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Use of Resonance Parameters  
of Air-intakes for the Identification of Aircrafts 

Janic Chauveau, Nicole de Beaucoudrey and Joseph Saillard 
IREENA Laboratory, University of Nantes 

France 

1. Introduction     

Since the development of radar systems, extensive researches have been conducted on the 
detection and the identification of radar targets. From the scattered electromagnetic field, 
the aim is to detect and characterize radar targets. In a military context, these targets try to 
get stealthy to assure their security. This can be provided by using composite materials 
which absorb electromagnetic waves in usual radar frequency bands. Consequently, studies 
are involved in lower frequencies. These lower frequency bands correspond to the 
resonance region for object dimensions of the same order as electromagnetic wavelengths. 
Therefore, the energy scattered by the target significantly fluctuates and resonance 
phenomena clearly appear in this region. 
Extensive studies have been performed to extract these resonances, mainly the Singularity 
Expansion Method (SEM) introduced by Baum (Baum, 1976), (Baum, 1991). For years, the 
SEM is used to characterize the electromagnetic response of structures in both the time and 
the frequency domains. The SEM was inspired by observing that typical transient temporal 
responses of various scatterers (e.g. aircrafts, antennas …) behave as a combination of 
exponentially damped sinusoids. Such temporal damped sinusoids correspond, in the 
complex frequency domain, to complex conjugate poles called “natural” poles. The 
knowledge of these singularities is an useful information for the discrimination of radar 
targets and it can be used for different purposes of recognition and identification. For 
example, the E-pulse technique consists in synthesizing “extinction-pulses” signals from 
natural poles of an expected target, then in convolving them with the measured late-time 
transient response of a target under test, what leads to zero responses if both targets match 
(Chen et al., 1986), (Rothwell et al., 1987), (Toribio et al., 2003). In fact, the mapping of these 
natural poles in Cartesian complex plane behaves as an identity card enabling to recognize 
the detected target by comparison with a data base of mapping of poles, created before 
experiments for a set of possible targets. Moreover, the information contained in natural 
poles can give some indications on the general shape, the nature and the constitution of the 
illuminated target. 
Among radar targets identification problems, the scattering characterization of aircrafts is a 
relevant topic. Indeed, jet-engine inlets give a very significant contribution to the overall 
Radar Cross Section (RCS) of an airplane structure. More generally, apertures such as inlets, 
open ducts and air-intakes can be used for aircraft identification. Thus, numerous studies on 
the scattering from open cavities are found in the literature. The reader is invited to read the 
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paper of Anastassiu (Anastassiu, 2003), which presents a quite extensive review of methods 
used to calculate the RCS of such open structures (more than 150 references). 
Particularly, when illuminated in a suitable frequency band, an aperture in a radar target 
body can give access to high-Q internal resonances. Hence the use of natural frequencies of 
resonance, mainly internal ones, is a relevant basis for open targets identification.  
In section 2, we first explain what are the poles corresponding to resonance phenomena and 
we present the extraction of these natural poles from the simulated transfer function of a 
target. Using examples of canonical targets (a sphere and a dipole), we consider resonance 
parameters in the usual Cartesian representation in the complex plane, with real part σ and 
imaginary part ω, but also in a new representation with quality factor Q and natural 
pulsation of resonance ω0. We then introduce the use of these resonance parameters to 
characterize objects. Afterwards, we extend our study to resonances of targets with 
apertures, which can give access to internal resonances. In section 3, we first choose the 
simple example of a perfectly conducting (PC) rectangular open cavity to show how 
resonance parameters depend on object dimensions and permit to distinguish internal and 
external resonances. Finally, in section 4, we present a more realistic example in the case of a 
simulated aircraft with air-intakes, in order to show how to take advantage of internal 
resonances phenomena of air-intakes for the identification of aircrafts. 

2. Resonance parameters of a radar target 

A radar target is illuminated in far field by an incident broadband plane wave including 
resonant frequencies of the target. Consequently, induced resonances occur at these 
particular frequencies. In the frequency domain, the scattered-field transfer function H is 
given by the ratio of the scattered field to the incident field, for each frequency. In the time 
domain, the scattered transient response is composed of two successive parts. First, the 
impulsive part, hE(t), corresponding to the early time, comes from the direct reflection of the 
incident wave on the object surface. In general, for a monostatic configuration, in free space, 
this forced part is of duration 0 < t ≤ TL = 2D/c, where D is the greatest dimension of the 
target and c the celerity of light (Kennaugh & Moffatt, 1965). Next, during the late time 
(t ≥ TL), the oscillating part, hL(t), is due to resonance phenomena of the target. These 
resonances have two origins (Chen, 1998): resonances occurring outside the object are called 
"external resonances" and correspond to surface creeping waves. Conversely, resonances 
occurring inside the object are called "internal resonances" and correspond to potential 
cavity waves. In the case of a perfectly conducting closed target, only external resonances 
occur. The resonant behaviour of the late time is characteristic of the studied target and can 
be used to define a method of identification. 

2.1 Extraction of natural poles 

The Singularity Expansion Method (SEM) (Baum, 1976), (Baum, 1991) provides a convenient 
methodology, describing the late time response of various scatterers as a finite sum of 
exponentially damped sinusoids 

 ( ) ( ) ( )∑
=

+≈
M

1m
mmmmL φtωcostσexpR2th  (1) 
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Conversely, the Laplace transform of equation (1) gives the scattered-field transfer function 
H(s) corresponding to the sum of pairs of complex conjugate poles in the complex frequency 
plane 
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where s = σ + jω is the complex variable in the Laplace plane. M is the total number of 
modes of the series. For the mth singularity, Rm is the residue associated to each natural pole 
sm = σm + jωm (Rm* and sm* are complex conjugate of Rm and sm). The imaginary part, ωm, is 
the resonance pulsation. The real part, σm, is negative, indeed corresponding to a damping 
due to radiation losses and losses on the surface and, eventually, inside dielectric targets. In 
the following, |σm| is named the damping coefficient. 
In order to choose a technique of extraction of such singularities, we present here a brief 
state of the art of existing methods. In time domain, Prony proposed as soon as 1795 (Prony, 
1795) to model transient responses as a sum of damped sinusoids (equation (1)). Concerning 
the characterization of targets, this led to the development of algorithms for finding natural 
poles and their associated residues, by studying either the impulse response of targets in 
time domain or their transfer function in frequency domain (Baum, 1991), (Sarkar & Pereira, 
1995), (Kumaresan, 1990).  
In time domain, the most popular algorithms of poles extraction are based on Prony’s 
methods: The original method of Prony (Prony, 1795), very sensitive to noise in measured 
data, has been later improved in Least Square-Prony (LS-Prony) (Householder, 1950) and 
Total Least Square-Prony (TLS-Prony) (Rahman & Yu, 1987) methods, by using Singular 
Value Decomposition (SVD) (Hua & Sarkar, 1991). However, in the case of a low signal-to-
noise environment, only a few modes can be reliably extracted by this inherently ill-
conditioned algorithm. More recently developed, the Matrix Pencil Method (MPM) (Sarkar 
& Pereira, 1995) is more robust to noise in the sampled data, it has a lower variation of 
estimates of parameters than Prony’s methods and it is also computationally more efficient. 
Moreover, the use of the Half Fourier Transform better separates the early and the late time 
responses (Jang et al., 2004), through a precise determination of the beginning of the late 
time TL. 
An alternative approach to time domain estimators, such as Prony’s and MPM methods, 
consists in extracting poles and residues directly from the frequency data set. Frequency 
domain methods are advantageous when measurements are performed in the frequency 
domain. Thus one does not need to perform an inverse Fourier transform to obtain time 
domain response. Cauchy showed in 1821 that it is possible to approximate a function by a 
rational function approximation (Cauchy, 1821). The original frequency domain method of 
poles extraction is based on this approximation for the transfer function (Adve et al., 1997), 
(Kottapalli et al., 1991). Many papers present and compare these various techniques of poles 
extraction, e.g. in signal processing (Kumaresan, 1990), (Kumaresan, 1990) as well as in 
object scattering (Tesche, 1973), (Moffatt & Shubert, 1977), (Licul, 2004), (Li & Liang, 2004). 
Whereas temporal methods solve polynomial equations of order equal to the number of 
existing poles, frequency domain methods require to solve higher order polynomial 
equations than the number of poles. Consequently, frequency domain methods are not 
suitable when this number of poles is very large. However, in scattering problems, these 
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methods are advantageous in comparison with temporal methods because they avoid the 
choice of the beginning of the late time response. 
For all the examples presented in this paper, we can use any of these existing methods to 
extract poles. We choose to use numerical data obtained with an electromagnetic simulation 
software, which is based on the Method of Moments (FEKO) and gives the scattered field at 
different frequencies. Consequently, we choose a frequency domain method (Cauchy, 1821), 
(Moffatt & Shubert, 1977) and (Kumaresan, 1990). 
As an example, we present in figure 1 the modulus of the scattered-field transfer function 
H(ω) of two perfectly conducting canonical targets: a dipole of length L = 0.15 m and aspect-
ratio L/D = 150 where D is the diameter, and a sphere of diameter D = 0.15 m. Both targets 
are studied in free-space, in the frequency range [50 MHz – 12.8 GHz] which contains the 
resonance region of the studied targets (the pulsation range is [3.108 rad/sec – 8.1010 
rad/sec]). We note that for a very resonant object, such as the dipole, resonance peaks are 
narrow and clearly appear in the response |H(ω)|, what is not the case for a less resonant 
object as the sphere. For efficient target characterization, it is important to define a 
frequency range adapted to scatterer dimensions, such as it really contains not only the 
fundamental pulsation of resonance but also further harmonic pulsations (Baum, 1991). 
 

 

Fig. 1. Modulus of the transfer function H(ω) of the dipole (upper) and the sphere (lower). 
256 samples, monostatic configuration. 

In order to extract poles of resonance, the Cauchy’s method (Cauchy, 1821) is applied for 
approximating the transfer function, H, by a ratio of two complex polynomials (Tesche, 
1973), (Moffatt & Shubert, 1977), (Licul, 2004), (Li & Liang, 2004). The zeros of the 
denominator polynomial, B(s), are the poles of H(s). We obtain 
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where N is the total number of singularities of the development and Rn is the residue 
associated to each pole sn.  
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Among these N poles, we expect to get the M pairs of poles corresponding to resonances, 
called “natural” poles. As stated in (2), they are complex conjugate, with negative real part 
σm, and should be independent of the form of the fitting function and the order N of the 
rational function. It is assumed that all natural poles are simple (Baum, 1976). In fact, we 
find not only these natural poles but also “parasitical” poles, which are not complex 
conjugate by pair and/or have a positive real part. Some of theses parasitical poles 
correspond to the early time effects, which cannot be represented by exponentially damped 
sinusoids. Moreover, these parasitical poles depend of the order N in (3). To be sure to get 
the whole set of natural poles, we choose a high value of the order N (N = 50 for instance). 
In order to separate the 2M natural poles and the N-2M parasitical poles, we vary the value 
of N of some units (N = 50 ± 2). Consequently, extracted poles are natural ones not only if 
they are complex conjugate by pair and have a negative real part, but also if their value is 
stable when N varies. In our examples, we find 2M = 14 (7 resonances) for the studied dipole 
and 2M = 10 (5 resonances) for the sphere. 
In figure 2, we plot the mapping of natural poles for the studied targets, in one quarter of 
the complex plane (σ < 0 and ω > 0), because poles have a negative real part and are complex 
conjugate. Indeed, for canonical targets (sphere, cylinder, dipole …), poles are distributed 
over branches joining the fundamental pulsation of resonance, ω1, and harmonic pulsations 
(Chen, 1998) (Chauveau, 2007-a). For a very resonant target as a dipole, we can notice that 
resonance peaks of |H(ω)| occur at pulsations of resonance ωm (figure 1 - upper). However, 
in the case of a weakly resonant target as the sphere, peaks of resonance, corresponding to 
pulsation of resonance, ωm, overlay and cannot be distinguished in the modulus of the 
transfer function |H(ω)| (Figure 1 - lower). Indeed, low resonant targets have natural poles 
with high value of damping factor, |σm|, corresponding to wide peaks. Moreover, because 
of this low resonant behaviour, natural poles of high order (sm > s5 for the studied sphere) 
become difficult to obtain. Only the fundamental pole and some harmonic poles can be 
obtained. On the contrary, for the dipole, we succeed in extracting all poles existing in the 
studied pulsation range [ωmin ; ωmax]. 
 

 

Fig. 2. Mapping of natural poles extracted from H(ω) of figure 1 in the complex plane {σ,ω}, 
(M = 7 for the dipole, M = 5 for the sphere). 
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The main advantage of using such natural poles is that only 3 parameters {ωm ; σm ; Rm} are 
required to define each resonance mode. Moreover, in a homogeneous medium, the 
mapping of natural poles {σm ; ωm} is independent of the target orientation relatively to the 
excitation (Berni, 1975) and can be used as a discriminatory of targets. Furthermore, among 
the whole set of these possible poles, only a few of them appreciably contribute to the target 
response and are thus sufficient to characterize a radar target (Chauveau, 2007-a). In 
general, the selected poles are those which are close to the vertical axis. 
In order to show that the representation of resonances with natural poles is an efficient way 
to characterize the resonance behaviour of targets, we compare the time domain responses, 
h(t), calculated by inverse Fourier transform of H(ω) and hrec(t), reconstructed using (1) from 
M pairs of natural poles. In figure 3, for the dipole, both temporal responses are almost 
identical, in the late time domain corresponding to resonance phenomena. This comparison 
is performed in the time domain (t > TL) and not in the frequency domain, because the early 
time effect is spread all over the frequency band of the initial response, forbidding any 
comparison between initial and reconstructed frequency responses. 
 

 

Fig. 3. Time domain response h(t) compared with hrec(t) reconstructed with M = 7 natural 
pairs of poles of Fig. 2 (dipole). 

To quantitatively measure the difference between h(t) and hrec(t), we used the normalised 
mean square error 

 ∑∑=
tt

2
rec h(t)(t)h-h(t)  MSE  (4) 

both sums being calculated for t > 2TL, in order to be sure that the resonances are well 
established. In fact, TL can be precisely determined using the Half Fourier Transform (Jang 
et al., 2004). For the dipole response plotted in figure 3, we get a MSE of 10-4, with  
M = 7 pairs of poles. For the studied sphere, we get a MSE of 5.10-3, with M = 5 pairs of 
poles. 
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2.2 Representation of natural poles with the quality factor and the natural pulsation of 
resonance 

In (Chauveau, 2007-b), we propose to represent a natural pole (sm = σm + jωm) not only in 
Cartesian coordinates, {σm; ωm}, but also in the form {ω0,m; Qm}  with the natural pulsation of 
resonance, ω0,m, and the quality factor, Qm.  
 

                             

Fig. 4. Resonator: transfer function (a) and representation of poles in complex plane (b). 

The transfer function of a resonator, mechanical as well as electrical, with a natural 
pulsation of resonance ω0 and a quality factor Q, is given by (figure 4-a) 
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In order to determine the poles of such resonator, we replace, in equation (5), jω by s, 
complex variable in the Laplace plane. Thus, the s-plane transfer function is 
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with s1 and s2, the two roots of the denominator of A(s) 
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For Q > 1/2, the two poles s1,2 are complex conjugate, with respective residue r1,2 
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In the complex plane (figure 4-b), the poles, s1,2 = σp ± jωp , are located on the half-circle of 
radius equal to the natural pulsation of resonance, ω0. The real part of poles (damping 
factor) σp and the imaginary part (damped pulsation) ωp are given by 
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When Q value is high, ωp is very close to ω0. Consequently, the damped pulsation ωP is often 
improperly used instead of the natural pulsation ω0. 
In polar coordinates, we get: s1,2 = ω0 exp ±iθ, with ω0 the modulus and θ the angle of s1,2. We 
prefer to use a modified polar representation in the half complex plane (σ < 0): {ω0 ; Φ} where 
Φ = θ − π/2 is the angle between the pole direction and the imaginary axis ω. We have 

 
Q
1

ω
Δω

ω
2σ

2sinΦ
00

p =−=−=  (10) 

Indeed, Φ is related to the selectivity (i.e. the width Δω of the peak of resonance (figure 4-a) 
divided by the pulsation of resonance ω0) which is equal to 1/Q. Thus, a high Q corresponds 
to a low Φ and the associated pole is close to the vertical axis.  
Finally, instead of using the Cartesian representation of natural poles in {σp ; ωp}, it is 
interesting to use this new representation in {ω0 ; Q}. 
We apply now this resonator point of view to the scattering transfer function H(s) of a radar 
target, which can be expressed as a sum of transfer functions Am(s) (equation (5)) of 
elementary resonators {ω0,m ; Qm}.  
For the mth singularity (sm = σm + jωm), the natural pulsation of resonance, ω0,m, and the 
quality factor, Qm, are respectively given by 

 mm0, sω =           
m

m0,
m 2σ

ω
Q −=  (11) 

As an example, natural poles of the sphere and the dipole, plotted in Cartesian coordinates 
{σm ; ωm} in figure 2, are now plotted in {ω0,m ; Qm} representation in figure 5. 

2.3 Use of resonance parameters to characterize objects 
Resonance parameters can be used to characterize objects. Indeed, the representation of 
natural poles in {ω0,m ; Qm} provides an efficient means for that because it better separates 
information than the usual Cartesian mapping in the complex plane: ω0,m gives some 
indications on dimensions of the target and Qm brings out the resonance behaviour of 
targets. Moreover, Qm is a discriminatory of the aspect ratio of targets and consequently 
gives some indications on the general shape of targets. We now investigate separately each 
resonance parameter, ω0,m and Qm, for both canonical examples, the sphere and the dipole 
(figure 5). 

2.3.1 Natural pulsation of resonance ω0 

First, we compare the natural pulsation of resonance of the fundamental pole of a target, 
ω0,1, to the natural pulsation of resonance, (ω0)P, of a creeping wave travelling on the surface 
of this object along a given perimeter P with a wavelength equal to this perimeter 
(Chauveau, 2007-b) 

 ( )
P

c 2πω P0 ≈  (12) 

with c, the speed of light in vacuum, and P, the path travelled by the wave over the surface. 
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Fig. 5. Natural poles of the sphere and the dipole in the {ω0,m ; Qm} representation. 

For the sphere, the perimeter is P = πD. With a diameter D = 0.15 m, we get P = 0.471 m and, 
from equation (12), (ω0)P = 4.002 109 rad/sec, to be compared to ω0,1 = 4.001 109 rad/sec, 
while ω1 = 3.465 109 rad/sec. We can notice that (ω0)P nearly equals ω0,1, the modulus of s1, 
and differs from ω1, the imaginary part of s1. Indeed, the representation in {ω0,m ; Qm} 
permits to show that this external resonance belongs to the creeping wave.  
For the dipole, with L = 0.15 m and D = 0.001 m, we get P = 2(L+D) ≈ 2L = 0.30 m. 
From (Harrington, 1961), (Kinnon, 1999), the natural pulsation of resonance of the dipole, 
(ω0)d, is given by (ω0)d = 0.95 (ω0)P, with (ω0)P given by equation (12), thus (ω0)d = 5.969 109 
rad/sec, to be compared to ω0,1 = 5.826 109 rad/sec, while ω1 = 5.807 109 rad/sec. We notice 
here that the natural pulsation ω0,1 and the damped pulsation ω1 are nearly equal as can be 
seen from equation (9) because the dipole is a very resonant object with high Q-factor (Q1 ≈ 
6.19 for the fundamental pole s1) .  
Harmonic pulsations of the fundamental pulsation of resonance follow the same behaviour. 
For the sphere, ω0,m = m ω0,1 (m = 1,2,…), while for the dipole only odd harmonic pulsations 
are present, that is ω0,m = (2m-1) ω0,1 (m = 1,2,…) (Harrington, 1961), (Kinnon, 1999).  

2.3.2 Quality factor Q 

Secondly, we examine the Q parameter: we can see that the conducting sphere is a weakly 
resonant target (Q1 ≈ 1 for the fundamental pole s1). Indeed, it has been shown (Long, 1994) 
(Moser & Überall, 1983), (Moffatt & Mains, 1975} that more a conducting object is 
voluminous as the sphere, less it is resonant (low Q), because more the object surface is large 
relatively to its dimension, more losses on the surface are important. Moreover, this low 
resonant behaviour can also come from the degeneracy phenomenon of the external poles, 
due to geometrical symmetries of the sphere (Long, 1994), (Rothwell & Cloud, 1999). On the 
contrary, the dipole is a very resonant object, with a high quality factor (Q1 ≈ 6.19 for the 
fundamental pole s1). Consequently, the quality factor can give information on the aspect 
ratio of the target (Chauveau, 2007-b). 
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In this general presentation of resonance parameters, we only considered closed objects so 
as to simplify our purpose. Thus, in this case, we only get external resonances. But, we now 
intend to focus on the resonance behaviour of targets with apertures, which can give access 
to internal resonances. First, we choose the simple example of an open rectangular cavity 
(section 3). Next, we present a more realistic example in the case of an aircraft with air-
intakes (section 4). 

3. Study of a PC rectangular open cavity 

When illuminated in a suitable frequency band, an aperture in a radar target body can give 
access to high-Q internal resonances. Hence the use of natural frequencies of resonance, 
mainly internal ones, is a relevant basis for open targets identification. In this way, Rothwell 
and Cloud (Rothwell & Cloud, 1999) calculate analytically natural frequencies of a canonical 
target: a hollow perfectly conducting sphere with a circular aperture. Their study presents 
an interesting behaviour of poles in the complex plane depending on whether the poles 
originate from internal or external sphere resonances. However, they conclude that the 
sphere is probably not a good candidate for target identification studies, because of its 
modal degeneracy. Our approach is different: we intend to show, from the RCS of a target, 
how resonance parameters depend on its dimensions. For this purpose, we choose to study 
a perfectly conducting rectangular cavity with a rectangular aperture. On one hand, this 
example is a more realistic model of air-intake than a spherical cavity; moreover its 
resonance pulsations are well-known. On the other hand, the search of poles no longer uses 
an analytical method but a numerical one, based on SEM and therefore applicable to any 
target and not only to canonical ones. However, the SEM method extracts the whole set of 
poles, without separating internal and external poles. Consequently, our main objective is to 
show how we can discriminate the two origins of these poles: external poles corresponding 
to creeping waves on the surface of the target and internal poles corresponding to internal 
cavity waves. For this purpose, we first compare poles of the rectangular cavity with those 
of a closed rectangular box of the same size (section 3.2). Next, we study the variation of 
these poles with dimensions of the cavity (section 3.3). 

3.1 Parameters of the PC rectangular cavity 

The studied rectangular cavity is open on one side with a centered slot (figure 6). Its 
characteristic dimensions are given in table 1: height h, width w, depth d, and slot height s. 
The configuration of the excitation is 
 

 

 Fig. 6. Geometry of the rectangular cavity (slot centered in the front wall). 
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• frequency band of investigation: [50MHz ; 685MHz] 

• excitation: electric field E
f

parallel to the vertical direction h and direction of 

propagation k
f

perpendicular to the aperture plane (w,h) 
• monostatic study 
• target (inside and outside) in vacuum 
 

dimensions (m) theoretical resonance pulsations (109 rad/sec) 
h = 0.35 
w = 0.50 
d = 0.80 
s = 0.05 

internal cavity modes 
(ω0)011 = 2.22 
(ω0)012 = 3.02 
(ω0)013 = 4.00 

 
Psw = 2(w + s) = 1.10 
Phw = 2(h + w) = 1.70 
Phd = 2(h + d) = 2.30 
Pwd = 2(w + d) = 2.60 

external modes 
(ω0)sw = 1.71 
(ω0)hw = 1.11 
(ω0)hd = 0.82 
(ω0)wd = 0.72 

Table 1. Characteristic dimensions of the cavity and theoretical natural pulsations of 
resonance. 

The internal modes of a closed rectangular cavity have natural pulsations of resonance given 
by equation (13) (Harrington, 1961) 
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where ε and μ are respectively the permittivity and the permeability of the medium inside 
the cavity; and with m = 0,1,2,... ; n = 0,1,2,... ; p = 1,2,3,... ; m = n = 0 being excepted. For an 
open cavity, the presence of the slot slightly perturbs the resonant pulsation ω0 and makes 
the Q-factor finite, corresponding to a non-zero damping factor, σm. 
In the frequency band of investigation, with such dimensions of the target and such 

orientations of the electric field E
f

and the slot, there are only three possible cavity modes, 
(ω0)011, (ω0)012 and (ω0)013, satisfying equation (13). Their values are given in table 1 for 
corresponding dimensions and ε = ε0 and μ = μ0 for vacuum. 
The external modes of resonance are waves creeping on the outside surface of the PC cavity. 
There are four fundamental natural pulsations, given by equation (12), which correspond to 
each perimeter, Psw, Phw, Phd and Pwd. Values of these perimeters and their corresponding 
fundamental natural pulsations are given in table 1. Moreover, for each characteristic 
dimension, it is possible to find further harmonic natural pulsations. 

3.2 Comparison with a PC closed rectangular box 

In order to distinguish internal and external resonances, we propose to compare the PC 
open rectangular cavity with the PC closed rectangular box of same dimensions without the 
slot, both objects being studied with the same excitation configuration. The box being 
closed, internal resonances cannot be excited from an outside illumination, hence only 
external resonances are present. 
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Figure 7 compares the modulus of the scattered-field transfer function |H(ω)| for the open 
cavity (solid line) and the PC closed box (dashed line). The cavity response presents narrow 
peaks of resonance occurring at expected resonance pulsations of each cavity mode, (ω0)011, 
(ω0)012 and (ω0)013. We can see another peak of resonance occurring near the natural 
pulsation corresponding to the resonance of the slot (ω0)sw. Wider peaks are also present 
corresponding to lower quality of resonance. Indeed, these wider peaks also exist for the box 
response. 
 

 

Fig. 7. Comparison between |H(ω)| of the open cavity and the closed box. 

Figures 8 and 9 compare the cavity and the box using both representations of resonance 
parameters (see section 2), respectively the Cartesian mapping of natural poles in the 
complex plane {σm ; ωm} and the quality factor as a function of the natural pulsation of 
resonance {ω0,m ; Qm}. First, we examine poles existing only for the open cavity, i.e. those 
numbered '1', '2', '3' and '4'. We can see that resonance pulsations of poles of the open cavity 
numbered '1', '2' and '3' almost correspond to theoretical pulsations of the closed cavity 
modes, (ω0)011, (ω0)012 and (ω0)013 (see table 1 and figure 9). Indeed, these three pulsations of 
resonance coincide with the narrowest resonance peaks of the open cavity response 
(figure 7). Accordingly, these three poles have a very low damping coefficient |σm| (figure 
8) and correspond to a high quality factor Qm (figure 9). About the pole '4', its resonance 
pulsation corresponds to the resonance pulsation (ω0)sw of the slot with Psw in equation (12). 
This pole has a higher damping coefficient |σm| and a lower quality factor Qm than poles '1', 
'2' and '3'. Indeed, the peak of resonance occurring at the resonance pulsation of the slot 
(ω0)sw is wider than previous peaks corresponding to internal resonances '1', '2' and '3'. 
Concerning natural poles '5', '6', '7' and '8' of the open cavity, we can see that they are very 
close to natural poles of the box. Consequently, we can state that these four poles 
correspond to creeping waves on the outside surface of the perfectly conducting cavity. 
Following equation (12), these natural poles depend on various perimeters of the target 
given in table 1. For example, the pole numbered '5' can correspond to both characteristic 
perimeters Phd or Phw. The three other poles appear to correspond to harmonic poles which 
mainly depend on dimensions h and d. 
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Fig. 8. Comparison of the mapping of poles {σm ; ωm} of the open cavity and the closed box. 

 

Fig. 9. Comparison of resonance parameters in {ω0,m ; Qm} representation of the open cavity 
and the closed box. 

3.3 Effect of dimensions of the rectangular cavity 
In (Chauveau, 2009), we vary each characteristic dimensions of the open cavity and we 
examine how natural poles move. To quantify the dependence of the natural pulsation of 
resonance ω0 on each dimension, we compute the variation of ω0 with each dimension of the 
cavity (y = h, w, d or s), i.e. dω0/dy, relatively to ω0. Results obtained in (Chauveau, 2009) 
are given in table 2: the mean of the absolute value of this variation: <|dω0/dy|/ω0> for 
each dimension of the cavity and each pole. We consider that the natural pulsation of 
resonance of a pole appreciably depends on a dimension of the cavity when this relative 
variation is significant (noted in bold in table 2). 
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Poles numbered '1', '2' and '3' are internal resonances corresponding to the first modes of the 
cavity. Indeed, their pulsations of resonance only depend on dimensions w and d because of 

the orientation of the incident electric field E
f

which points to the direction of h (figure 6) 
involving m = 0 in equation (13).  
The pole numbered '4' corresponds to the resonance of the slot and consequently is an 
external resonance. ω0 depends strongly on the slot width w and to a smaller degree on the 
slot height s. 
In the same way, poles numbered '6', '7' and '8' are external resonances with a similar 
behavior with the variation of dimensions of the cavity: their pulsations of resonance are 
strongly affected by the variation of dimensions h and d. Thus, we deduce that these poles 
depend on the perimeter Phd of the cavity. In fact, these three poles are harmonic poles 
corresponding to the perimeter Phd. Moreover the pole '7' is affected by the slot, its pulsation 
of resonance slightly varying as a function of s. 
The pole numbered '5' is an external resonance, with ω0 mainly depending on the dimension 
h, but also on w and d. Consequently, we cannot determine which perimeter is associated to 
this pole. 
Anyway, the four poles numbered '5', '6', '7' and '8', due to external creeping waves on the 
surface of the cavity, are very close to those of the perfectly conducting box with same 
dimensions, even if they are modified by the slot. 
Concerning the quality of resonance, the Q-factor of internal cavity modes, '1', '2' and '3' 
decreases when the slot height, s, increases, anyway, Q always remains higher than Q of 
external poles, '4', '5', '6', '7' and '8' (Chauveau, 2009). Indeed, radiating losses are much 
stronger for external resonances than for internal resonances, consequently, internal 
resonances are predominant. 
 

              dimension 
pole 

h w d S 

1 0.05 1.14 0.35 0.15 

2 0.05 0.62 0.70 0.29 

3 0.06 0.35 0.89 0.25 

4 0.02 1.72 0.04 0.60 

5 1.29 0.51 0.44 0.06 

6 1.10 0.06 0.73 0.08 

7 0.74 0.15 0.75 0.46 

8 0.79 0.11 1.03 0.19 

Table 2. Relative variation of ω0 with dimensions of the cavity <|dω0/dy|/ω0> in m-1). 

4. Application to air-intakes of a simulated aircraft 

We have shown in section 3 that resonances of a PC open object (a rectangular cavity) have 
two origins: external resonances corresponding to external surface creeping waves and 
internal resonances corresponding to internal cavity waves. Because of their high Q-factor, 
internal resonances are predominant, and consequently, they are more easily extracted. In 
this section, we propose to use this property in order to characterize a simulated aircraft 
with air-intakes.  
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A complex shape target as an aircraft can often be modelled as a combination of canonical 
objects (figure 10-a), with resonances corresponding as well to canonical objects (here: 
cylinder, cone, three triangular wings and two cylindrical cavities) as structures created by 
the assembly of these canonical objects (for instance: dihedral created by the junction 
between each wing and the cylinder) (Chauveau, 2007-b). Indeed, air-intakes of an aircraft 
are cavities which can exhibit strong resonances for suitable frequency bands. Thus, we 
propose to use their internal resonance parameters to characterize aircrafts. 
 

 

Fig. 10. Simulated aircraft with air-intakes (a) and open cylindrical cavity (b). 

We first study the PC cylindrical open cavity alone (figure 10-b). This cavity has a length 
L = 0.5m and a radius R = 0.04m, it is open on one side and it is studied in free space in the 
pulsation range [1.2 1010 rad/sec ; 1.8 1010 rad/sec]. We choose this pulsation range in order 
to include resonance pulsations corresponding to the first modes of the cavity. Figure 11 
presents extracted resonance parameters of the cylindrical cavity, in both representations. 
We can see that we have a branch of 5 poles with low damping factor σ and high Q-value 
(Q1 ≈ 250). 
 

 

Fig. 11. Poles of the open cylindrical cavity: {σm ; ωm} representation (left) and {ω0,m ; Qm} 
representation (right). 

In order to verify that these poles correspond to internal modes of the cavity, we calculate 
the natural pulsation of resonance of a closed cylindrical cavity of same dimensions, L and 
R, with equation (14) (Harrington, 1961) 

D L

R

aperture 
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where ε is the permittivity of the medium inside the cavity; xmn are ordered zeros of Bessel 
functions Jm(x) given in (Harrington, 1961). 
In the frequency band of investigation and with such dimensions of the target, only 5 cavity 
modes satisfy equation (14): m = 1; n = 1; p = [1:5]. In table 3, their values are compared with 
natural pulsations of resonance ω0,m (noted ωopen_cavity) extracted from the transfer function 
H(ω) of the cylindrical open cavity. We can see that resonance pulsations ωopen_cavity of 
extracted poles of the open cavity are nearly equal to theoretical resonance pulsations 
ωclosed_cavity of the closed cavity. Thus, these extracted poles actually correspond to internal 
resonances. 
 

p 
ωclosed_cavity 

(1010 rad/sec) 
ωopen_cavity 

(1010 rad/sec) 
ωaircraft 

(1010 rad/sec) 

1 1.39 1.41 1.42 

2 1.43 1.45 1.43 

3 1.49 1.51 1.52 

4 1.57 1.59 / 

5 1.67 1.69 / 

Table 3. Comparison of calculated resonance pulsations of the closed cavity ωclosed_cavity, 
extracted resonance pulsations of the open cavity ωopen_cavity and extracted resonance 
pulsations of the aircraft ωaircraft. 

We now compare the previous open cavity alone (figure 10-b) with the simulated aircraft 
(figure 10-a), in the same configuration (free space, pulsation range, excitation …). The 
aircraft has a characteristic dimension D = 1.5 m and both air-intakes have the same 
dimensions as the open cavity.  
 

 

Fig. 12. Comparison of poles of the open cylindrical cavity and the simulated aircraft in 
wideband response: {σm ; ωm} representation (left) and {ω0,m ; Qm} representation (right). 

We are interested only in internal resonances of air-intakes, that is why we choose the 
pulsation range [1.2 1010 rad/sec ; 1.8 1010 rad/sec], corresponding to the 5 first modes of the 
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cavity. In figure 12, we can see that only 3 poles are extracted for the aircraft and these poles 
cannot be associated with poles of the cavity alone. 
In order to intend to retrieve more precisely poles of the open cavity, we calculate poles of 
the aircraft in narrow frequency bands. Indeed, in (Chauveau, 2007-c), we show the 
possibility to extract natural poles one-by-one in tuning narrow frequency bands to 
frequencies of wanted poles. Thus, we apply this method of poles extraction to the 
simulated aircraft in order to find the three first poles of the open cavity. We respectively 
search the first pole in the pulsation range [1.35 1010 rad/sec; 1.44 1010 rad/sec], the second 
pole in [1.40 1010 rad/sec; 1.46 1010 rad/sec] and the third pole in [1.47 1010 rad/sec; 1.55 1010 
rad/sec]. We can see in figure 13 and in table 3 that the pulsations of these poles are now 
correctly extracted. This shows the advantage of the narrow band extraction of poles. 
  

 

Fig. 13. Comparison of poles of the open cylindrical cavity and the simulated aircraft in 
narrow band response: {σm ; ωm} representation (left) and {ω0,m ; Qm} representation (right). 

5. Conclusion and perspectives 

In this chapter, we have first presented how to extract natural poles from the simulated 
transfer function of a target and how to use them for identification purposes. We have 
introduced a new representation of poles with quality factor Q and natural pulsation of 
resonance ω0 in order to better separate information: the Q parameter permits to bring out 
clearly the resonance behaviour of targets (Q is a discriminatory of the aspect ratio of 
targets), and the natural pulsation of resonance ω0 depends on dimensions of targets. Next, 
we have extended our study to resonances of targets with apertures. The simple example of 
a PC rectangular open cavity has permitted to show how resonance parameters depend on 
object dimensions and how internal and external resonances can be distinguished, by  
comparison of poles of the open cavity and the closed box. Internal resonances having a 
lower damping coefficient |σm| than external resonances, they have a higher quality of 
resonance Qm, and can therefore be more easily extracted. That is why, we have used this 
interesting property of internal resonances in order to identify an aircraft with air-intakes. 
Thus, we have shown that the use of selective narrow frequency bands permits a better 
extraction of poles in the case of complex objects, as aircrafts with air-intakes. 
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