronism between the devices and, therefore, the constraint imposed on table
rotation, i.e., the table cannot rotate while the devices are running. In this case, the variables
E1, E2, E3, and E4 indicate the “end-of-operation” of the belt, drill, test, and robot,
respectively. These variables must be set to “true” for each of the devices. According to cell
operation, the table must only be rotated when all of devices have concluded their
operations, i.e., when the variables Ei = true (i = 1,...,4). After the table rotates 90 degrees,
these variables must be reset to allow new operations in the system. These variables are also
used in the transitions to turning on/turning off the actuators; for example, the drill must
only be turned on if the E2 control variable is equal to “false”.

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

47

Fig. 11. Manufacturing cell: plant model.

Extra transitions to ensure constraints 2 and 3 must be included in the model. For example,

if there is no piece in position P2, then the drill must not be turned on, but the E2 variable

must be set to “true” to indicate end-of-operation of the phase. Similar ideas are applied to

other actuator devices. In the table model, if there is no piece in positions P1, P2 or P3, then

the table must not rotate (constraint 3); however, variables E1, E2, E3, and E4 must be set to

“false” to allow new operations in the devices. Thus, if there is no piece in the

manufacturing cell, the model will continually alternate the value of E1,...,E4 between

Fig. 12. Manufacturing cell: control plant.

www.intechopen.com

 Programmable Logic Controller

48

“false” and “true”. The complete BSC model of the controller software is shown in Figure
12. Guard conditions g1, g2,...,g15 are presented in Table 1, where the variable IN indicates
the presence or absence of a component in the input buffer. Note that the data area is not
represented in the figure, but the IO channels can be easily identified; Ei (i = 1,...,4) are
internal variables, and P1,...,P4, IN, S1 represent sensors installed in the plant.

g1 ¬P1 & ¬E1 & IN

g2 P1

g3 ¬P1 & ¬E1 & ¬IN

g4 P2 & ¬E2

g5 tm1.tm

g6 ¬P2 & ¬E2

g7 P3 & ¬E3

g8 tm2.tm

g9 ¬P3 & ¬E3

g10 P4 & ¬E4

g11 tm3.tm

g12 ¬P4 & ¬E4

g13 E1&E2&E3&E4 & (P1 || P2 || P3)

g14 S1

g15 E1&E2&E3&E4 & ¬P1 & ¬P2 & ¬P3

Table 1. Controller: guard conditions.

This example is composed of the belt with three possible states, three devices with two

states each, and one cylinder linked to the table, which also has three states. The model with

no control has 72 states, i.e., 3 x 2 x 2 x 2 x 3 = 72 distinct configurations, and the controlled

model (control + plant) has 210 different states, in function of three timers included in the

control model for simulating the processes of drilling, testing and moving the piece to

storage. However, these 210 configurations act only in 26 distinct configurations, where: i)

24 possibilities of actuation of devices: 3 x 2 x 2 x 2 = 24 with the table in position stop

(cylinder in configuration [Off, Returned, False]); and ii) 2 possibilities for rotating the table

with the four devices in state Off. The reachability tree analysis has shown that the model

ensures the properties of reinitiability, vivacity, and that there is no deadlock. But, this

analysis is out of scope of this work.

6. Conclusion

In this work we presented a methodology for systematizing the process of plant and control
modeling of manufacturing systems. Our proposal uses a formalism based on Statecharts
diagrams, called Basic Statecharts (BSC). The plant modeling has three phases which can be
executed as many times as necessary. In general, this methodology represents a hybrid
approach - bottom-up and top-down, allowing components reuse and keeping a one-to-one
relation between plant and model (i.e., it is faithful to the actual system). The control model
is generated also using Basic Statecharts. Thus, the main contributions of this work are the
following:

• A methodology to model plants and industrial control logics using Basic Statecharts;

www.intechopen.com

Control and Plant Modeling for Manufacturing Systems using Basic Statecharts

49

• A procedure to integrate plant and control models in order to analyze and/or validate
several structural proprieties of the modeled system, such as deadlock absence,
vivacity, and reinitiability. This is very important in the project phase of every
industrial controller;

• An algorithm to translate the control logics described in Basic Statecharts into Ladder
diagrams.

One typical example of the manufacturing application was described as a case study to
illustrate our proposal.
A prototype using Java language is currently being developed to create and simulate
models generated by our methodology. The aim is to test how much easier and natural the
creation of industrial applications will become, as well as to produce more “user-friendly”
documentation for the designers, giving more autonomy to the development and
maintenance teams.

7. References

Bani Younis, M. & Frey, G. (2006). UML-Based Approach for the Reengineering of PLC
Programs, in Proceedings of 32nd Annual Conference of the IEEE Industrial Electronics
Society (IECON’06), pp. 3691–3696, Paris, France, November, 2006.

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhancement, Computer,
Vol. 21, Issue 5 (May 1988), pp. 61 – 72, ISSN:0018-9162

Boehm, B. (2006). A View of 20th and 21st Century Software Engineering, in Proceedings of
the 28th International Conference on Software Engineering (ICSE’06), pp. 12–29, New
York, NY, USA: ACM Press, 2006.

Cassandras, C. & Lafortune, S. (2008). Introduction to Discrete Event Systems - Second Edition,
Springer Science, ISBN-13: 978-0-387-33332-8, New York, (USA).

Drusinsky, D. & Harel, D. (1989). Using Statecharts for Hardware Description and Synthesis,
IEEE Transactions on Computer-Aided Design, Vol. 8, No. 7, pp. 798–807.

Endsley, E.; Almeida, E. & Tilbury, D. (2006). Modular Finite State Machines: Development
and Application to Reconfigurable Manufacturing Cell Controller Generation,
Control Engineering Practice, Vol. 14, No. 10 (October 2006), pp. 1127–1142.

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, Vol. 8, No. 3 (June 1987), pp. 231–274.

IEC-61131-3 (1993). International Eletrotechnical Commission. Programmable Controllers
Part 3, Programming Languages.

IEC-61499-1 (2005). International Eletrotechnical Commission. Functions Blocks Part 1,
Architecture, Geneva: IEC, 2005.

IEEE Std 610.12-1990 (1990). Standard Glossary of Software Engineering Terminology,
http://ieeexplore.ieee.org/ISOL/standardstoc.jsp?punumber=2238.

Masiero, P.; Maldonado, J. & Boaventura, I. (1994). A reachability Tree for Statecharts and
Analysis of Some Properties, Information and Software Technology, Vol. 36, No. 10,
pp. 615–624.

Moura, R.; Couto, F. & Guedes, L. (2008). Control and Plant Modeling for Manufacturing
Systems using Statecharts, in IEEE International Symposium on Industrial Electronics
(ISIE 2008), Cambridge, UK, July 2008, pp. 1831–1836.

www.intechopen.com

 Programmable Logic Controller

50

Queiroz, M. & Cury, J. (2002). Synthesis and Implementation of Local Modular Supervisory
Control for a Manufacturing Cell, In Proceedings of the 6th International Workshop on
Discrete Event Systems, IEEE Computer Society, pp. 377-382.

Ramadge, P. & Wonham, W. (1989). The Control of Discrete Event Systems, in Proceedings of
the IEEE, Vol. 77(January, 1989), pp. 81–98.

Royce, W. W. (1970). Managing the Development of Large Software Systems, in Proceedings.
of IEEE WESCON, pp. 1–9.

SCXML (2006). The Jakarta Project Commons SCXML, http://jakarta.apache.org/
commons/scxml/.

Von der Beeck, M. (1994). A Comparison of Statecharts Variants, in ProCoS: Proceedings of the
Third International Symposium Organized Jointly with the Working Group Provably
Correct Systems on Formal Techniques in Real-Time and Fault-Tolerant Systems. London,
UK: Springer-Verlag, pp. 128–148.

www.intechopen.com

Programmable Logic Controller

Edited by Luiz Affonso Guedes

ISBN 978-953-7619-63-3

Hard cover, 170 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Despite the great technological advancement experienced in recent years, Programmable Logic Controllers

(PLC) are still used in many applications from the real world and still play a central role in infrastructure of

industrial automation. PLC operate in the factory-floor level and are responsible typically for implementing

logical control, regulatory control strategies, such as PID and fuzzy-based algorithms, and safety logics.

Usually PLC are interconnected with the supervision level through communication network, such as Ethernet

networks, in order to work in an integrated form. In this context, this book was written by professionals that

work and research in automation area and it has two major objectives. The first objective is present some

advances in methodologies and techniques for development of industrial programs based on PLC. The

second objective is present some PLC-based real applications from various areas such as manufacturing

system, robotics, power system, communication system, and education.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Raimundo Moura and Luiz Affonso Guedes (2010). Control and Plant Modeling for Manufacturing Systems

using Basic Statecharts, Programmable Logic Controller, Luiz Affonso Guedes (Ed.), ISBN: 978-953-7619-63-

3, InTech, Available from: http://www.intechopen.com/books/programmable-logic-controller/control-and-plant-

modeling-for-manufacturing-systems-using-basic-statecharts

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

