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1. Introduction     

Modelling and simulation of semi-autogenous (SAG) mills are valuable tools for helping to 
design control laws for a given application and subsequently to optimise its performance 
and process control. SAG mills (see Figure 1) are presently one of the most widely used 
alternatives in the field of mineral size reduction as a result of their advantages such as 
higher processing capacity, lower physical space requirements, and lower investment and 
maintenance costs, as compared to conventional circuits (Salazar, et al., 2009). 
Due to the size of SAG mills, pilot plants are usually used for research purposes to improve 
the control strategies. In cases where a pilot-scale is not available for test, simulations using 
models based on data from a wide range of full-scale plants are helpful and can significantly 
reduce risks for process control purposes. Simulations also provide an additional and very 
valuable crosscheck against the pilot results (Morell, 2004). 
 

 

Fig. 1. Typical semi-autogenous (SAG) mills 

This chapter presents a dynamic simulator of a semi-autogenous grinding operation 
deduced from first principles coupled to an on-line parameter estimation scheme able to 
simulate industrial operations for future control purposes. The proposed procedure for 
simulation purposes is as follows: Model equations are based on a conventional non-
stationary population balance approach to develop the necessary dynamic model of the 
semi-autogenous mill operation. The presented models are able to predict the time-
evolution of key operating variables such as product flow rate, level charge, power-draw, 
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load position and others, as functions of other important variables such as mill rotational 
speed and fresh feed characteristics. The set of ordinary differential equations was solved 
using MATLAB/SIMULINK as a graphic programming platform, a useful tool for 
understanding the grinding process. 
Additionally, this work presents results using dynamic simulations from a 1700 t/h copper–
ore mill showing the effectiveness of the system to track the dynamic behaviour of the 
variables.  
The remainder of this chapter is organised as follows. Theory about specific models for SAG 
mill processes is presented in section 2. Simulations for the prescribed application are 
presented in section including the results using MATLAB/SIMULINK. The main 
conclusions of the chapter are provided in the final section, as well as ideas about future 
industrial applications of this work. 

2. Models for semi-autogenous mills 

Essentially, the modelling exercise consists in formulating non steady-state material 
balances in the milling equipment, along with force conservation relations and hydraulic 
considerations. The methodology used in this study has already been established by Magne 
(Magne et al., 1995) and Morrell (Morrell, 2004) and involves formulating particle 
inventories for each particle size inside the mill. The input variables are: water flow rate, 
mineral flow rate and size distribution, grinding media flow rate and the mill critical speed. 
The model output variables are: power-draw, load level, ball load, mineral discharge rate 
and size distribution, water discharge rate, ball throughput, bearing pressure, pebble 
throughput, and toe and shoulder angles of the internal load. 

2.1 SAG mill model 

The particles fed to the mill are ground in the milling chamber and subsequently 
downloaded into the discharge zone, where, according to a classification probability, they 
are either returned to the milling chamber for further grinding or become part of the mill 
output stream. For modelling purposes the mill is divided in two zones according to the 
process taking place (Fig. 2). The first zone encompasses the milling chamber where the 
particle reduction process is identified and modelled. In the second, the output zone, the 
material is internally classified and the final product is discharged. To complete the system 
  

 

Fig. 2. Schematic representation of a SAG mill. (1) Mill. (2) Grinding Chamber. (3) Internal 
classifier 
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description it is necessary to consider the relationship between the feed stream and mill 
charge level. This relationship is known as the transport rate and is probably the least 
developed aspect in models proposed so far (Apelt et al., 2002 a,b). 

2.2 Transport and water balance 

The fictitious flow P* (Fig. 2.) that represents the amount of mineral in the internal charge 
that is handled by the classification grate or internal classification, is the representation of 
the mineral transport proposed by Magne (Magne et al., 1995). Several experimental studies 
have found the following rather unsatisfactory correlation of P* with the mass of the mineral 
retained in the mill W:  

 * 0,5P = 29 W⋅  (1) 

Where W is in tonnes (t) and P* in t/h. 

2.3 Water balance 

The following equation represents the experimental variation of the internal water load, 
Ww(t), as a result of changes in input and output water flow rates, Fw and Pw (t/h), the latter 
being estimated by Pw = Cw· Ww (Magne et al., 1995): 

 ⋅w
a w w

dW
= F - C W

dt
 (2) 

The parameter Cw (h-1), water output, has been correlated to the mass of mineral in the mill, 
W, according to the following relation (Magne et al., 1995): 

  ( )( )( )2

wC = exp 64.41 - 19.56ln(W) + 1.55 ln W  (3) 

The proposition that the classification system always allows particles of a size less than Xm 

to pass (Fig. 3) is the basis for the development proposed by Morrell (Morrell, 2004), who, 

like Magne (Magne et al, 1995), considers that particles less than this size behave like water 

in the grinding chamber, i.e. all particles with less than a certain size pass through the grate 

with the same classification efficiency.  

 

 

Fig. 3. Classification function against particle size 
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This discharge function, constant for sizes less than Xm and defined as dm, is directly related 

to the flow of discharge of the pulp by the size of the mill, pi, and the mass of the particles in 

the internal charge of the mill, wi, according to:  

  
∑
∑

i
m

m

i
m

p

d =
w

 (4) 

In order to determine this discharge function, Morrell (Morrell, 2004) considers two effects. 

The first is the flow via grinding media interstices, and the second considers the flow via the 

slurry pool (where present). In addition, the contributions of Latchireddi (Latchireddi, 2002) 

have allowed this proposition to be studied in large-scale pilot models and to determine the 

influence of the design and the geometry of the mill pulp lifters. The results of the 

correlation between the fill level and discharge flow can be seen in the following general 

equation:  

  ηγ φ3 5 61 2 4n n nn n n
bJ = A J Q D  (5) 

Where: 
J is the net fractional slurry hold-up inside the mill; 
A is the fractional open area; 
Jb is the fractional grinding media volume; 

φ  is the fraction of critical speed; 

Q is the slurry discharge flowrate; 

γ  is the mean relative radial position of the grate holes;  

η is the coefficient of resistance, which varied depending on whether flow was via the 

grinding media interstices or the slurry pool (where present); and 

n1-n6 are the models parameters. 

The value of γ is a weighted radial position, which is expressed as a fraction of the mill 

radius and is calculated using the formula: 

  γ ∑
∑

i i

m i

r a
=

r a
 (6) 

Where ai is the open area of all holes at a radial position ri, and rm is the radius of the mill 

inside the liners. 

Latchireddi’s (Latchireddi, 2002) contribution can be seen in the parameters ni and η from 

equation (6) which shows the effect of the design of the pulp lifter. These were modeled 

according to:  

  j(-k λ)

i g in = n - k e  (7) 

Where:  

ng are the parameter values for the grate-only condition; 

λ  is the depth of the pulp lifter expressed as a fraction of mill diameter; and  

ki and kj are constants. 
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For large-scale mills, the pulp discharge flow can be determined by combining equations (4) 
and (5) as follows:  

 m

Q
d =

J
 (8) 

The calculation procedure can be transformed in an iterative numerical sequence. 
A numerical approximation of the proposal by Gupta & Yan (Gupta & Yan, 2006) shows the 
product flow (m3/h) from equation (5) as separate from the flow of the fluid through the 
zone of grinding medium (equation 9) and the flow from the pool zone (equation 10).  

  γ2,5 2 -1,38 0,5
M H H MAXQ = 6100 A J  j D      J < J     (9) 

 γ S S P MAX P MAX
2 0,5Q = 935 A J D   J = J - J , J > J

t
 (10) 

Where: 

γ  is the mean relative radial position of the grate apertures; 
A is the total area of all apertures (m2); 

φ is the fraction of the critical speed of the mill; 
D is the mill diameter (m); 
QM is the volume flow rate through the grinding media zone (m3/h); 
Qt is the volume flow rate of slurry through the pool zone, (m3/h); 
JH is the net fraction of slurry hold-up within the interstitial spaces of the grinding media; 
JS is the net fractional volume of slurry in the slurry pool; 
JMAX is the maximum net fraction of slurry in the grinding zone; and 
Jp is the net fraction of the mill volume occupied by pulp. 

2.4 Internal classification and power-draw 

For the internal classifier (Fig. 2.), the balance is carried out by defining a classification 
efficiency vector, ci (fraction), which includes two effects: one produced by the mill’s 
internal grate and the other by the pulp evacuation system (Magne et al., 1995). Thus, ci is 
defined by: 

 i
i *

i

p
1 - c =

p
 (11) 

Where:  
pi is the product flow rate from the mill and pi* is the product flow rate from the grinding 
chamber (fictitious flow). 
For each size class i, the mill chamber feed flow rate, fi* (t/h), is obtained by adding the mill 
feed flow rate, fi (t/h), to the internal recirculation flow rate (Fig. 2.): 

  * *
i i i if = f + c p  (12)  

Under experimental considerations (Magne et al., 1995) it is possible to find the following 
expression of the classification efficiency vector, where xi is the size of particle, cf is the solid 

pulp percentage and β is a parameter. 
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 ( ) ( )( )
⎛ ⎞
⎜ ⎟
⎝ ⎠

β -1 β
i i i z

i

50

1
c = ψβ x M exp -ψ x M +

x
1 +

x

 (13) 

 ( )( )ψ = − −fexp 13.12 ln c 6.61  (14) 

 ( )( )fM = exp 16.53ln c + 5.54  (15) 

For each size class i, Magne’s (Magne et al, 1995) proposed model relates the mass variation 

in the milling chamber (Fig. 2) to the feed flow rate to the grinding chamber, fi* (t/h), to the 

product flow rate from the grinding chamber, pi* (t/h), and to the comminution kinetics, as 

follows: 

  ( )
−

−
=

= − − − − ∑
i 1

* *i
i i i i i i 1 l

l 1

dw
f p K w K K w

dt
 (16) 

Where Ki (h-1) denotes the effective parameter (corresponding to Si in conventional 

grinding) and wi is the weight of size i particles in the mill charge (t).  

The effective parameter, Ki is defined as the fraction of specific power supplied to the mill: 

  = pE
i i

M
K K

W
 (17) 

Where KiE is defined as the specific grinding rate constant (t/kWh), Mp is the power-draw 

(kW) and W the total ore weight in the chamber (t). The equation used to predict the power 

consumed by the mill (power-draw), Mp, is based on a modification of Bond’s Law (Austin, 

1990): 

 ( ) − φ

⎛ ⎞ ⎡ ⎤= − ⋅ φ −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦c

2.5
p p c 9 10

W 0.1
M K D L 1 A J 1

V 2
 (18)  

Where D (m) and L (m) are the mill dimensions, V (m3) is the mill effective volume, and Kp 

and A are parameters. The ratio between the internal load mass and the mill volume, 

(W/V), is related to the percentage of mill capacity by the following equation:  

  ( ) ( ) ( )( )= − ε ρ + + ρ − ρ +b s c b b s c

W
1 J 1 w 0.6J 1 w

V
 (19)  

Where εb is the porosity of the mill internal load (void fraction), ρs (t/m3) and ρb (t/m3) are 

the density of mineral and balls respectively, wc is the mill water/mineral mass ratio, and Jb 

(fraction) is the ball weight fraction.  

Assuming that the mill chamber behaves like a perfectly mixed reactor (Whiten, 1974), pi* 

can be related to particle size i mill charge by: 

  
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

*
*

i i

P
p w

W
 (20) 
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Where P* is the contribution of the total internal flow rate to the product stream (t/h). The 

relation between P* and W can be obtained assuming that there is no recycling of fines from 

the internal classifier. This assumption simplifies the mass balance equation and allows the 

calculation of P* on the basis of the product flow rate of fine particles, pn (t/h), and the mass 

of fines in the internal charge, wn(t), as shown in equation (21): 

  
⎛ ⎞
⎜ ⎟
⎝ ⎠

* n

n

p
P = W

w
 (21) 

From equations (12), (16), and (21), the following expression is then obtained for the 

dynamic mass balance of size i particles in the milling chamber: 

  ( ) ( )
−

−
=

⎛ ⎞
= − − − − − +⎜ ⎟

⎝ ⎠
∑

* i 1
i

i i i i i i 1 l i
l 1

dw P
1 c w K w K K w f

dt W
 (22) 

As in equation (16), Morrell’s (2004) proposal for the comminution process gives a similar 

relationship as follows:  

  
=

= − + −∑
i

i
i i j j ij i i

j 1

dw
f p r w a r w

dt
 (23) 

 =i i ip d w  (24) 

Where ri is a the breakage rate of particles of size i, di is the discharge rate of particles of size 

i and aij is the breakage distribution function. 

The breakage rate function, ri, can be obtained using data fitting techniques or full-scale 

mills with the general form being as follows: 

  = + + ϕ +i i1 i2 b b i3 i 4Ln(r ) k k J D k k J  (25) 

Where Db is make-up ball size, ϕ is the mill rotational rate and ki1-i4 are constants. The 

breakage distribution function, aij, is obtained via the specific comminution energy, Ecs 

(kWh/t) and the t10 parameters estimated, used to generate a size distribution. This equation 

is: 

 ( )− ⋅= − csb E
10t A 1 e  (26) 

Where A and b are parameters of rock breakage. 
The mill power-draw studied by Morrell (Morrell, 2004) is similar to that used by Austin 

(Austin, 1990) and considers the individual power requirements for the cylindrical section 

and the conical sections. The mill power, Pm (kW), is then the sum of the net power, Pnet 

(kW) and the no load power, Pnl (kW). Thus: 

 = +m net nlP P P  (27) 

 ( )( )= φ +
0.82

2.05
nl c cone cylP 1.68D 0.667L L  (28) 
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( )
( ) ( )( )− + −φ

⎛ ⎞φ − φ − −⎜ ⎟= ρ φ − − +
⎜ ⎟φ − φ −⎝ ⎠

c

2
19.52 0.954 0.135J2.5 c c

net e s c22
c c

5.97 4.43 0.985 J
P 7.98D L J 1 1 0.954 0.135J e

5.97 4.43 0.985
 (29) 

 ( )⎛ ⎞= + −⎜ ⎟
⎝ ⎠

d
e

L
L L 1 2.28J 1 J

L
 (30) 

Where Ld (m) is the medium size of the final section of the  conical zone, and Lcone and Lcyl 
are the sizes (m) of the conical and cylindrical sections of SAG mill. 

2.5 Grinding media, bearing pressure and load position 

The mass of grinding media inside the chamber is determined by a mass balance 
considering the ball replacement rate and the metal consumption rate; this latter parameter 
is proportional to the mass of mineral in the mill (Salazar et al., 2009): 

  ( )= − χ +b
b b

dW
F W W

dt
 (31) 

Where Wb is the ball mass (t) in the mill, Fb the ball replacement rate (t/h), χ a ball wear 
constant (h-1) and W the total internal mineral load (t). 
The bearing pressure, Pb (psi) is estimated as a linear function of the total weight of the 
milling chamber (balls, water and mineral) as shown in equation (32) (Salazar et al., 2009), 

where α and λ are fitted parameters. The load position is expressed in terms of toe and 
shoulder angles, which are calculated by relations (33 to 35) (Apelt et al., 2001): 

  ( )= α + λ + +b w bP W W W  (32) 

 ( ) ( )( )− φ−φ π
θ = − − +c19.42

T 2.5307 1.2796 J 1 e
2

 (33) 

 ( ) ( )( )π π⎛ ⎞θ = − θ − + φ + − φ⎜ ⎟
⎝ ⎠

s T c c0.3386 0.1041 1.54 2.5673 J
2 2

 (34) 

 ( )φ = −0.35 3.364 J  (35) 

Where θT is the toe angle (radians), θS the shoulder angle (radians). 

3. Simulation 

3.1 SAG in Matlab-Simulink 

The numerical solution of the set of algebraic–differential equations (model) described in the 
previous section, is obtained through a system in MATLAB/SIMULINKTM (Figure 3). 
Simulink is a programming system structured in blocks, which allows the solution of 
differential equations as well as the programming of user-blocks through S-functions. This 
feature, together with the possibility of using Matlab’s specific toolboxes, makes it a powerful 
platform for the development of prototypes. The present model can be seen as a more complex 
simulation block compatible with this simulation strategy in (Salazar et al., 2009). 
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Fig. 3. SAG mill simulator in Matlab-Simulink 

3.2 Results  

An example of the simulation results is presented in Figs. 4 to 7. These figures respectively 
show the response of the power-draw and the fill level for the Magne approach (Magne et 
al., 1995) in Figures 4 and 5, and for the Morell approach (Morrell, 2004) in Figures 6 and 7. 
The results are the product of 10% flow change related to the nominal operation conditions 
(1700 t/h). 

 
Fig. 4. Magne’s model power-draw response 
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Fig. 5. Magne’s model fill level response 

 
 

 
 

 

Fig. 6. Morell’s model power-draw response 
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Fig. 7. Morell’s model fill level response 

4. Conclusion 

Advanced simulation for semi-autogenous mill systems has been presented in the context of 
a simplified models approach that incorporated developments of (Magne et al., 1995) and 
Morrell (Morrell, 2004) among the others. A main focus has also been a comparison of these 
two models. This comparison showed that both models provided good predictive capability 
of two very important process variables, power draw and fill-level, especially under the 
same simulation conditions.  
It is interesting to note that despite differences in the theoretical background for these 
approaches, the results of dynamic simulations under industrial operational conditions are 
similar. Thus, these results validate adequately the comminution process in the SAG mill, 
and in the future, these models could be combined for industrial purposes. With these 
results we believe that is possible to scale-up from pilot plant simulation and to optimise 
existing circuits for process control purposes using combinations of these models to reduce 
risks and improve performance. 
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