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1. Introduction 

This chapter discusses Programmable Logic Controller (PLC) programming practice, 
particularly the use of library components, in the automotive industry. A study of program 
structure and use of library components at two European car manufacturers is presented. 
The main purpose of the study is to provide understanding of current PLC programming in 
industry. 
PLCs are commonly used in mass-production for instance to coordinate robots and 
machines. The life-cycles of many mass-produced products, including automotive products, 
have decreased significantly during the last years, due to changing market demands and 
increased competition. This has put new requirements on PLC programs, which must be 
easily modifiable and quickly made fully operational, to decrease down-time and ramp-up-
time of the production system (Mehrabi et al., 2000). 
PLCs are traditionally manually programmed in any of the languages of the IEC 61131-3 
standard (IEC, 2003; Lewis, 1998). Especially Ladder Diagrams (LDs), derived from the time 
when physical relays where used to control the machines, are common (Johnson, 2002). To 
gain reusability and modifiability, PLC code can be encapsulated and reused as function 
blocks (FBs). Nonetheless, the traditional PLC programs tend to be difficult to modify and 
extend and not flexible enough to meet the new requirements (Lewis, 2001). 
A solution to the problems might be to use frameworks that facilitate the development of 
flexible and operational control programs. Hence, many researchers have developed new 
frameworks and tools to develop or automatically generate PLC code to meet the new 
requirements. Overview of such frameworks can be seen in (Lee et al., 2006; Ljungkrantz & 
Åkesson, 2007). In spite of the potential benefits of these academic frameworks, they have 
not been reported to be used in full scale industrial projects. One obstacle is that the 
generated code in practice often has to be modified by hand and integrated with working 
code already existing in industry. 
For any code generating framework to be industrially successful, it certainly has to fulfil the 
requirements of industry. Moreover, successful integration of the generated code with 
already existing code requires understanding of PLC programming practice. This chapter 
aims at providing this knowledge. The chapter focuses on FB usage since reusing FBs 
created at the manufacturing companies is a promising approach for performing the code 
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integration. Most results and findings are based on a study performed 2007 at two Swedish 
car factories, which is reported in (Ljungkrantz & Åkesson, 2007) and is restated with some 
additional comments and findings in Section 2–5 of this chapter. A comparable study was 
performed at Lamb Technion in USA (Lucas & Tilbury, 2003). That study was however 
focused on the development process and not on library components. Furthermore, only LD 
programming was used in that study, while this chapter presents the use of other languages 
and programming constructs as well. 
This chapter describes three major observations: 
• The PLC programs in the studied companies were written mainly in Ladder Diagrams 

and Sequential Function Charts. These programs frequently reused function blocks. 
• The PLC programs handled, besides automatic control, also safety and supervision, 

human machine interface, product data, communication etc. The code for automatic 
control was a minor part of the total code. 

• Although the function blocks were frequently reused, their behaviours were only 
informally described. 

To improve the efficiency and reliability when reusing FBs, we think it’s crucial that the FBs 
are unambiguously specified and verified. The end of this chapter therefore shows how FBs 
can be formally specified and then verified using model checking. Model checking means to 
automatically check whether or not a model fulfils a specification (Clarke et al., 2000). Thus, 
model checking complements the traditional methods of testing and simulation. FBs can be 
augmented with formal specifications to form components we call Reusable Automation 
Components (RACs) (Ljungkrantz et al., 2008), which can be verified using model checking. 
An example FB is specified and verified as a RAC; an error is detected, the implementation 
is corrected and the final RAC is successfully verified. This shows the potential of using 
formal methods in function block development. 

1.1 Chapter organization 
This chapter is organized as follows: Section 2 describes the scope and methods of the study. 
In Section 3, the control program development at the studied companies is explained. In 
Section 4, the most frequently used library components are presented and discussed and in 
Section 5 a classification and statistics of the library components FBs, are presented. Section 
6 discusses formal specification and verification of FBs and applies these techniques on an 
example FB. Conclusions are given in Section 7. 

2. Study of control code and library components 

The program structure and the library components in PLCs used at two Swedish car 
companies were studied in (Ljungkrantz and Åkesson, 2007). Mainly the code used in the 
car body assembly factories located in Sweden was investigated, since the PLCs in those 
factories control many robots, conveyors and other machines and have quite standardized 
layout. Other PLC programs at the two companies may be different from those studied. Still, 
“Company 1” and “Company 2” will from now on be used to refer to the respective studied 
factories and “the studied companies” will be used when referring to both. The 
investigation was performed by 1) manually reading the code in the PLC program 
development tool, 2) discussing with PLC engineers and programmers at the studied 
companies and studying a master thesis performed at the companies (Bergqvist and Öberg, 
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2007) and 3) writing a program that searches through PLC code and libraries and extracts FB 
usage statistics. At the time of the study, the studied companies used the same PLC program 
development tool, see Section 3.2. 
The PLC code investigated was structured as different projects, each representing the code 
that runs on one PLC. In many cases one PLC controls one manufacturing cell, but in some 
cases two or more PLCs are used for one cell. Normally a cell is divided into several stations 
and a PLC often controls more than one station. For a fair comparison between the studied 
companies nine similar projects were chosen at each company: two underbody projects, three 
respot projects, one side line project, one framing project and two transportation projects. In the 
underbody cells, robots weld/bolt parts together to form the floor of a car. In the respot line 
the car floor or body are transported between the cells by a conveyor system and in each cell 
robots perform extra welding/bolting to increase the strength and to add extra parts. In the 
side line cells the sides of the car are built. In the framing cells the car body is built by 
welding together the car floor with sides etc. In the transportation cells conveyors, lifts etc. 
transport the car floor or body. 
The projects and the libraries were exported to text files. The developed program reads 
those files and detects all instances of each FB. It detects both FB instances that are used 
directly in the projects and FB instances that are used indirectly. FBs are considered to be 
used indirectly if they are used inside an FB, which has instances directly used in a project 
or in turn is used indirectly. The program presents usage statistics of the FBs. 
All used FBs were also classified into nine different categories, see Section 5. The program 
presents the number of instances and proportion of each category. 

3. Control program development 

This section describes the development of PLC programs at the studied companies, by 
describing the development actors, programming environment and general program 
structure. 

3.1 Important actors of the development process 
The PLC programs are usually developed by firms contracted by the studied companies. 
These firms program in a certain structure by following guidelines at the studied 
companies. Company 1 has a written specification for control programming and a standard 
project to start from. Company 2 has a stricter standard and structure of the code for the 
developers to follow. Both of the studied companies also provide libraries with components 
to reuse. The consultants may add components into the library, but these components are 
reviewed by the studied companies. At the time of the study, Company 1 had one person 
responsible for the library but a team of people that could review the code. Most of the 
components had no documentation apart from comments within the components. Hence, to 
understand the behaviour of a component, its internal code and comments had to be 
examined. At Company 2 a single person reviewed and also documented all library 
components. The documentation at Company 2 was done using pictures and natural 
language and was connected to the library components (as help files in the PLC program 
development tool). In addition to these internally developed and maintained libraries, 
suppliers of certain equipment also provide libraries with components to use with that 
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equipment. Finally, the supplier of the PLC hardware and the development tool also 
provided a number of libraries to use. 

3.2 Development environment and programming languages 
At the time of the study, PLCs from the same vendor were used at both of the studied 
companies. The development tool used to program these PLCs supports programming in 
the IEC 61131 standard (IEC, 2003). Hence the programs can be written in five languages: 
Sequential Function Chart (SFC), LD, Function Block Diagram, Instruction List and Structured 
Text (to be precise, SFC is not considered a language in the standard, merely a graphical 
technique or program structure). The standard defines components called POUs, Program 
Organisation Units, to be reused and stored into component libraries. POUs can be of three 
different types: functions, FBs and programs. Functions may have many inputs but only one 
output. They have no memory and are typically used for mathematical operations. FBs 
allow an algorithm or set of actions to be applied to a given set of data, including inputs and 
internal variables, to produce a new set of output data. The behaviour of the FBs can be 
implemented in any of the five IEC 61131 languages and FB instances can be used in code 
written in any of the five IEC 61131 languages. Note that although IEC 61131 allows it, the 
used PLC program development tool did not permit the behaviour of FBs to be 
implemented using SFC. 

3.3 General program structure 
Both Company 1’s and Company 2’s projects consisted of several programs. Typically most 
programs were written in LD, one in Instruction List and up to two programs per station in 
SFC. A main sequence SFC of each station normally controlled the main order in which the 
operations of robots, clamps, transportation systems etc. should be performed. At Company 
1 the robots also allocated resources (machines or virtual zones), before they for instance 
started welding, to avoid collision. This was done by having a separate LD program for each 
robot that handled interlocks and allocation of resources needed by the robot. At Company 
2 this resource allocation was not needed since the sequence itself guaranteed that no 
collisions and variations occurred. 
At Company 2 only nine types of programs were identified: two general programs 
(“Always” and “PLC_General”, both LDs), one program for the Profibus communication 
(Instruction List), four programs for each station X (two SFCs, “StnX_Auto” and 
“StnX_Homerun”, and two LDs, “StnX_Manual” and “StnX_General”) and finally two 
built-in supervision programs provided by the PLC supplier. Company 1’s projects were 
split into more types of programs: five to ten general programs (for communication, 
finishing the line, indication, communication with the safety PLC etc., all LDs), one program 
for the Profibus communication (Instruction List), many programs for each station X and 
robot Y (up to two SFCs, “SXMain” and “SXHomeRun”, and many LDs, for instance 
“SXMovement”, “SXTransport”, “SXSumMemories”, “SXBodyId”, “SXAlarms”, 
“SXRobotsY ” and “SXIndications)”. While Company 2’s projects for instance had alarm 
handling code inside the actions of the SFC, at Company 1 the actions of the SFC were 
mainly used to set variables that in turn were used in the LD programs. For simple 
transportation cells neither Company 1 nor Company 2 used SFC. 
Although most of the programs were implemented in LD many FB instances were used and 
called from the LD code. Some programs almost resembled Function Block Diagrams. The 
behaviour of almost all FBs was implemented in LD. 
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The studied companies had few levels of hierarchy in the sense that FBs, apart from basic 
FBs, seldom were used inside other FBs. Company 2 argued that blocks inside other blocks 
make it hard to read and understand the code. Both of the studied companies put emphasis 
on the importance of having code that can be understood and used in trouble-shooting by 
the operators; this affected both the structure and naming of the code and the comments. 
Ideally, the alarms and indications of a PLC project are sufficient for the operators to solve 
problems but since this is not always the case, the code must be readable by the operators. 

4. Frequent library components 

At both of the studied companies programs were reused indirectly by starting from copies 
of standard projects or programs. Only the built-in supervision programs at Company 2 
were reused as is. Two built-in basic libraries provided with the PLC program development 
tool consisted of both functions and FBs for mathematical operations, bit-manipulating etc. 
The rest of the libraries almost exclusively consisted of FBs. Therefore the investigations 
focused on FB reuse. 
To illustrate the use of FBs at the studied companies, the five most frequently used FBs, 
according to the projects investigated, are briefly described here. Then some of the FBs are 
further described in an example of controlling two parallel clamps and the approaches 
chosen at Company 1 and Company 2 are compared. The most frequent FBs are presented 
in Table 1. They represented approximately 50 % of the total number of FB instances. 
 

 
Table 1. Most used FBs at the studied companies in the investigated PLCs. 

4.1 Company 1 
 

FB_Event 
FB_Event uses a counter to assure that its binary output signal is held high for a minimum 
time, when its binary input goes high. The purpose is to assure that signals sent to other 
systems keep their values long enough to be detected. It should be used for all signals sent 
via TCP/IP. Furthermore, in the study FB_Event was used at almost all binary status signals 
sent to actuators, supervision and HMI systems. 
 

FB_Move 
FB_Move, see Figure 1, controls the movement of actuators like clamps, fixation pins and 
lifts. It can be used for moving the actuator both backwards and forwards in either 
automatic or manual mode. If for instance a forward movement in automatic mode is 
ordered by signal AutoFwd, some conditions are checked and if those are fulfilled the output 
signal OutputFwd goes high. At the same time a timer is started and when the timer has 
reached the value of TimeValue the TimeOutFwd output goes high. 
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Fig. 1. The principle of controlling two parallel clamps at Company 1. To increase 
readability, the components for one of the clamps and for backward movement are omitted. 

FB_Alarm_Clamps 
FB_Alarm_Clamps is used to send an alarm if the movement of any of up to four parallel 
clamps is not performed within a specified time, see Figure 1. The input signal 
TimeOutMovement is activated by an external timer and when this signal goes high 
FB_Alarm_Clamps sends alarms for all clamps that have not yet reached the end position. 
 

FB_Event_Clamps 
FB_Event_Clamps FB has the same purpose as FB_Event but can be used for up to four 
parallel clamps. It has five input signals: a move request for the whole clamp group and four 
signals telling whether the connected clamps have reached their end positions or not, see 
Figure 1. Inside FB_Event_Clamps the four signals each goes through an FB_Event. 
 

FB_AllocateZon 
FB_AllocateZon is used to handle interlocks between a robot and a machine or between 
different robots, to avoid collision. A robot FB sends a unique number, representing the 
resource that the robot wants to use, to the FB_AllocateZon. The FB_AllocateZon checks that 
the conditions are met and when so it sends back the number representing the resource. 

4.2 Company 2 
 

OUT_SVx 

OUT_SV and OUT_SVx (x = 2,..,6 is the number of parallel movements to supervise) are FBs 
included in the built-in supervision library provided with the PLC program development 
tool, see OUT_SV2 in Figure 2. These FBs are used to supervise movements by checking that 
the movement has stopped within a specified time after the Run signal is given. Otherwise 
alarms are given for the movements that are not finished. The output signal Out shall be 
connected to the component that shall be moved. 
 

ManAuto 
The ManAuto FB was in the study used once for every station at Company 2. The FB 
handles the choice for running in automatic or manual mode and has input signals for the 
desired mode and for emergency stop, acknowledge signals for Profibus communication etc.  
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Fig. 2. The principle of controlling two parallel clamps at Company 2. To increase 
readability the components for one of the clamps and for backward movement are omitted. 

If all conditions are fulfilled, the desired mode is chosen. The Au and Ma output signals 
were used as conditions for conveyors, robots and actuators, either as a logic condition for a 
specific movement or as a condition for a whole program. The latter was used for the 
programs that handled only automatic or manual control of a station. When the ManAuto 
output FBX.Ma was true it activated a task, see (IEC, 2003), so that program StnX_Manual 
ran. When instead FBX.Au was true it activated a built-in function SFC_CTRL so that the 
SFC StnX_Auto ran. 
 

Valve_ctrlx 

Valve_ctrl and Valve_ctrlx (x = 2,..,13 is the number of parallel actuators) are FBs to control 
one or many actuators connected to one valve, see Valve_ctrl2 in Figure 2. The end position 
sensors, backwards and forwards, for each of the connected actuators are input signals to 
the block. If the Enable_F input signal is true the forward output EF is set if all actuators are 
in backward position. The FB also has output signals for each of the actuators stating if the 
actuator is in forward and not backward position, and vice versa. 
 

CycleTime 
The FB CycleTime calculates the cycle time for a station by increasing a counter each second 
when the station is not paused, and resetting every new cycle. 
 

EM_Status 
EM_Status identifies and sends an error message from an electric monorail conveyor. 

4.3 Example and comparison 
In this section the main control approach at the studied companies will be explained using a 
simple example, in which many of the above FBs will be used. The task is to close a clamp 
group, consisting of two clamps that are moved in parallel via one pneumatic valve 
connected to the cylinders of both clamps. Each clamp has sensors in both end positions. 
The components for controlling the clamps at Company 1 are shown in Figure 1. The 
movement is started when the main sequence of the station, implemented as an SFC, is in 
the position where the clamps should be closed. If some basic conditions are satisfied (for 
instance that the station cycle has not already been performed in manual mode) the 
FB_Move is told to start the movement of the clamps. If the station is in Auto, the clamp 
group is not already closed etc., FB_Move starts a timer and sends a signal to the valve to 
close the clamp group. This signal is also sent to the FB_Event_Clamps. If any of the two 
clamps is not closed within the maximum time allowed for the clamp group, the 
FB_Alarm_Clamps sends an alarm for that clamp. The AND operator is used to assure that 
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both clamps are closed and not open. In the figure all FBs for one clamp and for closing the 
clamp are shown. Components for the second clamp (C1b) should be added in the same 
way, components for opening the clamp should also be added in a similar way. The FBs 
FB_Event_Clamps and FB_Alarm_Clamps can be used for up to four clamps. As seen, fewer 
clamps can be controlled by setting the unused input sensor signals to true and letting the 
corresponding output signals be unconnected. Four of the five most used FBs at Company 1 
in the study are used in the example (FB_Event is used inside FB_Event_Clamps). The signal 
out of the AND operator is a typical signal that can be used as an interlock for the fifth most 
used FB, FB_AllocateZon, for instance guaranteeing that the clamps are closed before the 
robot welds the part held by the clamps. 
The components for controlling the clamps at Company 2 are shown in Figure 2. When the 
clamp group is open this is known by the Valve_ctrl2, since all four end position sensors are 
connected to this FB, and the EF (enable forward) output is high and the FaF and FbF 
outputs are low since the clamps are not in closed position. The real movement is started 
first when the auto sequence of the station, implemented as SFC also at Company 2, is in the 
position where the clamps should be closed. Now the OUT_SV2 FB tells the clamps to close. 
If a clamp is not in forward position before the time _Time has passed, an alarm is raised. 
The approaches at the two companies in the study were quite similar, as exemplified above, 
letting an SFC start the movement and reusing common FBs, with LD to describe the logic. 
Nevertheless, there were also small but interesting differences. The function of the AND 
operator in the Company 1 example was instead included in the Valve_ctrlx FB using LD, at 
Company 2. At Company 2 different FBs were needed when different numbers of clamps 
were to be controlled, as indicated by the number succeeding the FB name (for instance 
Valve_ctrl2 and OUT_SV2). This means that Company 2, in this case, had to keep and 
maintain more FBs in the library, but on the other hand did not have to set unconnected 
inputs to true or false. The OUT_SVx FBs that were used at Company 2 are very similar to 
Company 1’s FB_Alarm_Clamps, but are included in the built-in supervision library 
provided with the PLC program development tool. A benefit of using OUT_SVx FBs is that 
they can be given a teach mode in which the supervision program detects the actual time 
before the stop signals are detected and updates the _Time parameter with the measured 
time plus the Margin, given in %. Finally, the FB_Event was very common at Company 1 but 
not used at Company 2. 

5. Classification and statistics of function blocks 

In 2007, Company 1 had recently started classifying their in-house libraries into function 
based categories. Company 2 had chosen a more equipment-based classification. To be able 
to compare the libraries we divided the FBs into nine categories. All FBs in frequent libraries 
and all used FBs have been classified. The categories are listed below. 
• Robot Control: Control of, and resource allocation for, robots. 
• Machine Control: Control of other machines than robots, e.g. actuators and conveyors. 
• HMI: FBs for indication, mode-choice and manual control. Interaction with the 

operators. 
• Safety and Supervision: FBs for alarm handling, communication with the safety PLC and 

automatic safety operations like emergency stop. 
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• Product and Production Data: FBs for communicating with identification systems like 
barcodes and RFID, and for controlling the production by for instance choosing next 
product type. 

• Statistics: Data collection and calculations for analysis, for instance cycle time, product 
counters and mean time between failures. 

• Ethernet & Profibus Communication: Communication protocols, drivers etc. for Profibus 
and Ethernet. 

• General Functions: FBs like timers, clock settings and bit-manipulating, maintained by 
the studied companies. 

• Basic: The FBs in the two built-in libraries Manufacturer_Lib and Standard_ Lib, provided 
with the PLC program development tool. FBs for basic mathematical operations, bit-
manipulating etc. 

At Company 1, 249 FBs have been classified and 141 of those were used in the investigated 
projects, including basic FBs. At Company 2, 200 FBs have been classified and 80 were used 
in the investigated projects, including basic FBs. 
In the investigated projects Company 2 had 1338 FB instances and Company 1 had 4514 FB 
instances. Ignoring the Basic FBs they still used 1115 and 4128 FB instances respectively. At 
Company 1 FB_Event and FB_Event_Clamps accounted for almost 30% of all FB instances. 
Besides, they were not used at Company 2 and used in many different circumstances at 
Company 1, so placing them in a single category would be inaccurate. Hence, they have 
been excluded when counting how many FB instances that are used within each category. 
Even with FB_Event and FB_Event_Clamps excluded Company 1 used 2950 FBs which is 
significantly more than Company 2’s 1115. Although it was the intention to choose similar 
projects from Company 1 and Company 2, a reason for the difference may be more 
extensive PLC projects at Company 1. The difference might also be due to different structure 
and usage of FBs within the projects, at Company 1 and Company 2. This explanation is 
indicated by the clamp control example depicted in Figure 1 and 2, showing three directly 
used FB instances and one indirectly used FB instance (FB_Event inside FB_Event_Clamps) 
at Company 1 but only two FB instances at Company 2. The FB instances divided into the 
different categories can be seen in Table 2. 
 

 
Table 2. Percentages of used FB instances divided into different categories. 

The FB instances do not represent the complete code, neither do they directly correspond to 
the work done by the developers. For instance the Ethernet & Profibus communication 
instances were quite few in the study but each FB was often complex. Still, the FB instances 
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do represent a rough estimation of how the PLC code was divided. For instance the code 
handling HMI, safety, supervision, communication etc. undoubtedly represents a great part 
of the code. In (Lucas and Tilbury, 2003; Richardsson and Fabian, 2006) it is reported that 
according to their experience at Lamb Technion and Volvo Car Corporation respectively, the 
part of the code representing automatic control is about 10 % of the total. However, no data 
supporting this was shown in the two papers. In the investigation reported here the code for 
automatic control was part of the categories robot control and machine control, accounting 
for in total 39 % at Company 1 and 21 % at Company 2. For instance, Company 1’s 
FB_Move, classified as machine control, was directly called from the SFC handling the 
automatic control. At Company 2 the EF output of Valve_ctrlx, classified as machine control, 
was directly used in the action logic of the SFC for automatic control. Nevertheless, some 
FBs classified as machine or robot control, especially at Company 1, handle low level control 
of the machines and robots and should not be considered code for the automatic control 
itself, rather help FBs for the code which handles the operation order for automatic control. 
Therefore we can not claim that the code representing automatic control is exactly 10 % of 
the total, but it is indeed fair to state that: the code for automatic control is a minor part of the 
total code. 
It is also interesting to compare the category distribution at the two companies. Robot 
control is a greater part at Company 1 than at Company 2, which could be explained by the 
fact that Company 1 assumes that the operations can be executed in different orders and 
therefore uses zones to allocate resources. Company 1 also uses FBs for lamp indication 
(HMI) more frequently. The proportion of FB instances for alarm handling (safety and 
supervision) is significantly greater at Company 2. This can be explained by considering an 
SFC with parallel branches. At Company 2, the alarm handling FBs were included in the 
SFC and thus two instances of the involved FB existed in an SFC with two parallel branches 
and so on. At Company 1, the SFC branches set variables that in turn were used in separate 
LD programs, containing only one instance of the involved FB. In this particular case, the 
choice at Company 1 resulted in more compact code, while the code at Company 2 may be 
considered easier to read. 

6. Formal specification and verification of function blocks 

With the above findings as starting point, it is the authors’ belief that the code reuse can be 
made more efficient and less error prone. Efficient code reuse indeed requires components 
with known behaviour. This can be achieved by developing clear and unambiguous 
specifications and by verifying that the specifications are fulfilled by the implementation (the 
code). The specification can be seen as an abstraction of the implementation, capturing 
important properties. 
As explained in Section 3.1, most FBs at Company 1 had no external documentation. The 
internal comments of the FBs are in principle insufficient as specification, since these 
comments are too strongly connected to the implementation (possibly violating the principle 
of abstraction) and reading the comments require access to the implementation (violating 
the principle of information hiding, see (Parnas, 1972)). The external documentation of the 
FBs at Company 2 does not have these disadvantages. Nonetheless, being based on natural 
language, both the comments of Company 1 and the documentation of Company 2 might be 
ambiguous and not suitable as a basis for verification. In particular, this natural language 
documentation is not suitable when using formal verification. 
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Formal verification uses math-based models and algorithms to perform the verification and 
thus requires a formal and unambiguous specification. Model checking is an important set of 
formal verification methods that can perform the verification automatically and produce 
counterexamples if the specification is not fulfilled (Clarke et al., 2000). Model checking is 
promising in FB development, since compared to common field testing, model checking can 
be performed earlier in the development process. Model checking has also advantages 
compared to simulation, since in many situations it is too time consuming to simulate and 
test all different scenarios in which a component can be used. Model checking however 
typically performs exhaustive search of the models. 
Model checking PLC code can be done using many different methods and tools, see (Bérard 
et al., 2001; Frey and Litz, 2000). The Reusable Automation Component (RAC) method 
developed by the authors of this chapter is tailored for specifying and verifying PLC 
program components, such as FBs (Ljungkrantz et al., 2008). The RAC specification structure 
and language is intended to be understandable by PLC program engineers without prior 
knowledge on formal languages. A RAC prototype tool has also been developed with which 
the RACs can be specified and then automatically translated into inputs to the model 
checking tool Cadence SMV (McMillan, 1993, 1999). The RAC method and tool is used here 
to demonstrate the usefulness of formal specification and verification in FB development. 
Next, the basics of the RAC are explained, followed by an example component that controls 
actuators similarly to the examples seen in Figure 1 and 2. This example component is not 
very complicated but stills shows the advantages of using formal verification. Formal 
specification and verification of the more complex component FB_Move used by Company 1 
can be seen in (Ljungkrantz et al., 2008). 

6.1 Reusable Automation Components (RACs) 
The RACs were introduced in (Ljungkrantz et al., 2008). A RAC has an interface that includes 
inputs and outputs and a body that includes the implementation and internal variables. The 
main difference compared to FBs is that the RAC interface includes a formal specification. 
As help when developing and structuring the specification, five types of properties can be 
used, briefly described below: 
• Operation preconditions are requirements that the user of the component must satisfy in 

order to obtain certain functionality, expressed by the operation behaviours. 
• Operation behaviours are requirements, ensured by the developer of the component, that 

must be fulfilled when all operation preconditions are satisfied. 
• Exception conditions are prioritized inputs or combinations of inputs that lead to 

exceptions. When an exception condition is true none of the operation behaviours can 
be guaranteed. Instead the exception condition must always guarantee certain 
behaviour, which must be described as exception behaviours. 

• Exception behaviours are requirements, ensured by the developer of the component 
regardless of the operation preconditions. Each exception behaviour includes one or 
more exception conditions. 

• Invariants are requirements, ensured by the developer of the component regardless of 
operation preconditions. 

The operation preconditions and operation behaviours are grouped as operation specification 

and the exception conditions and exception behaviours are grouped as exception specification. 
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The specification language is based on IEC 61131-3 (all four languages but not SFC) and Linear 
Temporal Logic (LTL), see for instance (Clarke et al., 2000). The reason for basing the 
specification language on IEC 61131-3 is that most PLC engineers are familiar with the IEC 
61131-3 languages but might not know other programming or specification languages. 
Augmenting the language with constructs for LTL is done to express relations over time. 
Temporal logic contains constructs to reason about the order in time without explicitly 
mentioning time; for instance it can state that something will always or eventually be true. 
LTL is a type of temporal logic that suits the input-output based relations of FBs well and is 
also supported by model checking tools. The specification language contains spelled out 
versions of the temporal operators but also short-hand notations for some basic constructs, 
like rising and falling edges of variables. For instance the rising edge of a boolean variable v 
can be expressed as v_risingEdge which is equivalent to (NOT v_previous) & v, using the 
Structured Text based variant of the specification language. 

6.2 Example 
As an example, the development of a RAC Control_BinaryActuator, implemented as a 
function block in LD, will be demonstrated. The RAC should control a binary actuator and 
should signal alarms if the movements are not performed within a maximum time. Hence 
this RAC will contain most parts of the components Valve_ctrl and OUT_SV from Company 
2, see Section 4.2 and many parts of the components FB_Move and FB_Alarm_Clamps, 
excluding interlocks and mode handling, from Company 1, see Section 4.1. 
Assume that the interface of the example component has already been determined. The 
inputs and outputs of Control_BinaryActuator can be seen in Figure 3, which also shows 
how the component can be used to control a cylinder. When the Move input is true, the 
actuator will move forwards by setting ActuatorFwds to true if the DesiredState is “Forward” 
and move backwards by setting ActuatorBwds to true if DesiredState is “Backward”. Move 
must be held true throughout the complete movement. When the movement has been 
performed, as indicated by the sensor inputs SensorFwd and SensorBwd, the State output will 
be set to the new state. The component also has checks to see if the actuator performs 
accurately and outputs alarm signals if not. If the movement is not performed within the 
maximum time allowed, MaxMoveTime, the corresponding alarm, TimeOutActFwds or 
TimeOutActBwds, will be set true. The AlarmUnauthMove alarm is set if the actuator moves 
when it is not supposed to. Finally, the alarms can be reset by the user, by setting 
ResetAlarms to true. 
 

 
Fig. 3. The inputs and outputs of the Control_BinaryActuator RAC. 

The specification of Control_BinaryActuator can be seen in Figure 4, using the Structured 
Text based variant of the specification language. 
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Fig. 4. Specification of the Control_BinaryActuator RAC. 

The first operation precondition states the allowed input values for MaxMoveTime and 
DesiredState. The second operation precondition states that the user must not change the 
direction of the movement while moving. The operation behaviour MoveOrAlarm 
summarizes the main functionality of the RAC by stating that when the user of the RAC is 
trying to move the actuator, the actuator will eventually reach the desired state or an alarm 
is raised. More operation behaviours could be added, for instance to specify under what 
circumstances the operating outputs ActuatorFwds and ActuatorBwds are actually true, but 
for brevity only MoveOrAlarm is shown. The exception condition Reset states that none of 
the operation behaviours can be guaranteed if the ResetAlarms input is true. The 
corresponding exception behaviour ResetBhvr declares that the ResetAlarms input will 
always reset all three alarms. The invariant NotIllegalMove states that the RAC will never try 
to move the actuator in both directions simultaneously. Finally, Stop declares that the 
outputs that move the actuator will never be true when Move is false. Note that NOT Move 
could as well have been specified as an exception condition, depending on how “normal” 
operation of the component is viewed. If so, Stop would have been specified as an exception 
behaviour instead. 
 

Implementation and Verification 
A rather straightforward attempt of implementing the example component can be seen in 
Figure 5. The implementation makes use of the standard functions AND, EQ (tests equality) 
and MOVE_E and of the function block TON. TON is a standard timer that sets the output Q 
to true if IN is true at least as long as the time PT. The function MOVE_E that is used in the 
position control at the top of Figure 5, copies the string on the IN input to the output to 
which State is connected, when the EN input is true. The positive (P) and negative (N) 
transition-sensing contacts are used to detect rising and falling edges of the signals, 
respectively. 
The RAC can now be formally verified to check whether the implementation of Figure 5 
fulfils the specification of Figure 4 or not. The RAC can be translated into inputs to Cadence  
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Fig. 5. An implementation approach of the Control_BinaryActuator RAC in Ladder Diagrams 
using standard functions and the timer FB TON. 

SMV by the RAC prototype development tool, and then Cadence SMV can be used to 
perform the verification. Doing this, the result is that the RAC is not valid, that is the 
specification is not fulfilled by the implementation. Both invariants are fulfilled, but not the 
operation behaviour MoveOrAlarm. SMV gives a counterexample to why the operation 
behaviour is not fulfilled to help understand and solve the problem. If the actuator should 
be moved forward but the sensors are broken so that both sensor inputs are true at the same 
time, the actuator will not be moved and unfortunately the TimeOutActFwds will not be set. 
The FwdTimer will not be started since the SensorFwd is already true, but the state will be 
reported as Backward (from the second MOVE_E function) and hence MoveOrAlarm is not 
fulfilled. The RAC could certainly be made valid by adding a precondition saying that the 
actuators and sensors may never be broken, but a much better alternative is to change the 
implementation so the alarms will actually work when the sensors are broken. 
To solve the problem, two internal variables InFwdPosition and InBwdPosition are used that 
are true only when SensorFwd and not SensorBwd are true and vice versa. Those internal 
variables are used as conditions to start the timers, as shown in Figure 6. Using this 
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implementation the complete specification is fulfilled and the RAC is valid. Even for such a 
small and elementary component as Control_BinaryActuator, the error of the first 
implementation attempt might be hard to foresee. By studying the counterexample of the 
model checking tool though, the error can be easily solved. This demonstrates the potential 
of using formal specification and verification in the FB development process. 
 

 
Fig. 6. A valid implementation of the Control_BinaryActuator RAC in Ladder Diagrams. The 
part not shown is exactly the same as in Figure 5. 

7. Conclusions 

In this chapter a study of PLC programming and use of library components at two Swedish 
car manufacturers is presented. Both companies used several programs for each PLC, 
implemented mainly in LD and SFC. These programs included lots of instances of reusable 
function blocks, FBs. Some of the most frequent FBs were used for automatic control of 
actuators and conveyors but in total only a minor part of the used FB instances was for 
automatic control; the majority was for HMI, safety, supervision, production data, 
communication etc. This is important to consider when developing or modifying 
frameworks for control program generation, to cope with the new requirements of flexible 
manufacturing systems. Integrating industrial FBs with new frameworks for generating 
control sequences is an interesting direction for future research. 
It is also interesting to consider that although the FBs were frequently reused, their 
behaviours were only informally specified. In our opinion the FB reuse can be made more 
efficient by also using tools and methods for formal specification and verification. This is 
demonstrated by an example component, in which an error of the first implementation 
attempt is discovered and solved. 
For formal specifications to be used in industry it is important that the development of 
relevant specifications is not too troublesome or time consuming. We therefore currently 
research into developing guidelines for formal specification of PLC program components. 
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