
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322388275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Practice of Industrial Control Logic
Programming using Library Components

Oscar Ljungkrantz, Knut Åkesson and Martin Fabian
Department of Signals and Systems
Chalmers University of Technology

Sweden

1. Introduction

This chapter discusses Programmable Logic Controller (PLC) programming practice,
particularly the use of library components, in the automotive industry. A study of program
structure and use of library components at two European car manufacturers is presented.
The main purpose of the study is to provide understanding of current PLC programming in
industry.
PLCs are commonly used in mass-production for instance to coordinate robots and
machines. The life-cycles of many mass-produced products, including automotive products,
have decreased significantly during the last years, due to changing market demands and
increased competition. This has put new requirements on PLC programs, which must be
easily modifiable and quickly made fully operational, to decrease down-time and ramp-up-
time of the production system (Mehrabi et al., 2000).
PLCs are traditionally manually programmed in any of the languages of the IEC 61131-3
standard (IEC, 2003; Lewis, 1998). Especially Ladder Diagrams (LDs), derived from the time
when physical relays where used to control the machines, are common (Johnson, 2002). To
gain reusability and modifiability, PLC code can be encapsulated and reused as function
blocks (FBs). Nonetheless, the traditional PLC programs tend to be difficult to modify and
extend and not flexible enough to meet the new requirements (Lewis, 2001).
A solution to the problems might be to use frameworks that facilitate the development of
flexible and operational control programs. Hence, many researchers have developed new
frameworks and tools to develop or automatically generate PLC code to meet the new
requirements. Overview of such frameworks can be seen in (Lee et al., 2006; Ljungkrantz &
Åkesson, 2007). In spite of the potential benefits of these academic frameworks, they have
not been reported to be used in full scale industrial projects. One obstacle is that the
generated code in practice often has to be modified by hand and integrated with working
code already existing in industry.
For any code generating framework to be industrially successful, it certainly has to fulfil the
requirements of industry. Moreover, successful integration of the generated code with
already existing code requires understanding of PLC programming practice. This chapter
aims at providing this knowledge. The chapter focuses on FB usage since reusing FBs
created at the manufacturing companies is a promising approach for performing the code

Source: Programmable Logic Controller, Book edited by: Luiz Affonso Guedes,
 ISBN 978-953-7619-63-3, pp. 170, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Programmable Logic Controller

18

integration. Most results and findings are based on a study performed 2007 at two Swedish
car factories, which is reported in (Ljungkrantz & Åkesson, 2007) and is restated with some
additional comments and findings in Section 2–5 of this chapter. A comparable study was
performed at Lamb Technion in USA (Lucas & Tilbury, 2003). That study was however
focused on the development process and not on library components. Furthermore, only LD
programming was used in that study, while this chapter presents the use of other languages
and programming constructs as well.
This chapter describes three major observations:
• The PLC programs in the studied companies were written mainly in Ladder Diagrams

and Sequential Function Charts. These programs frequently reused function blocks.
• The PLC programs handled, besides automatic control, also safety and supervision,

human machine interface, product data, communication etc. The code for automatic
control was a minor part of the total code.

• Although the function blocks were frequently reused, their behaviours were only
informally described.

To improve the efficiency and reliability when reusing FBs, we think it’s crucial that the FBs
are unambiguously specified and verified. The end of this chapter therefore shows how FBs
can be formally specified and then verified using model checking. Model checking means to
automatically check whether or not a model fulfils a specification (Clarke et al., 2000). Thus,
model checking complements the traditional methods of testing and simulation. FBs can be
augmented with formal specifications to form components we call Reusable Automation
Components (RACs) (Ljungkrantz et al., 2008), which can be verified using model checking.
An example FB is specified and verified as a RAC; an error is detected, the implementation
is corrected and the final RAC is successfully verified. This shows the potential of using
formal methods in function block development.

1.1 Chapter organization
This chapter is organized as follows: Section 2 describes the scope and methods of the study.
In Section 3, the control program development at the studied companies is explained. In
Section 4, the most frequently used library components are presented and discussed and in
Section 5 a classification and statistics of the library components FBs, are presented. Section
6 discusses formal specification and verification of FBs and applies these techniques on an
example FB. Conclusions are given in Section 7.

2. Study of control code and library components

The program structure and the library components in PLCs used at two Swedish car
companies were studied in (Ljungkrantz and Åkesson, 2007). Mainly the code used in the
car body assembly factories located in Sweden was investigated, since the PLCs in those
factories control many robots, conveyors and other machines and have quite standardized
layout. Other PLC programs at the two companies may be different from those studied. Still,
“Company 1” and “Company 2” will from now on be used to refer to the respective studied
factories and “the studied companies” will be used when referring to both. The
investigation was performed by 1) manually reading the code in the PLC program
development tool, 2) discussing with PLC engineers and programmers at the studied
companies and studying a master thesis performed at the companies (Bergqvist and Öberg,

www.intechopen.com

Practice of Industrial Control Logic Programming using Library Components

19

2007) and 3) writing a program that searches through PLC code and libraries and extracts FB
usage statistics. At the time of the study, the studied companies used the same PLC program
development tool, see Section 3.2.
The PLC code investigated was structured as different projects, each representing the code
that runs on one PLC. In many cases one PLC controls one manufacturing cell, but in some
cases two or more PLCs are used for one cell. Normally a cell is divided into several stations
and a PLC often controls more than one station. For a fair comparison between the studied
companies nine similar projects were chosen at each company: two underbody projects, three
respot projects, one side line project, one framing project and two transportation projects. In the
underbody cells, robots weld/bolt parts together to form the floor of a car. In the respot line
the car floor or body are transported between the cells by a conveyor system and in each cell
robots perform extra welding/bolting to increase the strength and to add extra parts. In the
side line cells the sides of the car are built. In the framing cells the car body is built by
welding together the car floor with sides etc. In the transportation cells conveyors, lifts etc.
transport the car floor or body.
The projects and the libraries were exported to text files. The developed program reads
those files and detects all instances of each FB. It detects both FB instances that are used
directly in the projects and FB instances that are used indirectly. FBs are considered to be
used indirectly if they are used inside an FB, which has instances directly used in a project
or in turn is used indirectly. The program presents usage statistics of the FBs.
All used FBs were also classified into nine different categories, see Section 5. The program
presents the number of instances and proportion of each category.

3. Control program development

This section describes the development of PLC programs at the studied companies, by
describing the development actors, programming environment and general program
structure.

3.1 Important actors of the development process
The PLC programs are usually developed by firms contracted by the studied companies.
These firms program in a certain structure by following guidelines at the studied
companies. Company 1 has a written specification for control programming and a standard
project to start from. Company 2 has a stricter standard and structure of the code for the
developers to follow. Both of the studied companies also provide libraries with components
to reuse. The consultants may add components into the library, but these components are
reviewed by the studied companies. At the time of the study, Company 1 had one person
responsible for the library but a team of people that could review the code. Most of the
components had no documentation apart from comments within the components. Hence, to
understand the behaviour of a component, its internal code and comments had to be
examined. At Company 2 a single person reviewed and also documented all library
components. The documentation at Company 2 was done using pictures and natural
language and was connected to the library components (as help files in the PLC program
development tool). In addition to these internally developed and maintained libraries,
suppliers of certain equipment also provide libraries with components to use with that

www.intechopen.com

 Programmable Logic Controller

20

equipment. Finally, the supplier of the PLC hardware and the development tool also
provided a number of libraries to use.

3.2 Development environment and programming languages
At the time of the study, PLCs from the same vendor were used at both of the studied
companies. The development tool used to program these PLCs supports programming in
the IEC 61131 standard (IEC, 2003). Hence the programs can be written in five languages:
Sequential Function Chart (SFC), LD, Function Block Diagram, Instruction List and Structured
Text (to be precise, SFC is not considered a language in the standard, merely a graphical
technique or program structure). The standard defines components called POUs, Program
Organisation Units, to be reused and stored into component libraries. POUs can be of three
different types: functions, FBs and programs. Functions may have many inputs but only one
output. They have no memory and are typically used for mathematical operations. FBs
allow an algorithm or set of actions to be applied to a given set of data, including inputs and
internal variables, to produce a new set of output data. The behaviour of the FBs can be
implemented in any of the five IEC 61131 languages and FB instances can be used in code
written in any of the five IEC 61131 languages. Note that although IEC 61131 allows it, the
used PLC program development tool did not permit the behaviour of FBs to be
implemented using SFC.

3.3 General program structure
Both Company 1’s and Company 2’s projects consisted of several programs. Typically most
programs were written in LD, one in Instruction List and up to two programs per station in
SFC. A main sequence SFC of each station normally controlled the main order in which the
operations of robots, clamps, transportation systems etc. should be performed. At Company
1 the robots also allocated resources (machines or virtual zones), before they for instance
started welding, to avoid collision. This was done by having a separate LD program for each
robot that handled interlocks and allocation of resources needed by the robot. At Company
2 this resource allocation was not needed since the sequence itself guaranteed that no
collisions and variations occurred.
At Company 2 only nine types of programs were identified: two general programs
(“Always” and “PLC_General”, both LDs), one program for the Profibus communication
(Instruction List), four programs for each station X (two SFCs, “StnX_Auto” and
“StnX_Homerun”, and two LDs, “StnX_Manual” and “StnX_General”) and finally two
built-in supervision programs provided by the PLC supplier. Company 1’s projects were
split into more types of programs: five to ten general programs (for communication,
finishing the line, indication, communication with the safety PLC etc., all LDs), one program
for the Profibus communication (Instruction List), many programs for each station X and
robot Y (up to two SFCs, “SXMain” and “SXHomeRun”, and many LDs, for instance
“SXMovement”, “SXTransport”, “SXSumMemories”, “SXBodyId”, “SXAlarms”,
“SXRobotsY ” and “SXIndications)”. While Company 2’s projects for instance had alarm
handling code inside the actions of the SFC, at Company 1 the actions of the SFC were
mainly used to set variables that in turn were used in the LD programs. For simple
transportation cells neither Company 1 nor Company 2 used SFC.
Although most of the programs were implemented in LD many FB instances were used and
called from the LD code. Some programs almost resembled Function Block Diagrams. The
behaviour of almost all FBs was implemented in LD.

www.intechopen.com

Practice of Industrial Control Logic Programming using Library Components

21

The studied companies had few levels of hierarchy in the sense that FBs, apart from basic
FBs, seldom were used inside other FBs. Company 2 argued that blocks inside other blocks
make it hard to read and understand the code. Both of the studied companies put emphasis
on the importance of having code that can be understood and used in trouble-shooting by
the operators; this affected both the structure and naming of the code and the comments.
Ideally, the alarms and indications of a PLC project are sufficient for the operators to solve
problems but since this is not always the case, the code must be readable by the operators.

4. Frequent library components

At both of the studied companies programs were reused indirectly by starting from copies
of standard projects or programs. Only the built-in supervision programs at Company 2
were reused as is. Two built-in basic libraries provided with the PLC program development
tool consisted of both functions and FBs for mathematical operations, bit-manipulating etc.
The rest of the libraries almost exclusively consisted of FBs. Therefore the investigations
focused on FB reuse.
To illustrate the use of FBs at the studied companies, the five most frequently used FBs,
according to the projects investigated, are briefly described here. Then some of the FBs are
further described in an example of controlling two parallel clamps and the approaches
chosen at Company 1 and Company 2 are compared. The most frequent FBs are presented
in Table 1. They represented approximately 50 % of the total number of FB instances.

Table 1. Most used FBs at the studied companies in the investigated PLCs.

4.1 Company 1

FB_Event
FB_Event uses a counter to assure that its binary output signal is held high for a minimum
time, when its binary input goes high. The purpose is to assure that signals sent to other
systems keep their values long enough to be detected. It should be used for all signals sent
via TCP/IP. Furthermore, in the study FB_Event was used at almost all binary status signals
sent to actuators, supervision and HMI systems.

FB_Move
FB_Move, see Figure 1, controls the movement of actuators like clamps, fixation pins and
lifts. It can be used for moving the actuator both backwards and forwards in either
automatic or manual mode. If for instance a forward movement in automatic mode is
ordered by signal AutoFwd, some conditions are checked and if those are fulfilled the output
signal OutputFwd goes high. At the same time a timer is started and when the timer has
reached the value of TimeValue the TimeOutFwd output goes high.

www.intechopen.com

 Programmable Logic Controller

22

Fig. 1. The principle of controlling two parallel clamps at Company 1. To increase
readability, the components for one of the clamps and for backward movement are omitted.

FB_Alarm_Clamps
FB_Alarm_Clamps is used to send an alarm if the movement of any of up to four parallel
clamps is not performed within a specified time, see Figure 1. The input signal
TimeOutMovement is activated by an external timer and when this signal goes high
FB_Alarm_Clamps sends alarms for all clamps that have not yet reached the end position.

FB_Event_Clamps
FB_Event_Clamps FB has the same purpose as FB_Event but can be used for up to four
parallel clamps. It has five input signals: a move request for the whole clamp group and four
signals telling whether the connected clamps have reached their end positions or not, see
Figure 1. Inside FB_Event_Clamps the four signals each goes through an FB_Event.

FB_AllocateZon
FB_AllocateZon is used to handle interlocks between a robot and a machine or between
different robots, to avoid collision. A robot FB sends a unique number, representing the
resource that the robot wants to use, to the FB_AllocateZon. The FB_AllocateZon checks that
the conditions are met and when so it sends back the number representing the resource.

4.2 Company 2

OUT_SVx

OUT_SV and OUT_SVx (x = 2,..,6 is the number of parallel movements to supervise) are FBs
included in the built-in supervision library provided with the PLC program development
tool, see OUT_SV2 in Figure 2. These FBs are used to supervise movements by checking that
the movement has stopped within a specified time after the Run signal is given. Otherwise
alarms are given for the movements that are not finished. The output signal Out shall be
connected to the component that shall be moved.

ManAuto
The ManAuto FB was in the study used once for every station at Company 2. The FB
handles the choice for running in automatic or manual mode and has input signals for the
desired mode and for emergency stop, acknowledge signals for Profibus communication etc.

www.intechopen.com

Practice of Industrial Control Logic Programming using Library Components

23

Fig. 2. The principle of controlling two parallel clamps at Company 2. To increase
readability the components for one of the clamps and for backward movement are omitted.

If all conditions are fulfilled, the desired mode is chosen. The Au and Ma output signals
were used as conditions for conveyors, robots and actuators, either as a logic condition for a
specific movement or as a condition for a whole program. The latter was used for the
programs that handled only automatic or manual control of a station. When the ManAuto
output FBX.Ma was true it activated a task, see (IEC, 2003), so that program StnX_Manual
ran. When instead FBX.Au was true it activated a built-in function SFC_CTRL so that the
SFC StnX_Auto ran.

Valve_ctrlx

Valve_ctrl and Valve_ctrlx (x = 2,..,13 is the number of parallel actuators) are FBs to control
one or many actuators connected to one valve, see Valve_ctrl2 in Figure 2. The end position
sensors, backwards and forwards, for each of the connected actuators are input signals to
the block. If the Enable_F input signal is true the forward output EF is set if all actuators are
in backward position. The FB also has output signals for each of the actuators stating if the
actuator is in forward and not backward position, and vice versa.

CycleTime
The FB CycleTime calculates the cycle time for a station by increasing a counter each second
when the station is not paused, and resetting every new cycle.

EM_Status
EM_Status identifies and sends an error message from an electric monorail conveyor.

4.3 Example and comparison
In this section the main control approach at the studied companies will be explained using a
simple example, in which many of the above FBs will be used. The task is to close a clamp
group, consisting of two clamps that are moved in parallel via one pneumatic valve
connected to the cylinders of both clamps. Each clamp has sensors in both end positions.
The components for controlling the clamps at Company 1 are shown in Figure 1. The
movement is started when the main sequence of the station, implemented as an SFC, is in
the position where the clamps should be closed. If some basic conditions are satisfied (for
instance that the station cycle has not already been performed in manual mode) the
FB_Move is told to start the movement of the clamps. If the station is in Auto, the clamp
group is not already closed etc., FB_Move starts a timer and sends a signal to the valve to
close the clamp group. This signal is also sent to the FB_Event_Clamps. If any of the two
clamps is not closed within the maximum time allowed for the clamp group, the
FB_Alarm_Clamps sends an alarm for that clamp. The AND operator is used to assure that

www.intechopen.com

 Programmable Logic Controller

24

both clamps are closed and not open. In the figure all FBs for one clamp and for closing the
clamp are shown. Components for the second clamp (C1b) should be added in the same
way, components for opening the clamp should also be added in a similar way. The FBs
FB_Event_Clamps and FB_Alarm_Clamps can be used for up to four clamps. As seen, fewer
clamps can be controlled by setting the unused input sensor signals to true and letting the
corresponding output signals be unconnected. Four of the five most used FBs at Company 1
in the study are used in the example (FB_Event is used inside FB_Event_Clamps). The signal
out of the AND operator is a typical signal that can be used as an interlock for the fifth most
used FB, FB_AllocateZon, for instance guaranteeing that the clamps are closed before the
robot welds the part held by the clamps.
The components for controlling the clamps at Company 2 are shown in Figure 2. When the
clamp group is open this is known by the Valve_ctrl2, since all four end position sensors are
connected to this FB, and the EF (enable forward) output is high and the FaF and FbF
outputs are low since the clamps are not in closed position. The real movement is started
first when the auto sequence of the station, implemented as SFC also at Company 2, is in the
position where the clamps should be closed. Now the OUT_SV2 FB tells the clamps to close.
If a clamp is not in forward position before the time _Time has passed, an alarm is raised.
The approaches at the two companies in the study were quite similar, as exemplified above,
letting an SFC start the movement and reusing common FBs, with LD to describe the logic.
Nevertheless, there were also small but interesting differences. The function of the AND
operator in the Company 1 example was instead included in the Valve_ctrlx FB using LD, at
Company 2. At Company 2 different FBs were needed when different numbers of clamps
were to be controlled, as indicated by the number succeeding the FB name (for instance
Valve_ctrl2 and OUT_SV2). This means that Company 2, in this case, had to keep and
maintain more FBs in the library, but on the other hand did not have to set unconnected
inputs to true or false. The OUT_SVx FBs that were used at Company 2 are very similar to
Company 1’s FB_Alarm_Clamps, but are included in the built-in supervision library
provided with the PLC program development tool. A benefit of using OUT_SVx FBs is that
they can be given a teach mode in which the supervision program detects the actual time
before the stop signals are detected and updates the _Time parameter with the measured
time plus the Margin, given in %. Finally, the FB_Event was very common at Company 1 but
not used at Company 2.

5. Classification and statistics of function blocks

In 2007, Company 1 had recently started classifying their in-house libraries into function
based categories. Company 2 had chosen a more equipment-based classification. To be able
to compare the libraries we divided the FBs into nine categories. All FBs in frequent libraries
and all used FBs have been classified. The categories are listed below.
• Robot Control: Control of, and resource allocation for, robots.
• Machine Control: Control of other machines than robots, e.g. actuators and conveyors.
• HMI: FBs for indication, mode-choice and manual control. Interaction with the

operators.
• Safety and Supervision: FBs for alarm handling, communication with the safety PLC and

automatic safety operations like emergency stop.

www.intechopen.com

Practice of Industrial Control Logic Programming using Library Components

25

• Product and Production Data: FBs for communicating with identification systems like
barcodes and RFID, and for controlling the production by for instance choosing next
product type.

• Statistics: Data collection and calculations for analysis, for instance cycle time, product
counters and mean time between failures.

• Ethernet & Profibus Communication: Communication protocols, drivers etc. for Profibus
and Ethernet.

• General Functions: FBs like timers, clock settings and bit-manipulating, maintained by
the studied companies.

• Basic: The FBs in the two built-in libraries Manufacturer_Lib and Standard_ Lib, provided
with the PLC program development tool. FBs for basic mathematical operations, bit-
manipulating etc.

At Company 1, 249 FBs have been classified and 141 of those were used in the investigated
projects, including basic FBs. At Company 2, 200 FBs have been classified and 80 were used
in the investigated projects, including basic FBs.
In the investigated projects Company 2 had 1338 FB instances and Company 1 had 4514 FB
instances. Ignoring the Basic FBs they still used 1115 and 4128 FB instances respectively. At
Company 1 FB_Event and FB_Event_Clamps accounted for almost 30% of all FB instances.
Besides, they were not used at Company 2 and used in many different circumstances at
Company 1, so placing them in a single category would be inaccurate. Hence, they have
been excluded when counting how many FB instances that are used within each category.
Even with FB_Event and FB_Event_Clamps excluded Company 1 used 2950 FBs which is
significantly more than Company 2’s 1115. Although it was the intention to choose similar
projects from Company 1 and Company 2, a reason for the difference may be more
extensive PLC projects at Company 1. The difference might also be due to different structure
and usage of FBs within the projects, at Company 1 and Company 2. This explanation is
indicated by the clamp control example depicted in Figure 1 and 2, showing three directly
used FB instances and one indirectly used FB instance (FB_Event inside FB_Event_Clamps)
at Company 1 but only two FB instances at Company 2. The FB instances divided into the
different categories can be seen in Table 2.

Table 2. Percentages of used FB instances divided into different categories.

The FB instances do not represent the complete code, neither do they directly correspond to
the work done by the developers. For instance the Ethernet & Profibus communication
instances were quite few in the study but each FB was often complex. Still, the FB instances

www.intechopen.com

 Programmable Logic Controller

26

do represent a rough estimation of how the PLC code was divided. For instance the code
handling HMI, safety, supervision, communication etc. undoubtedly represents a great part
of the code. In (Lucas and Tilbury, 2003; Richardsson and Fabian, 2006) it is reported that
according to their experience at Lamb Technion and Volvo Car Corporation respectively, the
part of the code representing automatic control is about 10 % of the total. However, no data
supporting this was shown in the two papers. In the investigation reported here the code for
automatic control was part of the categories robot control and machine control, accounting
for in total 39 % at Company 1 and 21 % at Company 2. For instance, Company 1’s
FB_Move, classified as machine control, was directly called from the SFC handling the
automatic control. At Company 2 the EF output of Valve_ctrlx, classified as machine control,
was directly used in the action logic of the SFC for automatic control. Nevertheless, some
FBs classified as machine or robot control, especially at Company 1, handle low level control
of the machines and robots and should not be considered code for the automatic control
itself, rather help FBs for the code which handles the operation order for automatic control.
Therefore we can not claim that the code representing automatic control is exactly 10 % of
the total, but it is indeed fair to state that: the code for automatic control is a minor part of the
total code.
It is also interesting to compare the category distribution at the two companies. Robot
control is a greater part at Company 1 than at Company 2, which could be explained by the
fact that Company 1 assumes that the operations can be executed in different orders and
therefore uses zones to allocate resources. Company 1 also uses FBs for lamp indication
(HMI) more frequently. The proportion of FB instances for alarm handling (safety and
supervision) is significantly greater at Company 2. This can be explained by considering an
SFC with parallel branches. At Company 2, the alarm handling FBs were included in the
SFC and thus two instances of the involved FB existed in an SFC with two parallel branches
and so on. At Company 1, the SFC branches set variables that in turn were used in separate
LD programs, containing only one instance of the involved FB. In this particular case, the
choice at Company 1 resulted in more compact code, while the code at Company 2 may be
considered easier to read.

6. Formal specification and verification of function blocks

With the above findings as starting point, it is the authors’ belief that the code reuse can be
made more efficient and less error prone. Efficient code reuse indeed requires components
with known behaviour. This can be achieved by developing clear and unambiguous
specifications and by verifying that the specifications are fulfilled by the implementation (the
code). The specification can be seen as an abstraction of the implementation, capturing
important properties.
As explained in Section 3.1, most FBs at Company 1 had no external documentation. The
internal comments of the FBs are in principle insufficient as specification, since these
comments are too strongly connected to the implementation (possibly violating the principle
of abstraction) and reading the comments require access to the implementation (violating
the principle of information hiding, see (Parnas, 1972)). The external documentation of the
FBs at Company 2 does not have these disadvantages. Nonetheless, being based on natural
language, both the comments of Company 1 and the documentation of Company 2 might be
ambiguous and not suitable as a basis for verification. In particular, this natural language
documentation is not suitable when using formal verification.

www.intechopen.com

Practice of Industrial Control Logic Programming using Library Components

27

Formal verification uses math-based models and algorithms to perform the verification and
thus requires a formal and unambiguous specification. Model checking is an important set of
formal verification methods that can perform the verification automatically and produce
counterexamples if the specification is not fulfilled (Clarke et al., 2000). Model checking is
promising in FB development, since compared to common field testing, model checking can
be performed earlier in the development process. Model checking has also advantages
compared to simulation, since in many situations it is too time consuming to simulate and
test all different scenarios in which a component can be used. Model checking however
typically performs exhaustive search of the models.
Model checking PLC code can be done using many different methods and tools, see (Bérard
et al., 2001; Frey and Litz, 2000). The Reusable Automation Component (RAC) method
developed by the authors of this chapter is tailored for specifying and verifying PLC
program components, such as FBs (Ljungkrantz et al., 2008). The RAC specification structure
and language is intended to be understandable by PLC program engineers without prior
knowledge on formal languages. A RAC prototype tool has also been developed with which
the RACs can be specified and then automatically translated into inputs to the model
checking tool Cadence SMV (McMillan, 1993, 1999). The RAC method and tool is used here
to demonstrate the usefulness of formal specification and verification in FB development.
Next, the basics of the RAC are explained, followed by an example component that controls
actuators similarly to the examples seen in Figure 1 and 2. This example component is not
very complicated but stills shows the advantages of using formal verification. Formal
specification and verification of the more complex component FB_Move used by Company 1
can be seen in (Ljungkrantz et al., 2008).

6.1 Reusable Automation Components (RACs)
The RACs were introduced in (Ljungkrantz et al., 2008). A RAC has an interface that includes
inputs and outputs and a body that includes the implementation and internal variables. The
main difference compared to FBs is that the RAC interface includes a formal specification.
As help when developing and structuring the specification, five types of properties can be
used, briefly described below:
• Operation preconditions are requirements that the user of the component must satisfy in

order to obtain certain functionality, expressed by the operation behaviours.
• Operation behaviours are requirements, ensured by the developer of the component, that

must be fulfilled when all operation preconditions are satisfied.
• Exception conditions are prioritized inputs or combinations of inputs that lead to

exceptions. When an exception condition is true none of the operation behaviours can
be guaranteed. Instead the exception condition must always guarantee certain
behaviour, which must be described as exception behaviours.

• Exception behaviours are requirements, ensured by the developer of the component
regardless of the operation preconditions. Each exception behaviour includes one or
more exception conditions.

• Invariants are requirements, ensured by the developer of the component regardless of
operation preconditions.

The operation preconditions and operation behaviours are grouped as operation specification

and the exception conditions and exception behaviours are grouped as exception specification.

www.intechopen.com

 Programmable Logic Controller

28

The specification language is based on IEC 61131-3 (all four languages but not SFC) and Linear
Temporal Logic (LTL), see for instance (Clarke et al., 2000). The reason for basing the
specification language on IEC 61131-3 is that most PLC engineers are familiar with the IEC
61131-3 languages but might not know other programming or specification languages.
Augmenting the language with constructs for LTL is done to express relations over time.
Temporal logic contains constructs to reason about the order in time without explicitly
mentioning time; for instance it can state that something will always or eventually be true.
LTL is a type of temporal logic that suits the input-output based relations of FBs well and is
also supported by model checking tools. The specification language contains spelled out
versions of the temporal operators but also short-hand notations for some basic constructs,
like rising and falling edges of variables. For instance the rising edge of a boolean variable v
can be expressed as v_risingEdge which is equivalent to (NOT v_previous) & v, using the
Structured Text based variant of the specification language.

6.2 Example
As an example, the development of a RAC Control_BinaryActuator, implemented as a
function block in LD, will be demonstrated. The RAC should control a binary actuator and
should signal alarms if the movements are not performed within a maximum time. Hence
this RAC will contain most parts of the components Valve_ctrl and OUT_SV from Company
2, see Section 4.2 and many parts of the components FB_Move and FB_Alarm_Clamps,
excluding interlocks and mode handling, from Company 1, see Section 4.1.
Assume that the interface of the example component has already been determined. The
inputs and outputs of Control_BinaryActuator can be seen in Figure 3, which also shows
how the component can be used to control a cylinder. When the Move input is true, the
actuator will move forwards by setting ActuatorFwds to true if the DesiredState is “Forward”
and move backwards by setting ActuatorBwds to true if DesiredState is “Backward”. Move
must be held true throughout the complete movement. When the movement has been
performed, as indicated by the sensor inputs SensorFwd and SensorBwd, the State output will
be set to the new state. The component also has checks to see if the actuator performs
accurately and outputs alarm signals if not. If the movement is not performed within the
maximum time allowed, MaxMoveTime, the corresponding alarm, TimeOutActFwds or
TimeOutActBwds, will be set true. The AlarmUnauthMove alarm is set if the actuator moves
when it is not supposed to. Finally, the alarms can be reset by the user, by setting
ResetAlarms to true.

Fig. 3. The inputs and outputs of the Control_BinaryActuator RAC.

The specification of Control_BinaryActuator can be seen in Figure 4, using the Structured
Text based variant of the specification language.

www.intechopen.com

Practice of Industrial Control Logic Programming using Library Components

29

Fig. 4. Specification of the Control_BinaryActuator RAC.

The first operation precondition states the allowed input values for MaxMoveTime and
DesiredState. The second operation precondition states that the user must not change the
direction of the movement while moving. The operation behaviour MoveOrAlarm
summarizes the main functionality of the RAC by stating that when the user of the RAC is
trying to move the actuator, the actuator will eventually reach the desired state or an alarm
is raised. More operation behaviours could be added, for instance to specify under what
circumstances the operating outputs ActuatorFwds and ActuatorBwds are actually true, but
for brevity only MoveOrAlarm is shown. The exception condition Reset states that none of
the operation behaviours can be guaranteed if the ResetAlarms input is true. The
corresponding exception behaviour ResetBhvr declares that the ResetAlarms input will
always reset all three alarms. The invariant NotIllegalMove states that the RAC will never try
to move the actuator in both directions simultaneously. Finally, Stop declares that the
outputs that move the actuator will never be true when Move is false. Note that NOT Move
could as well have been specified as an exception condition, depending on how “normal”
operation of the component is viewed. If so, Stop would have been specified as an exception
behaviour instead.

Implementation and Verification
A rather straightforward attempt of implementing the example component can be seen in
Figure 5. The implementation makes use of the standard functions AND, EQ (tests equality)
and MOVE_E and of the function block TON. TON is a standard timer that sets the output Q
to true if IN is true at least as long as the time PT. The function MOVE_E that is used in the
position control at the top of Figure 5, copies the string on the IN input to the output to
which State is connected, when the EN input is true. The positive (P) and negative (N)
transition-sensing contacts are used to detect rising and falling edges of the signals,
respectively.
The RAC can now be formally verified to check whether the implementation of Figure 5
fulfils the specification of Figure 4 or not. The RAC can be translated into inputs to Cadence

www.intechopen.com

 Programmable Logic Controller

30

Fig. 5. An implementation approach of the Control_BinaryActuator RAC in Ladder Diagrams
using standard functions and the timer FB TON.

SMV by the RAC prototype development tool, and then Cadence SMV can be used to
perform the verification. Doing this, the result is that the RAC is not valid, that is the
specification is not fulfilled by the implementation. Both invariants are fulfilled, but not the
operation behaviour MoveOrAlarm. SMV gives a counterexample to why the operation
behaviour is not fulfilled to help understand and solve the problem. If the actuator should
be moved forward but the sensors are broken so that both sensor inputs are true at the same
time, the actuator will not be moved and unfortunately the TimeOutActFwds will not be set.
The FwdTimer will not be started since the SensorFwd is already true, but the state will be
reported as Backward (from the second MOVE_E function) and hence MoveOrAlarm is not
fulfilled. The RAC could certainly be made valid by adding a precondition saying that the
actuators and sensors may never be broken, but a much better alternative is to change the
implementation so the alarms will actually work when the sensors are broken.
To solve the problem, two internal variables InFwdPosition and InBwdPosition are used that
are true only when SensorFwd and not SensorBwd are true and vice versa. Those internal
variables are used as conditions to start the timers, as shown in Figure 6. Using this

www.intechopen.com

Practice of Industrial Control Logic Programming using Library Components

31

implementation the complete specification is fulfilled and the RAC is valid. Even for such a
small and elementary component as Control_BinaryActuator, the error of the first
implementation attempt might be hard to foresee. By studying the counterexample of the
model checking tool though, the error can be easily solved. This demonstrates the potential
of using formal specification and verification in the FB development process.

Fig. 6. A valid implementation of the Control_BinaryActuator RAC in Ladder Diagrams. The
part not shown is exactly the same as in Figure 5.

7. Conclusions

In this chapter a study of PLC programming and use of library components at two Swedish
car manufacturers is presented. Both companies used several programs for each PLC,
implemented mainly in LD and SFC. These programs included lots of instances of reusable
function blocks, FBs. Some of the most frequent FBs were used for automatic control of
actuators and conveyors but in total only a minor part of the used FB instances was for
automatic control; the majority was for HMI, safety, supervision, production data,
communication etc. This is important to consider when developing or modifying
frameworks for control program generation, to cope with the new requirements of flexible
manufacturing systems. Integrating industrial FBs with new frameworks for generating
control sequences is an interesting direction for future research.
It is also interesting to consider that although the FBs were frequently reused, their
behaviours were only informally specified. In our opinion the FB reuse can be made more
efficient by also using tools and methods for formal specification and verification. This is
demonstrated by an example component, in which an error of the first implementation
attempt is discovered and solved.
For formal specifications to be used in industry it is important that the development of
relevant specifications is not too troublesome or time consuming. We therefore currently
research into developing guidelines for formal specification of PLC program components.

www.intechopen.com

 Programmable Logic Controller

32

8. Acknowledgment

This research is financed by the ProViking research programme. Thanks also to all
concerned staff at the studied companies for sharing their knowledge and code. Thanks to
Isak Öberg and Olof Bergqvist for performing an interesting master thesis.

9. References

Olof Bergqvist and Isak Öberg. PLC function block survey of Swedish automotive industry.
Master’s thesis, Dept. Signals and Systems, Chalmers Univ. Technol., Göteborg,
Sweden, 2007.

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen, and P.
McKenzie. Systems and Software Verification – Model-Checking Techniques and Tools.
Springer, 2001.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 2000.
Georg Frey and Lothar Litz. Formal methods in PLC programming. In Proc. Int. Conf. Syst.,

Man, Cybern., pages 2431–2436, Nashville, TN, USA, 2000.
IEC. Programmable Controllers—Part 3: Programming languages. International standard

IEC 61131-3. International Electrotechnical Commission, second edition, 2003.
Dick Johnson. Nano devices lead assault on traditional PLC applications. Control

Engineering, 49(8):43 44, 2002.
Seungjoo Lee, Mark Adam Ang, and Jason Lee. Automatic generation of logic control.

Technical report, Ford Motor Co., Univ. of Michigan and Loughborough Univ.,
2006.

Robert W. Lewis. Programming industrial control systems using IEC 1131-3 Revised edition.
The Institution of Electrical Engineers, 1998.

Robert W. Lewis. Modelling Control Systems Using IEC 61499. The Institution of Electrical
Engineers, 2001.

Oscar Ljungkrantz and Knut Åkesson. A study of industrial logic control programming
using library components. In Proceedings of the 3rd Annual IEEE Conference on
Automation Science and Engineering, pages 117–122, Scottsdale, AZ, USA, 2007.

Oscar Ljungkrantz, Knut Åkesson, and Martin Fabian. Formal specification and verification
of components for industrial logic control programming. In Proceedings of the 4th
IEEE Conference on Automation Science and Engineering, pages 935– 940, Washington
DC, USA, 2008.

M.R. Lucas and D.M. Tilbury. A study of current logic design practices in the automotive
manufacturing industry. Int. J. Human-Computer Studies, 59(5):725–753, 2003.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer, 1993.
Kenneth L. McMillan. The SMV language. Cadence Berkeley Labs, 1999. URL

http://www.kenmcmil.com/language.ps.
Mostafa G. Mehrabi, A. Galip Ulsoy, and Y. Koren. Reconfigurable manufacturing systems:

Key to future manufacturing. J. Intelligent Manufacturing, 11(4):403–419, 2000.
David Lorge Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058, 1972.
Johan Richardsson and Martin Fabian. Modeling the control of a flexible manufacturing cell

for automatic verification and control program generation. J. of Flexible Service and
Manufacturing, 18(3):191–208, 2006.

www.intechopen.com

Programmable Logic Controller

Edited by Luiz Affonso Guedes

ISBN 978-953-7619-63-3

Hard cover, 170 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Despite the great technological advancement experienced in recent years, Programmable Logic Controllers

(PLC) are still used in many applications from the real world and still play a central role in infrastructure of

industrial automation. PLC operate in the factory-floor level and are responsible typically for implementing

logical control, regulatory control strategies, such as PID and fuzzy-based algorithms, and safety logics.

Usually PLC are interconnected with the supervision level through communication network, such as Ethernet

networks, in order to work in an integrated form. In this context, this book was written by professionals that

work and research in automation area and it has two major objectives. The first objective is present some

advances in methodologies and techniques for development of industrial programs based on PLC. The

second objective is present some PLC-based real applications from various areas such as manufacturing

system, robotics, power system, communication system, and education.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Oscar Ljungkrantz, Knut Åkesson and Martin Fabian (2010). Practice of Industrial Control Logic Programming

using Library Components, Programmable Logic Controller, Luiz Affonso Guedes (Ed.), ISBN: 978-953-7619-

63-3, InTech, Available from: http://www.intechopen.com/books/programmable-logic-controller/practice-of-

industrial-control-logic-programming-using-library-components

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

