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1. Introduction   

This chapter will provide a thorough end-to-end description of the process for evaluation of 
three different data-driven algorithms for anomaly detection to select the best candidate for 
deployment as part of a suite of IVHM (Integrated Vehicle Health Management) 
technologies. These algorithms will be evaluated based upon their capability for robustly 
detecting incipient faults or failures in the ground-based phase of pre-launch space shuttle 
operations, rather than based on system certifiability as performed in previous studies 
(Schwabacher & Waterman, 2008). Robust detection will allow for the achievement of pre-
specified minimum false alarm and/or missed detection rates in the selection of alert 
thresholds. All algorithms will be optimized with respect to an aggregation of these same 
criteria. The final results will also include a formal cross-validation procedure, which will be 
used to perform optimization and alert threshold selection.  
The data-driven algorithms to be evaluated in this study were deemed to be sufficiently 
mature for consideration as viable candidates for demonstration during the launch of Ares I-
X. This launch represents the first test flight of Ares I, which will be the successor to the 
Space Shuttle for NASA’s Constellation program. Our study relies upon the use of Shuttle 
data to act as a proxy for and in preparation for application to Ares I-X data, which uses a 
very similar hardware platform for the subsystems that are being targeted (TVC – Thrust 
Vector Control subsystem for the SRB (Solid Rocket Booster)). 
Data-driven algorithms are just one of three different types being deployed, the details of 
which were presented in previous work (Iverson et al., 2009); (Schwabacher & Waterman, 
2008). The other two types of algorithms being deployed include a “rule-based” expert 
system, and a “model-based” system. Within these two categories, the deployable 
candidates have already been selected based upon non-quantitative factors such as flight 
heritage and system certifiability. For the rule-based system, SHINE (Spacecraft Health 
Inference Engine) has been selected for deployment, which is one of many components of 
BEAM (Beacon-based Exception Analysis for Multimissions) as described in its debut article 
(Mackey et al., 2001). Other components of BEAM include various data-driven algorithms. 
BEAM is a patented technology developed at NASA’s JPL (Jet Propulsion Laboratory) and 
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SHINE serves to aid in the management and identification of operational modes. For the 
“model-based” system, a commercially available package developed by QSI (Qualtech 
Systems, Inc.), TEAMS (Testability Engineering and Maintenance System) was highlighted 
in work subsequent to its debut (Cavanaugh, 2001), and has been selected for deployment to 
aid in diagnosis. In the context of this particular deployment, distinctions among the use of 
the terms “data-driven,” “rule-based,” and “model-based,” can be found in the previously 
cited paper by Schwabacher and Waterman. 
Although there are three different categories of algorithms that have been selected for 
deployment, our main focus in this chapter will be on the evaluation of three candidates for 
data-driven anomaly detection. The main thrust of the chapter is to provide instructive 
coverage on the topics of algorithmic optimization and alert threshold selection for the 
candidate data-driven algorithms. These algorithms will be optimized and compared using 
the AUC (Area under the ROC (Receiver Operating Characteristic) curve), which represents 
overall classification discriminability. The resulting optimized algorithmic parameters can 
then be used to perform threshold or alert selection based upon the corresponding ROC 
curve. This allows for the demonstration of a robust anomaly detection capability when 
performing alert threshold selection, which is based upon specified minimum false alarm 
and/or missed detection rates. As a practical measure we will also present a performance 
comparison among the candidate data-driven algorithms by evaluation of their 
computational complexity as well as the AUC. The final results will also include a formal 
cross-validation procedure, which will be used to provide uncertainty bounds for the 
optimization and alert threshold selection processes. 

2. Motivation & background 

Some insightful previous studies (Fragola, 1996); (Paté-Cornell and Dillon, 2001) discuss 
statistical analyses concerning general Space Shuttle risk management for the pre-Columbia 
era, and detail both lapses and advancements in the use of probabilistic risk analyses (PRA). 
We note here that probabilistic risk analysis covers the quantification of failure probabilities 
in the absence of large volumes of data for supporting analyses, but is not directly related to 
the post-design real-time monitoring phase for the detection of anomalous events. The 
primary author of the previously cited study (Paté-Cornell & Dillon, 2001) has long been 
considered a respected expert in the PRA field, and is often sought by NASA for opinions, 
judgment, and analyses on such issues. In a study by this same author (Paté-Cornell and 
Fischbeck, 1994) on the risk analyses of tiles on the space shuttle which predated the Columbia 
tragedy by almost a decade, it was found that the use of PRA admitted a conclusion that 
almost foretold the events of the eventual demise of the Space Shuttle Columbia. 
Noted for the advocacy on the use of Bayesian statistics as opposed to classical frequentist 
statistics within PRA, it is often shown in Paté-Cornell’s studies that a quantitative model-
based formulation requires data gathered from a variety of sources. In the case of frequentist 
statistics, this requires a sufficient volume of data in order to generate a reasonably accurate 
estimate of risk and confidence. The use of Bayesian analysis is more apropos to the 
situation of developing risk estimates for novel engineered systems such as the Space 
Shuttle, and even more so for Ares I-X where there is an inherent scarcity of data. As such, 
there is the need to develop a well-informed prior distribution. 
Furthermore, Paté-Cornell strongly cautions engineers against the use of a mixed approach 
involving both Bayesian and frequentist statistics in order to provide for consistency, and 
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possibly due to previous lessons learned from experience with the application of conservative 
risk estimates in tandem with probabilities. Although a pure Bayesian approach is not used in 
our study, nor we do not concern ourselves with the computation and quantification of risks 
and potential failures for PRA, we are motivated by another of Paté-Cornell’s cautions that all 
too often qualitative measures are used for decision making rather than quantitative ones. 
We do not present these ideas as a preamble for the investigation of the development of 
such PRA’s in this chapter, but rather for the monitoring of systems ostensibly that PRA 
served to inform at the design and post-design certification stages. However, areas where 
these previous studies may relate to ours are in the establishment of reasonably accurate 
failure probabilities to inform evaluation of monitoring algorithms, and the use of a model-
based approach in tandem with a data-driven approach for monitoring. A good overview of 
the need to establish a formal relationship between design and monitoring for space 
applications has been discussed thoroughly in previous work (Tumer, 2005). 
We note that PRA relates to design and risk assessment, whereas the use of data driven 
statistical analyses performed in this study assumes that appropriate measures have already 
been taken in advance in order to compute and quantify probabilities of failure. As such, 
complementary maximum allowable probabilities of false alarm and missed detection are 
assumed to have already been established and available. These two metrics are the essence 
of the analysis we present in this chapter. 
We also note as described previously that a model-based approach (TEAMS) is used in the 
same architecture as a data-driven approach. This is still not applicable nor indicative of an 
attempt to develop a PRA. The framework presented here relates to the monitoring of the 
designed systems rather than the assessment of risk. There is evidence that the use of a 
Bayesian approach has been embedded within this model-based tool (Tu et al., 2006), 
although these aspects of the system are not currently being used for monitoring in this 
particular demonstration or deployment. However, the availability of such functionality is a 
general step in the right direction nonetheless. Paté-Cornell alludes to the use of a Bayesian 
approach as being of paramount importance for inclusion in PRA, but it arguably has 
similar merit for monitoring. Even though the full Bayesian updating aspects of TEAMS are 
not currently being deployed for monitoring purposes, the option to include MTTF (Mean-
Time-To-Failure) estimates based upon the results of PRA exists in TEAMS-RT, the real-time 
counterpart to our chosen model-based approach. These estimates can be used to calculate 
the probability of each suspect failure mode. 
Our primary concern in this chapter, however, is with an optimization, evaluation, and 
performance assessment of candidate data-driven monitoring algorithms for the relevant 
platform. As such, we note that there have been other related studies e.g. (Hart, 1990) on the 
statistical analyses of data related to the exact subsystem that we are considering here. 
However, we have found very little indication that the results of these studies were adopted 
and implemented in any fashion. The mathematical sophistication of these studies was most 
likely well beyond the capability of practical implementation at the time, as they were 
performed nearly two decades ago. However, advancements in the use of ROC analysis that 
have recently gained traction or application in the aerospace IVHM community have 
motivated its current use for space-based propulsion systems of the exact type analyzed in 
previous work of the current author (Martin, 2007); (Martin et al., 2007). Furthermore, ROC 
analysis is a much more straightforward and broadly applicable tool used for statistical 
analysis than in the previously cited work (Hart, 1990), and more useful for the design of 
alarm and monitoring systems. 
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3. Approach 

Ostensibly, operating procedures for the thrust vector control (TVC) subsystem on Ares I-X 
used to support gimbaling of the solid rocket booster are also patterned after operations of 
the Space Shuttle. As such, for the purposes of our analysis here we consider two primary 
phases of operation of the TVC subsystem based upon Space Shuttle operations. Testing of 
the TVC in the VAB (Vehicle Assembly Building) often occurs anywhere from several weeks 
to a few months prior to the point at which the vehicle is fully assembled and ready to be 
rolled out on the MLP (Mobile Launch Platform) to the pad for launch. Launch countdown 
begins while the assembled vehicle is already rolled out to the launch platform; however, 
occasionally certain tests that normally occur in the VAB are also performed at the pad.  
To simplify the distinction between the two main phases of operation, we will only consider 
tests of the TVC subsystem when the vehicle is in the VAB, and when the fully assembled 
vehicle is at the pad after launch countdown has commenced. Data from previous Space 
Shuttle launches has been gathered from both phases, and as such both will be considered 
viable candidates for analysis using the methods described previously. The availability of 
the data during each phase and its ability to meet certain requirements will determine the 
choice of a particular phase of operation as the primary test phase for evaluation of data-
driven algorithms. Specifically, the requirement to be met is the availability of a sufficient 
amount of data to undergo a formal cross-validation procedure that can be processed in a 
reasonable amount of time. A priori knowledge on computational complexity of each data-
driven algorithm will aid in determining if they can be processed in a reasonable amount of 
time, given a fixed volume of data that sufficiently characterizes nominal behavior spanning 
multiple launches. 
Finally, all data must be pre-processed and transformed into a standard format fit for 
utilization of all data-driven algorithms. This pre-processing can be decomposed into two 
basic steps. The first step requires resampling of data that is recorded only when parameter 
values change or that are derived from different data sources. This resampling technique is 
performed by holding the last known value, resulting in a new data file where each row 
corresponds to a single time step, and each column corresponds to a distinct parameter, 
regardless of its origin. Thus, the data is merged into one aggregate “matrix” representation. 
The second step necessitates normalization of all continuous-valued parameters so that any 
potential algorithmic biases resulting from parameters that have drastically different ranges 
are effectively mitigated. If any discrete-valued parameters or continuous parameters that 
have fixed values exist in the dataset, they will bypass this normalization step in order to 
prevent potential singularities in algorithmic processing. For the purposes of this chapter, 
unless otherwise stated it will be assumed henceforth that all data has been processed and 
transformed into this standard format.  

3.1 IMS (Inductive Monitoring System) 
The Inductive Monitoring System (IMS) is a distance-based anomaly detection tool that uses 
a data driven technique called clustering to extract models of normal system operation from 
archived data. IMS works with vectors of data values as described in the previous section. 
During the learning process, IMS analyzes data collected during periods of normal system 
operation to build a system model. It characterizes how the parameters relate to one another 
during normal operation by finding areas in the vector space where nominal data tends to 
fall. These areas are called nominal operating regions and correspond to clusters of nearby, 
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similar points found by the IMS clustering algorithm. IMS represents these nominal 
operating regions as hyper-boxes in the vector space, providing a minimum and maximum 
value limit for each parameter of a vector contained in a particular hyper-box. These hyper-
box cluster specifications are stored in a knowledge base that IMS uses for real-time telemetry 
monitoring or archived data analysis. Figure 1a shows an overview of the IMS method. 
 

 

Fig. 1a. Inductive Monitoring System (IMS) Overview 

3.1.1 IMS learning process 
In general, the number and extent of nominal operating regions created during the IMS 
learning process is determined by three learning parameters: the “maximum cluster radius” 
can be used to adjust the size and number of clusters derived from a fixed number of 
training data points, the “initial cluster size” is used to adjust the tolerance of newly created 
nominal operating regions, and the “cluster growth percent” is used to adjust the percent 
increase in size of a nominal operating region when incorporating new training data vectors. 
More specifically, the learning algorithm builds a knowledge base of clusters from 
successively processed vectors of training data. As such, the clustering approach is 
incremental in nature, which distinguishes it from well-known methods such as k-means 
clustering where the resulting clusters are independent of the ordering of the vectors. With 
the processing of each new training data vector, the distance from this new vector to the 
centroid of the nearest cluster in the knowledge base is computed. If this distance is below a 
pre-specified value, the “maximum cluster radius,” the new vector is summarily 
incorporated into that cluster. The upper or lower limits for each affected dimension of the 
cluster are expanded respectively according to the “cluster growth percent” parameter to 
reflect the inclusion of the new vector. This incremental, inductive process gives IMS an 
advantage over other clustering methods such as k-means, since it tends to group 
temporally related points during the learning process. The grouping of temporally related 
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points may also aid in discovering distinct system operations, which makes IMS more 
amenable to the specific goal of monitoring time series data for system operations. 
The “cluster growth percent” parameter is used to adjust the learning rate. It establishes a 
fixed “growth” percentage difference for expansion of each dimension when updating 
previously formed clusters. This “cluster growth percent” learning parameter is therefore 
clearly proportional to the learning rate, due to the increased number of training data points 
that will be assigned to each new cluster per iteration for higher values of the “cluster 
growth percent” parameter. Naturally, the number of clusters in the knowledge base for a 
given training data set will increase as the “maximum cluster radius” and “cluster growth 
percent” values are decreased. Therefore, an inverse relationship between the maximum 
cluster radius and the number of clusters in the knowledge base exists. This dependence can 
be exploited to regulate the final size of the knowledge base in order to accommodate 
resource limitations in the computers running IMS, and to optimize selected metrics. 
If the distance between a newly processed vector and the centroid of the nearest cluster in 
the knowledge base is above the pre-specified “maximum cluster radius” value, a new 
cluster is created. The formation of a new cluster is accomplished by creating a hyper-box 
whose dimensions are based upon forming a window around each element of the new 
training data vector. The window is defined by introducing the “initial cluster size” 
parameter which is used to adjust the learning tolerance. This “initial cluster size” learning 
parameter represents a fixed percentage of the value for each dimension of the new training 
vector and as such relates directly to the size of newly established clusters. The “initial 
cluster size” and “cluster growth percent” learning parameters also act as buffers which 
enable a provisional allowance for manufacturing sensor tolerances and for sensors that 
may have suffered from deterioration due to wear. Furthermore, these learning parameters 
provide increased coverage to compensate for training data that may not fully characterize 
the nominal performance envelope. 

3.1.2 IMS monitoring process 
During the monitoring operation, IMS reads and normalizes real-time or archived data 
values, formats them into the predefined vector structure, and searches the knowledge base 
of nominal operating regions to see how well the new data vector fits the nominal system 
characterization. After each search, IMS returns the distance from the new vector to the 
nearest nominal operating region, called the composite distance. Data that matches the 
normal training data well will have a composite distance of zero. If one or more of the data 
parameters is slightly outside of expected values, a small non-zero result is returned. As 
incoming data deviates further from the normal system data, indicating a possible 
malfunction, IMS will return a higher composite distance value to alert users to the 
anomaly. IMS also calculates the contribution of each individual parameter to the composite 
deviation, and the index of the nearest cluster to the monitored point, which can help 
identify and isolate the cause of the anomaly. 

3.1.3 IMS score computations 
This section describes the computation of the IMS composite score and individual 

contributing scores. The IMS scores are computed on a monitored data stream, and are 

functions of distances to the nearest clusters which have been computed from training data. 

Table 1 lists the notation used in the score calculation equations: 
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Table 1. Notation 

 

 
 

 

Fig. 1b. Distance from point r2,s to cluster c in dimension p=2 
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     spondance is closer when the data was normalized over the range of the training 

      

 

3.1.4 IMS complexity 
Figs. 2 and 3 illustrate empirically generated timing tests for IMS runs that demonstrate its 

computational complexity for datasets of increasing size. Fig. 2 illustrates only the time that 

it takes to train IMS, while Fig. 3 shows the time that it takes to normalize, train, test, and 

parse the results for IMS. In both figures, results are shown for data sets that have different 

numbers of parameters, which aids in gaining a sense of scalability as well as complexity. In 

Fig. 2, the size of the dataset containing 21 parameters was increased from a minimal size of 

338 kB to its full size of 32 MB (blue dashed line). This data set was also noted to have been 

based upon resampled data, as distinct from “change only” data. This distinction is notable 

due to the fact that the resampled counterpart to a “change-only” data set is always of a 

much larger size, and a change only dataset is sufficiently representative for use as a 

training data set, both for obvious reasons. The resampled version is only necessary when 

performing monitoring and subsequent analyses.  

In Fig. 2, both resampled and change only versions of a dataset containing 164 parameters 

are also shown. They are varied in size from a minimal ~ 6 MB to 218 MB (just over one-

third the full size of the resampled dataset) and from 2.64 MB to 250 MB (the full size of the 

change only dataset), which are shown with solid blue dots and the solid blue line, 

respectively. The length of time spanned by the actual dataset (real-time) is shown in green, 
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and appears nearly as a vertical line due to the scale used for the graph, even though the 

slope is finite. As such, it is evident that for all timing tests shown in both Figs. 2 and 3 (in 

blue), IMS runs nearly in linear time and far faster than real-time, even when accounting for 

the time that it takes to normalize, train, test, and parse the results for IMS (In Fig. 3). It is 

also evident that the number of parameters in the dataset processed by IMS scales in a 

multiplicative fashion (as well as the size of the dataset, implicitly, due to aforementioned 

linear time characterization). However, for the purposes of performing a thorough analysis 

that involves optimization and an n-fold cross validation, even a linear time complexity 

needs to be considered carefully.  

 

Fig. 2. IMS Training Complexity 

To see how quickly time can add up, take as an example a 10-fold cross validation and 
optimization performed on 5-hr training and validation datasets with 21 parameters. If we 
base the total processing time for each point within a 150 point optimization grid on Fig. 3, it 
becomes clear that it would exceed ~ 30 sec x 10 cases X 150 optimization points (>12 hrs), in 
addition to the time for monitoring auxiliary fault data. If the validation dataset used to 
monitor auxiliary fault data consists of 2 nominal and 2 fault scenarios, and each scenario 
spans 5 hrs, then the time for monitoring fault data for 2 nominal and 2 fault scenarios 
exceeds ~ 4 sec X 10 cases X150 optimization points X 4 scenarios, based upon Fig. 2 (using 
½ training time as a rough estimate for monitoring time). The total estimated time amounts 
to almost 20 hrs. of computational effort. And even so, these rough computations do not 
account for the fact that for file sizes above the max 250 MB used to create these plots, the 
number of clusters found by IMS may increase substantially, also adding significantly to the 
computational cost, possibly running in near real-time or even above real-time for very large 
files.  
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Fig. 3. IMS Normalization, Training, Testing, and Results Parsing Complexity 

Evidence of this variation with number of clusters is shown in Fig. 4. Here, training 
/validation data file sizes are fixed for the entire experiment. The experiment implicitly 
varies the number of clusters with each subsequent training/validation run via adjustment 
of IMS’s “maximum cluster radius” parameter. The x axis represents the number of 
sequential IMS training/validation set completions, the y axis on the left represents the date 
of completion, and the y axis on the right represents the number of clusters. As in Fig. 3, this 
involves IMS training, testing, and the overhead involved in wrapper code written for 
generation of statistics for optimization, which includes parsing of the results. The reason 
sequentially processing training/validation runs appears sublinear is due to the fact that the 
“maximum cluster radius” value is being adjusted from a very small value to 1. Recall that 
there is always an inverse relationship between the maximum cluster radius and the 
number of clusters. As such, we implicitly decrease the number of clusters per IMS 
knowledge base for each subsequent run from 976 to 18, causing the time for completion to 
be shortened decrementally. 
For files of an increasing size which seeded the experimental results shown in Figs. 2 and 3, 
the effect seen in Fig. 4 may bias the attempt to control the experiment by holding the 
maximum cluster radius parameter fixed. When the file size is increased for the experiments 
yielding the results shown in Figs. 2 and 3, the number of clusters naturally increases due to 
the greater chance of visiting areas in the hyperspace that contain vectors previously unseen 
by the current IMS cluster population. As such, a similar sublinear effect as seen in Fig. 4 
may result for an experiment in which the file size is decreased but the maximum cluster 
radius parameter is held fixed. Conversely, a limiting effect is apparent when the number of 
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clusters increases as a side effect of increasing the file size, implying that IMS will run in 
near linear time as file size increases (as is evident in Figs. 2 and 3). However, this limiting 
linear time effect does not imply that IMS will run in real time for an arbitrarily large 
number of clusters. In fact, as mentioned previously, it is possible for IMS to run above real-
time for very large files, since we know that IMS scales in a multiplicative fashion with the 
size of the dataset. As such, an increase in the number of clusters resulting from an increase 
in file size will yield a substantially greater computational burden. In the previous example, 
rough estimates were provided that did not account for these effects. 
 

 

Fig. 4. IMS Complexity and corresponding number of clusters 

3.2 Orca 
Orca is a software tool that uses a nearest neighbor based approach to outlier detection 
which is based upon the Euclidean distance metric. It uses a modified pruning rule that 
allows for increased computational efficiency, running in near linear time as the number of 
“top score” outlier points selected for evaluation decreases. More information on this 
algorithm and some of its applications can be found in previous work (Bay and 
Schwabacher, 2003); (Schwabacher, 2005). This algorithm outputs a total score which 
represents the average distance to the nearest k neighbors in the multi-dimensional feature 
space containing all of the variables. It also outputs the contribution of each variable to this 
score in order to show which variables cause each outlier to be classified as such. 
Unlike IMS, Orca requires no training due the inherent comparative nature of the algorithm. 
Ostensibly, this should reduce the total computational burden. However, the greatest 
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computational advantages of using Orca are reaped only when applying a modified 
pruning rule for a reduced number of outlier points based upon having the highest score 
magnitude selected for evaluation. An implicit requirement to use all available points exists, 
to aid in the construction of an unbiased ROC curve representative of all score magnitudes 
and with full resolution. Therefore, Orca loses is computational advantage and defaults to a 
standard k-nn (nearest neighbor) algorithm that scales quadratically. A two-dimensional 
example is provided in Fig. 5 in order to illustrate the basic idea behind the k-nn algorithm. 
The red circle represents the point being monitored, and the average Euclidean distance to a 
fixed number of nearest neighbors, k, is used to compute a composite anomaly score. 
Isolation of the outlier point becomes possible by using this technique as the monitored 
point is indexed across the entire population, as is evident in the diagram. 
 

 

Fig. 5. Nearest Neighbor Approach to Anomaly Detection 

 
Fig. 6. Orca Normalization, Testing, and Results Parsing Complexity 
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Empirical evidence of quadratic complexity is shown in Fig. 6, which also illustrates the time 
required for normalization, application of Orca, and results parsing. This graph merits direct 
comparison to Fig. 3 showing complexity results for IMS, due to use of the same datasets and 
ranges in size of the datasets. Clearly, the computational complexity of Orca is far greater than 
that of using IMS. Furthermore, for datasets spanning a large period of time, it is readily 
apparent that the algorithm will eventually no longer be able to run faster than real time.  

3.3 One-Class Support Vector Machine (SVM) 
The one-class support vector machine is a very specific instance of a support vector machine 
which is geared for anomaly detection. The generic support vector machine (SVM) can be 
used to classify data in multiple dimensions by finding an appropriate decision boundary. 
Like neural networks, support vector machines perform classification using nonlinear 
boundaries, however they go one step beyond neural networks by finding the boundaries 
that provide the maximum margin between different classes of data. Additionally, using the 
support vector machine one can map data from a lower dimensional space that is not 
linearly separable to a higher (even infinite-dimensional) space where the data are linearly 
separable by a hyperplane. This is performed by using what is commonly known in 
machine learning as the “kernel trick,” when using SVM’s. A kernel function is chosen to 
map the data from the lower-dimensional space to the higher-dimensional space. It can be 
chosen arbitrarily so as to best suit the data and at the same time reduce the computational 
burden involved with generating the mapped values by direct evaluation. However, for our 
purposes, we choose the Gaussian radial basis function or kernel, given by Eqn. 9, which is 
the most widely used in the application of one-class SVM’s.  

 
(9) 

K is the kernel function, and the training data vectors are given by xi and xj. The kernel 

width is given by σ, and is used to control the distribution of the kernel function around the 
training data point. The magnitude of this value also often has a direct effect on the 
algorithm’s speed and complexity. “Support vectors” correspond to those data points that 
lie along the margin or closest to it. The maximum margin between classes is found by 
solving a quadratic optimization problem. 
The one-class SVM differs from the generic version of the SVM in that the resulting 
quadratic optimization problem includes an allowance for a certain small predefined 

percentage of outliers, ν, making it suitable for anomaly detection. As shown in Fig. 7, these 
outliers lie between the origin and the optimal separating hyperplane. All the remaining 
data fall on the opposite side of the optimal separating hyperplane, belonging to a single, 
nominal class, hence the terminology “one-class” SVM. The SVM outputs a score that 
represents the distance from the data point being tested to the optimal hyperplane. Positive 
values for the one-class SVM output represent normal behavior (with higher values 
representing greater normality) and negative values represent abnormal behavior (with 
lower values representing greater abnormality). For subsequent analyses and in the results 
section, the negative of this score will be used in order to establish a frame of reference 
commensurate with ROC analysis and for comparison to other algorithms.  More technical 
details on the one-class SVM are available in previously published studies (Das et al., 2007); 
(Cohen et al., 2004). 
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Fig. 7. Illustration of One-Class Support Vector Machine Framework 

The one-class SVM differs from the other methods discussed in this paper because it 
determines whether or not a point is an outlier based on the distance of the point to a 
separating hyperplane in a feature space induced by a kernel operator, whereas most of the 
other methods rely on an analysis of the data in the original data space. For the one-class 
SVM, a single hyperplane separates the nominal data from the origin. Thus, for a system 
which undergoes nominal mode changes during its operation, all such changes will be 
characterized as nominal with a single hyperplane. Orca and IMS, on the other hand, 
characterize the anomalousness of a point based on local characteristics within the data 
space. This quality can make those algorithms more robust to significant mode changes 
compared with the one-class SVM. 

The small predefined percentage of outliers, ν, is typically selected a priori and used to 

inform optimal selection of a value for the kernel width, σ, as is shown in Fig. 8. This is 
performed by finding the correct training classification rate as a function of the kernel 

width, and finding the value of σ that corresponds to 1-ν. It is often easy to find this value 

within a reasonable level of tolerance. In these cases, the kernel width, σ, corresponding to 

the first exceedance of 1-ν is used as the optimal value. However, when using a very small 

value of ν, it may be infeasible to find a training misclassification rate that will achieve this 

value (1-ν). This puts a lower bound on the predefined percentage of outliers that can be 
selected. As such, various candidates can be tested for feasibility in order to determine the 

lower bound on ν. For each of these candidates, a corresponding relevant metric can be 
computed, in addition to the corresponding optimal kernel width. In this case, the relevant 

test metric of interest is the AUC value. A value of ν that has been determined to be feasible, 
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and corresponds to the highest AUC value will thus be used for selection of the optimal 
kernel width. 
 

 

Fig. 8. Illustration of Selection of Optimal Kernel Width 

The complexity of the one-class SVM algorithm is also of interest. As such, we provide an 

empirical complexity analysis shown in Fig. 9 to complement Figs. 2-4 and 6, which 

illustrate the complexity for IMS and Orca. Similar to Orca in Fig. 6, it is evident that the 

one-class support vector machine algorithm yields a superlinear complexity shown in Fig. 9. 

Furthermore, for the smaller dataset containing 21 resampled parameters, we compare the 

time for training only (shown as a dotted line), to the time required for normalization, 

training and validation (shown as a dash-dot line), which adds negligible time. It is also 

interesting to note that there is no noticeable multiplicative increase in complexity with the 

processing of additional parameters as opposed to Orca and IMS (cf. 21 resampled 

parameters to 164 change-only parameters), which is ostensibly due to the use of the kernel 

trick. However, regardless of this slight advantage, again the computational complexity of 

the one-class SVM algorithm is far greater than that of IMS, and on par with that of Orca. As 

seen in Fig. 9 , for datasets spanning a period of time greater than 7 hrs., it is readily 

apparent that the OCSVM algorithm is no longer able to run faster than real time. 

4. Validation and evaluation criteria 

In order to motivate a detailed discussion of the evaluation criteria, we will first need to 

introduce the means by which we will validate the algorithms discussed thus far. 

Specifically, we need to outline the type and volume of data required for validation. Recall 
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Fig. 9. One-Class Support Vector Machine Computational Complexity 

the requirement to process a sufficient amount of data to undergo a formal cross-validation 
procedure that can be processed in a reasonable amount of time. The computational 
complexity of each data-driven algorithm is now well established, which facilitates the 
selection of various candidate cross-validation experiments. Again, for the purposes of our 
analysis here we will only consider two primary phases of operation of the TVC subsystem 
based upon meeting these specified data requirements. The two phases of interest involve 
both testing of the TVC in the VAB, and when the fully assembled vehicle is at the pad after 
launch countdown has commenced. For each of these phases, there are specific periods of 
time in which respective tests of interest or important elements of the operational sequence 
are conducted. Certain pre-specified failure modes from a FMECA (Failure Modes, Effects 
and Criticality Analysis) have been identified as potential adverse events that could occur 
during these critical periods of time. 
Table 2 provides a summary of each failure mode under consideration for each phase of 
operation. The periods of time spanned by tests corresponding to each of these failure 
modes are also provided, which aid important considerations of computational complexity.   
For the last three row entries in Table 2, the period of time spanned by the tests are largely 
dependent upon the specific flight, and are also driven by acquisition of a sufficient amount 
of data to accurately characterize nominal behavior in order to prevent false alarms. In light 
of this fact, the use of a 25 Hz sampling rate, and the example of how quickly time 
complexity for even the least burdensome algorithm adds up, we will use the first two row 
entries in Table 2 as the basis of experiments and results to be subsequently presented. 
Another advantage of using the two failure scenarios at the pad is due to the fact that they 
occur during the same time period within T – 1 min prior to launch, thus simplifying the 
experimental construction and allowing for fewer scenarios to investigate independently. 
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Operational 
Phase 

Failure Mode 
Period of 

Time Spanned 

Pad 
FSM (Fuel Supply Module) Pressure Drop due 
to N2H4 (Hydrazine) Leak 

Within T – 1 min 
prior to launch 

Pad 
Hydraulic Fluid Reservoir Level Drop due to 
hydraulic fluid leak 

Within T – 1 min 
prior to launch 

VAB 
Actuator Stuck during Actuator positioning 
test 

2.5 min test in VAB 

VAB 
FSM (Fuel Supply Module) Pressure Drop due 
to N2H4 (Hydrazine) Leak 

Within ≥34 minute 
period after 
calibration test in 
VAB 

VAB 
Hydraulic Fluid Reservoir Level Drop due to 
hydraulic fluid leak 

Within ≥10 min 
period during TVC 
actuator tests in VAB 

VAB 
Hydraulic pumping unit overtemperature 
failure 

Within ≥25 min 
period during tests in 
VAB 

Table 2. Failure Mode Summary 

Due to the absence of real data to use for validation and testing for the two candidate failure 
modes under consideration in Table 2, they must be simulated using existing means. 
Increasing the range of fidelity of available failure simulations is an ongoing process. In 
previous work, (Schwabacher et al., 2009) a high fidelity physics-based simulation of a leak 
in a liquid propulsion-based J-2X engine was used to validate data-driven algorithms. 
However, such a simulator does not currently exist for relevant components of the TVC 
subsystem.  In future work, we plan to develop high fidelity physics-based simulations of a 
leak in the fuel supply module (FSM) of the TVC subsystem, which is a spherical tank 
containing liquid hydrazine (N2H4) pressurized by GN2 (gaseous nitrogen). However, for 
our purposes here we have chosen to use a rather low fidelity simulation for the two 
scenarios. The simple use of linearly decreasing ramps from nominal operating conditions to 
off-nominal values for parameters specific to each failure mode will be used, given 
predefined rates of degradation and preselected off-nominal values.  
The time of failure injection within the T- 1 min period prior to launch is selected to leave a 
significant nominal fraction of the period at from T -1 min until injection of the failure, 
which occurs at T-28.12 sec for the hydrazine leak at the pad, levelling off at its off-nominal 
value at T-15 sec. For the hydraulic fluid reservoir leak at the pad, the failure is injected at T- 
13 sec and levels off at its nominal value at T-12 sec. However, it is often useful to 
supplement our validation data with additional cases of purely nominal behavior as well. In 
our case, we will use a concatenation of nominal data from T-1 min to launch, and two 
additional failure datasets representing the scenarios described above.  Now that we have 
established the basis for constructing the validation data sets, it is of interest to describe how 
the algorithms will be optimized and evaluated with the use of ROC curve analysis. 
The ROC curve essentially plots the true positive rate against the false alarm rate for all 
possible threshold values, as shown in Fig. 10. It therefore can be used as a design tool in 
order to select an alert threshold according to pre-established requirements for minimum 
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missed detection and/or false alarm rates. However, in order to compute true positive and 
false alarm rates, it is necessary to obtain a “ground truth” representation for each 
monitored example. In this case, an “example” can represent an individual validation flight, 
or a single time point. Here we will compute false alarm and missed detection rates based 
upon the classification of each individual time point, rather than on a flight-by-flight basis, 
as was performed in previous studies (Martin et al., 2007).   
In order to compute true positive and false alarm rates with a reasonable level of accuracy, 
there is a need to obtain a statistically significant number of labeled examples, both nominal 
and anomalous. The availability of nominally classified examples often far exceeds the 
availability of anomalously classified examples. The deficit of the latter drove our efforts to 
simulate faults, and hence to use classified time points as monitored examples in lieu of 
individual validation flights for construction of the ROC curve. For our purposes here, the 
classified time points represent the “ground truth,” and will be based upon the times of 
failure injection specified previously, for each failure scenario. 
One advantage of using ROC curve analysis is in its inherent robustness against the use of 
skewed distributions between the populations of nominally and anomalously categorized 
examples. Thus, as long as the population of failure examples is statistically significant, it 
does not need to be on par with the population of nominal examples. Furthermore, unlike 
other alert threshold selection techniques, the ROC curve may also be used for optimized 
selection of algorithmic parameters. This can be performed by using the area under the ROC 
curve, which represents overall classification discriminability. Therefore, the AUC can be 
maximized with respect to free design parameters used for algorithmic tuning to optimize 
and control performance during the validation stage. As such, we can ensure that the 
resulting model used to perform threshold or alert selection has the best anomaly detection 
capability possible. Furthermore, the AUC analysis can be used to compare the performance 
of all candidate algorithms. 
 

 

Fig. 10. Sample ROC Curve 

As seen in Fig. 10, the area under the ROC curve has a classic increase in relation to the SNR 
(Signal-to-Noise ratio). This relationship is well established, and is derived from the origins 
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of the ROC curve for use in radar applications dating back to WWII. Unlike the SNR, it is 
often the case that algorithmic design parameters do not have a similar 
straightforward relationship to the AUC. However, this relationship is implicit in Fig. 10 
due to the fact that optimization of algorithmic design parameters is performed by using the 
area under the ROC curve. In a sense, the ROC curve is "tuned" by attempting to maximize 
the AUC (area under the ROC curve) and choosing the appropriate algorithmic design 
parameter(s) to allow for maximum predictive capability. This can be thought of as choosing 
the ROC curve with the highest SNR based upon such parameters. In this case theoretically 
the "signal" might loosely be thought of as the variability of anomalous behavior, and the 
"noise" might be thought of as the variability of nominal operations. 

5. Results and discussion 

As previously discussed, a formal cross-validation procedure will be used to perform 
optimization and alert threshold selection. Doing so will help to prevent overfitting, as is 
often the case when using a single training and validation dataset. A k-fold cross-validation 
will be used, in which k-1 training examples are used, and the remaining example is used for 
validation. Each of the k examples is rotated and used one time for use as a validation set, so 
that there are k sets of statistics rather than a single one. The candidate training/validation 
dataset partitions will span 7 flights (STS-117, STS-107, STS-112, STS-113, STS-114, STS-120, 
and STS-122) containing 30 continuous-valued parameters, and a 7-fold cross-validation 
procedure will be used. Resulting AUC and ROC curves will be averaged over the results of 
the 7-fold cross-validation. The optimization parameters used and the respective optimized 
values derived from the average AUC across all 7 folds for each of the candidate data-driven 
algorithms are summarized in Table 3.  
 

Algorithm 
Optimization 

Parameter 
Optimized 

Value 

Max. of 
averaged  AUC 
Value Achieved

“Hyperparameter” 
Values 

IMS 
Maximum cluster 

radius 
(MAX_INTERP) 

.01894 
(403 clusters) 

.9807 

Initial cluster size 
(INIT_TOLERANCE) = 

0.01 
Cluster growth percent 
(EXTRAP_PERCENT) = 

0.05 

Orca 
k (number of 

nearest neighbors)
2 0.91077 N/A 

OCSVM σ (kernel width) 10.8081 0.92956 ν = 0.2289 
OCSVM σ (kernel width) 2.121 0.93072 ν = 0.2 
OCSVM σ (kernel width) 10.8081 0.90416 ν = 0.1 
OCSVM σ (kernel width) 2.121 0.9051 ν = 0.08 
OCSVM σ (kernel width) 0.74531 0.94666 ν = 0.075 
OCSVM σ (kernel width) 2.121 0.90664 ν = 0.07 
OCSVM σ (kernel width) 5.9636 0.90529 ν = 0.05 
OCSVM σ (kernel width) 5.9636 0.90525 ν = 0.01 
OCSVM σ (kernel width) 3.5565 0.89681 ν = 0.001 
OCSVM σ (kernel width) infeasible infeasible ν = 0.0001 

Table 3. Optimization Parameters 
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Additionally, the optimized maximum AUC values achieved by averaging across all 7 folds, 
and values of any supplementary “hyperparameters” that were used for each algorithm are 
provided in Table 3. Fig. 11 illustrates the average AUC values across all 7 folds for each of 
the candidate data-driven algorithms as a function of each of their design parameters. In 
addition, quasi-confidence bounds representing the maximum and minimum AUC values 
across all 7 folds are provided. In the lower right panel of Fig. 11, the maximum of the 
averaged AUC value achieved that lies in a feasible range is demarcated, even though it is 
clearly not the maximum over the entire range of kernel width values shown. The range of 
feasible kernel width values for the row in Table 3 highlighted in red represents any value 
greater than the optimized value shown, and corresponds to the lower right panel in Fig. 11. 
Both the highlighted row and the lower right panel of Table 3 and Fig. 11 respectively 
represent the maximum achievable AUC averaged across all 7 folds for the OCSVM 
algorithm. Thus, the optimized kernel width lies on the very border of the feasible range. 
Note that the last row of Table 3 indicates that a lower bound on the predefined percentage 

of outliers, νmin, has been identified for any kernel width. 
 

 

Fig. 11. AUC optimization with confidence intervals 

Conflating the values presented in Table 3 with the graphs shown in Fig. 11, it becomes clear 
that IMS outperforms the other two algorithms, even when the hyperparameters for IMS are 
held fixed and not implicitly used to inform the optimization problem, as was performed 
with the one-class SVM.  However, what may not be as clear from Fig. 11 is that some 
overlap between the confidence intervals among the algorithms exists. Specifically, for IMS, 
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the averaged optimized AUC value achieved falls within the range (0.9728, 0.9921), for Orca 
the range for optimized AUC values is (0.8924, 0.9201), and for OCSVM the range for 
optimized AUC values is (0.919, 0.9891). Therefore, there is some overlap between the 
optimum ranges for IMS and OCSVM, albeit a very small overlap of 0.0163 in which SVM 
might outperform IMS. Orca has no range overlap with IMS, but has an extremely small 
overlap with SVM of 0.0011. 
Our next and final step is to perform threshold or alert selection based upon the ROC curves 
corresponding to the optimized parameters found from the previous step. Recall that this 
allows for alert threshold selection based upon specified minimum false alarm and/or 
missed detection rates with a robust anomaly detection capability and the best classification 
discriminability. Fig. 12 shows examples of the optimized ROC curves averaged over all 7 
folds and their minimum/maximum confidence interval counterparts. Additionally, 
corresponding alert thresholds have been selected according to an established maximum 
allowable false positive rate of 0.01, and the results are shown in the legend. 
 

 

Fig. 12. ROC Curve Comparison and Alert Threshold Selection 

The slight variation in ranges shown in the legend differ from the optimized AUC ranges 
previously provided due to the revised manner in which they have been computed. The 
minimum and maximum ROC curves were constructed in a modified manner in order to 
prevent any excursions of the mean ROC curve outside of the min/max envelope for 
visualization purposes. As such, the mean false positive rate is used consistently to construct 
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ROC curves representing the min/max bounds, while the min/max true positive rate is 
used respectively, resulting in different min/max AUC values than previously reported, 
however these variations are negligible. Note that for a fixed false alarm rate ceiling (Pfa) of 
0.01, the resulting OCSVM  threshold yields a true positive rate (Pd) on par with that of IMS 
(mean 0.79), and the resulting Orca threshold yields a much lower a true positive rate (Pd) 
having a mean of 0.11. In due fairness to Orca, it is possible that the AUC value may have 
increased beyond the range of the 200 nearest neighbors shown on the upper right panel of 
Fig. 11. However, due to scalability and complexity issues, the experiment was terminated 
as shown. Indeed, the complexity of running Orca with an increased number of nearest 
neighbors scales quadratically when not using any pruning rules. 
Finally, Fig. 13 illustrates realizations of validation flight STS-117 to which optimized 
parameters and thresholds are applied. 
 

 

Fig. 13. Realizations of Optimized Parameters and Thresholds Applied to Validation Flight 

Fig. 13 illustrates both the nominal (red lines) and fault injected scores (blue lines) from T – 1 
min to launch at the pad for all algorithms. In all cases, both failure scenarios involving an 
FSM pressure drop (left panels) and a hydraulic fluid reservoir leak (right panels) are 
shown, using the optimized thresholds (fixed magenta colored lines) found from the ROC 
analysis. The actual threshold values may vary slightly from the values specified in Fig. 12 
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due to realizations being based on independent experiments, and as such should still fall 
within the confidence bands formed in both Figs. 11 and 12. The light blue highlights 
superimposed over the failure injected scores in dark blue represent the “ground truth” time 
of failure injection and duration, so as to give a feel for the false alarm and correct detection 
rates. Evidently, there is a clear bifurcation between nominal and anomalous scores for both 
IMS and SVM, and for Orca the same is true although it is less apparent. As can be discerned 
from Figs. 11 – 13, we have identified the fact that both in complexity and accuracy, IMS seems 
to be the best choice among all of the algorithms investigated. However, there is some overlap 
in the confidence intervals for IMS and SVM AUC values, and the alert thresholds applied for 
both corresponding ROC curves yield almost identical true positive rates. 

6. Conclusion and next steps 

We have provided a thorough end-to-end description of the process for evaluation of three 
different data-driven algorithms for anomaly detection. Through optimization of 
algorithmic parameters using the AUC, we were able to choose parameters yielding the best 
detection capability. The respective ROC curves corresponding to these parameters were 
then used to inform alert threshold selection by enforcement of a maximum allowable false 
alarm rate. It was found that IMS was the best performing algorithm when considering both 
computational complexity and accuracy. However, when evaluating the results based upon 
accuracy alone, the OCVSM approach is competitive with IMS due to overlapping 
confidence intervals present in the accuracy results. 
In subsequent research studies, we will provide results of unseen hold out test cases to 
which optimized parameters and thresholds will be applied, in order to provide additional 
evidence demonstrating the superiority of a particular algorithmic technique. Furthermore, 
we will employ a variant of the AUC that only considers performance evaluation for 
algorithmic comparison restricted to low false positive rates. A slightly modified definition 
of false alarms and missed detections that accounts for pre-defined latencies and prediction 
horizons will also be investigated. 

7. Acknowledgements 

The author would like to acknowledge the support of the Ares I-X Ground Diagnostics 
Prototype activity, which was funded by the NASA Constellation Program, by the NASA 
Exploration Technology Development Program, and by the NASA Kennedy Space Center 
Ground Operations Project. Furthermore, the author graciously acknowledges the reviews 
of Dr. Mark Schwabacher, Bryan Matthews, and Dr. Ann Patterson-Hine. The author also 
extends appreciation to John Wallerius for his contribution of the subsection on IMS score 
computations, and his ideas pertaining to next steps on consideration of performance 
evaluation for algorithmic comparison restricted to low false positive rates. Finally, the 
author acknowledges the permission to use of Figs. 7 and 8 from Dr. Santanu Das, and Fig. 
1a with supporting text from David Iverson. 

8. References 

Bay, S.D. & Schwabacher, M. (2003). Mining distance-based outliers in near linear time with 
randomization and a simple pruning rule, Proceedings of The Ninth ACM SIGKDD 

www.intechopen.com



 Aerospace Technologies Advancements 

 

164 

International Conference on Knowledge Discovery and Data Mining, pp. 29–38, New 
York, NY, 2003. 

Cavanaugh, K. (2001). An integrated diagnostics virtual test bench for life cycle support, 
Proceedings of the IEEE Aerospace Conference, pp. 7–3235–7–3246, ISBN: 0-7803-6599-2, 
Big Sky, Montana, March 2001. 

Cohen, G.; Hilario, M. & Pellegrini, C. (2004). One-class support vector machines with a 
conformal kernel: a case study in handling class imbalance, In: Structural, Syntactic, 

and Statistical Pattern Recognition, A. Fred et al. (Eds.), pp. 850–858, Springer-Verlag, 
Berlin, Heidelberg, Germany. 

Das, S.; Srivastava, A. & Chattopadhyah, A. (2007). Classification of Damage Signatures in 
Composite Plates using One-Class SVM’s, Proceedings of the IEEE Aerospace 
Conference, Big Sky, MO, March 2007. 

Fragola, J.R. (1996). Space shuttle program risk management, Proceedings of the International 

Symposium on Product Quality and Integrity: Reliability and Maintainability Symposium, 
ISBN: 0-7803-3112-5, pp. 133–142, Jan 1996. 

Hart, G.F. (1990). Launch commit criteria performance trending analysis, Annual Proceedings 

of the Reliability and Maintainability Symposium, pp. 36–41, Jan 1990. 
Iverson, D.L.; Martin, R.; Schwabacher, M.; Spirkovska, L.; Taylor, W.; Mackey, R. & Castle. 

J.P. (2009). General purpose data-driven system monitoring for space operations, 
Proceedings of the AIAA Infotech@Aerospace Conference, Seattle, Washington, April 
2009. 

Mackey, R.; James, M.; Park, H. & Zak. M. (2001). BEAM: Technology for autonomous self-
analysis, Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 2001. 

Martin, R. (2007). Unsupervised anomaly detection and diagnosis for liquid rocket engine 
propulsion, Proceedings of the IEEE Aerospace Conference, Big Sky, MT, March 2007. 

Martin, R.; Schwabacher, M.; Oza, N. & Srivastava, A. (2007). Comparison of unsupervised 
anomaly detection methods for systems health management using Space Shuttle 
main engine data, Proceedings of the 54th Joint Army-Navy-NASA-Air Force Propulsion 

Meeting, Denver, CO, May 2007. 
Paté-Cornell, E. & Dillon, R. (2001). Probabilistic risk analysis for the NASA space shuttle: a 

brief history and current work. Reliability Engineering & System Safety, Vol. 74, No. 3, 
(Dec. 2001) pp. 345 – 352. 

Paté-Cornell, E. & Fischbeck, P.S. (1994). Risk Management for the Tiles of the Space Shuttle. 
Interfaces, Vol. 24, No. 1, (Jan. – Feb. 1994) pp. 64–86. 

Schwabacher, M. (2005). Machine learning for rocket propulsion health monitoring, 
Proceedings of the SAE World Aerospace Congress, pp. 1192–1197, Dallas, Texas, 2005. 

Schwabacher, M. & Waterman, R. (2008). Pre-launch diagnostics for launch vehicles, 
Proceedings of the IEEE Aerospace Conference, Big Sky, MT, March 2008. 

Schwabacher, M; Aguilar, R & Figueroa, F. Using Decision Trees to Detect and Isolate 
Simulated Leaks in the J-2X Rocket Engine, Proceedings of the IEEE Aerospace 

Conference, Big Sky, MT, 2009. 
Tu, H.; Allanach J.;  Singh S.; Pattipati K.R. & Willett, P. (2006). Information integration via 

hierarchical and hybrid Bayesian networks. IEEE Transactions on Systems, Man and 

Cybernetics, Part A, Vol. 36, No. 1 (Jan. 2006) pp.19–33. 
Tumer, I. (2005). Design methods and practices for fault prevention and management in 

spacecraft, Technical report, NASA Ames Research Center, 2005. 

www.intechopen.com



Aerospace Technologies Advancements

Edited by Thawar T. Arif

ISBN 978-953-7619-96-1

Hard cover, 492 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Space technology has become increasingly important after the great development and rapid progress in

information and communication technology as well as the technology of space exploration. This book deals

with the latest and most prominent research in space technology. The first part of the book (first six chapters)

deals with the algorithms and software used in information processing, communications and control of

spacecrafts. The second part (chapters 7 to 10) deals with the latest research on the space structures. The

third part (chapters 11 to 14) deals with some of the latest applications in space. The fourth part (chapters 15

and 16) deals with small satellite technologies. The fifth part (chapters 17 to 20) deals with some of the latest

applications in the field of aircrafts. The sixth part (chapters 21 to 25) outlines some recent research efforts in

different subjects. 

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rodney A. Martin, Ph.D. (2010). Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch

Shuttle Operations, Aerospace Technologies Advancements, Thawar T. Arif (Ed.), ISBN: 978-953-7619-96-1,

InTech, Available from: http://www.intechopen.com/books/aerospace-technologies-advancements/evaluation-

of-anomaly-detection-capability-for-ground-based-pre-launch-shuttle-operations



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


