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1. Introduction  

In the last decade, switched systems have gained much attention since a large class of 
practical systems can be modeled as switched systems (see e.g., (Dayawansa & Martin, 
1999)) and there exist systems that cannot be asymptotically stabilized by a single 
continuous feedback control law (see e.g., (Brockett, 1983)). For stability analysis of switched 
systems, many interesting results have been proposed in the literature, see e.g., (Narendra & 
Balakrishnan, 1994; Johansson & Rantzer, 1998; Branicky, 1998; Ye et al., 1998; Dayawansa & 
Martin, 1999; Liberzon et al., 1999; Skafidas et al., 1999; Mancilla-Aguilar, 2000; and 
Chatterjee & Liberzon, 2007). Another topic is the derivation of stabilizing switching rules 
for switched systems, see et al., (Peleties & DeCarlo, 1991; Liberzon & Morse, 1999; and 
Pettersson, 2003). For feedback controller synthesis of switched control systems (with input 
signals), most of the proposed results consider the linear subsystems case, see e.g., (Daafouz 
et al., 2002; Sun & Ge, 2003; Petterson, 2004; Hespanha & Morse, 2004; and Seatzu et al., 
2006). Only a few results have been proposed for feedback controller synthesis of switched 
nonlinear control systems, see e.g., (Sun & Zhao, 2001; El-Farra et al., 2005; Wu, 2008; and 
Wu, 2009). In (El-Farra et al., 2005), an integrated synthesis of feedback controllers together 
with switching laws has been proposed. In (Sun & Zhao, 2001), a common control Lyapunov 
function (CCLF) approach has been introduced also for constructing feedback control laws 
together with switching signals for switched nonlinear control systems. The concept of 
CCLF is motivated by the control Lyapunov function approach (see, e.g., (Artstein, 1983) and 
(Sontag, 1983 and 1989)) for designing stabilizing feedback laws for (non-switched) 
nonlinear systems. In (Wu, 2008), for switched nonlinear control systems under arbitrarily 
switching, conditions for the existence of CCLFs has been derived and a globally uniformly 
asymptotically stabilizing feedback law has been proposed. However, no systematical 
approaches have been provided for constructing CCLFs. Moreover, the obtained feedback 
law is complicated. In (Wu, 2009), for switched nonlinear control systems, which arbitrarily 
switching between a set of subsystems in strict feedback form, the backstepping approach 
(see e.g., (Krstic et al., 1995) and (Sepulchre et al., 1997)) has been employed to construct 
CCLFs, and a simpler stabilizing feedback law has been proposed.  
However, till now, few results have been reported in the literature about stabilizing 
feedback controllers design for state-dependent switched nonlinear control systems. The 
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purpose of this chapter is to give a constructive approach for this problem. The state space is 
partitioned, by a set of switching surfaces, into several operation regions. In each of these 
regions, a nonlinear dynamical system (in feedback linearizable form) is given. Whenever 
the state trajectory passes a switching surface, a new dynamical model dominates the 
system’s behavior. That is, the switching signal is state-dependent and predetermined. For 
the stability analysis of state-dependent switched systems, a common Lyapunov function for 
all subsystems is easier to develop but too conservative, see e.g., (Liberzon, 2003). It is 
known that the multiple Lyapunov function approach is a less conservative method. Based on 
the concepts of multiple Lyapunov functions and control Lyapunov functions, this chapter 
introduces a switched control Lyapunov function (SCLF) approach for designing stabilizing 
feedback controllers for state-dependent switched nonlinear control systems. It should be 
emphasized that the derivation of CCLFs or SCLFs for switched nonlinear control systems is 
an open problem unless the systems are in some particular form. Therefore, in this chapter 
we restrict our attention to switched nonlinear systems in feedback linearizable form for the 
reason that, in this case, SCLFs can be chosen as piecewise quadratic form and can be 
obtained by solving bilinear matrix inequalities (BMIs) with equality constraints. Although 
the considered systems are in feedback linearizable form, we do not use the feedback 
linearization technique in the design procedure. We show that the considered stabilization 
problem for switched nonlinear control systems can be solved by directly solving a matrix 
problem. We will show that an explicit stabilizing switched feedback law, based on the 
Sontag’s formula (see (Sontag, 1989)), can be easily derived once a SCLF has been obtained.  

NOTATIONS: That BA \  is the set of all elements which belong to set A but not belong to 
set B; BA  is the union of sets A and B; BA  is the intersection of sets A and B; clA is the 
closure of set A; A  is the boundary of set A; IntA  is the interior of set A (i.e., 

AclAIntA \ ); 0P  ( 0P ) means that the matrix P is positive (negative) definite; 0P  
( 0P ) means that the matrix P is positive (negative) semidefinite;  denotes an empty set; 
  means “for all”. 

 
2. Problem Formulation and Preliminaries 

The intension of this section is to present some preliminaries and to explicitly formulate the 
problem to be solved.  

 
2.1 Switched nonlinear control systems 
In this chapter we are focused on switched nonlinear systems with input signals: 

uxgBxfCxAx xxxxx )()( )()()()()(   , },...,{)( qx 1    (1) 

where nRx  is the system state, mRu  is the control input, nn
i RA  , sn

i RC  , 
mn

i RB  , i=1,…,q, are constant matrices, },...,{: qRn 1  is a predetermined state-
dependent switching signal, and s

i Rxf )(  and mm
i Rxg )( , i=1,…,q, are locally Lipchitz 

functions. Suppose that 00 )(f i , )(xgi  is nonsingular for all ix  . Suppose also that 
 

)()( T
i

T
i BNCN   for each },...,{ qi 1 .   (2) 

 

Define the index set },...,{ qIS 1 . Associated with the considered switched control system 
(1), a family of subsystems is defined: 

uxgBxfCxAx iiiii )()(  , SIi .             (3) 

By (2), it can be seen that the subsystems in (3) are feedback linearizable (see Khalil, 1996).  

 
2.2 State space partition 
Specially in this chapter, the state space is partitioned into q regions i , i=1,…,q, given by 
quadratic forms: 

 0n T
i ix R x Q x    , i=1,…,q,         (4) 

for some symmetric matrices nn
i RQ  , i=1,…,q. Let  ji IntInt  if ji  , and 

n
q R 1 . That is, the overlap between two adjacent regions is the boundary 

between these two regions. The i-th subsystem of (3) can be active only in part of the state 
space, specified by region i . Define the adjacent index set  

  }{\},{ 0jiSSA IIjiI .            (5) 

That is, if AIji },{ , then i  and j  are adjacent regions and thus a switching region ijS  is 
defined:  

 0 xQQxRxS ji
Tn

ij )(       (6) 

In fact, jiijS  . Switches of the i-th subsystem into the j-th subsystem (or, switches of 
the j-th subsystem into the i-th subsystem) can occur only in the region ijS . Note that in 
(Pettersson, 2004), for switched linear systems, the partition of state space is determined by 
the designer. That is, iQ , i=1,…,q, are parameters to be determined. But in this chapter, we 
consider the case that they are predetermined. 

 
2.3 Switching rule 

In this chapter, we consider the case that the switching signal is state-dependent and is 
given by: 

itx ))(( , if iInttx )( , or itx )(   and itx  ))(( .  (7) 

By (7), the switching signal )(x  changes it value only if the state trajectory leaves one of 
the regions i , i=1,…,q. It holds constant value if the state trajectory keeps within a 
particular region (including its boundary). 

 
2.4 Problem formulation 
The goal of this chapter is to construct a state feedback law 
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)()( xhu x                   (8) 

to globally asymptotically stabilize the switched control system (1). That is, we want to find 
a feedback law (8) such that the closed-loop system 

)()()( )()()()()()( xhxgBxfCxAx xxxxxx    

     

(9) 

becomes globally asymptotically stable under the switching rule (7).  

 
2.5 Multiple Lyapunov functions 
As stated in (Liberzon, 2003), common Lyapunov function approach will be too conservative 
for stability analysis of state-dependent switched systems. The multiple Lyapunov function 
approach will be less conservative. Here we briefly review the concept of multiple Lyapunov 
functions.  
To analyze the stability of state-dependent switched system (9), for each SIi , we first find 
a Lyapunov-like function )(xVi , which vanishes at the origin and is positive for all 

}{\ 0ix  , for the i-th subsystem of (9). System (9) is stable if, for each SIi , the values of 
)(xVi  at every switching instants, when we enter (switch into) the i-th subsystem, form a 

monotonically decreasing sequence.  
 
However, using the multiple Lyapunov function approach in practically analyzing stability is 
difficult since, for verifying the monotonically decreasing property, one must have some 
information about the solutions of the switched systems (Liberzon, 2003). That is, one needs 
to know the values of suitable Lyapunov-like functions at switching times, which in general 
requires the knowledge of the state at these times. This is to be contrasted with the classical 
Lyapunov stability results, which do not require the knowledge of solutions, see (Liberzon, 
2003). To simply the analysis procedure, an additional assumption that the multiple Lyapunov 
function is continuous on the boundaries between regions (i.e., switching surfaces) can be 
introduced. This assumption is conservative but leads to a simpler condition for verifying 
stability.  

 
2.6 Switched control Lyapunov functions 
Multiple Lyapunov function approach can be used to determine the stability of switched 
systems without input signals. However, it cannot tell us how to find a stabilizing feedback 
law (8) for the switched control system (1). Here we introduce the switched control Lyapunov 
function (SCLF) for feedback controller synthesis.  
Definition 1: A switched function )()( )( xVxV x , which is differentiable in iInt , for all 

SIi , and continuous on ijS , for all AIji },{ , is a SCLF of (1) if,  

00 )(V        (10) 

0)(xV , }{\ 0nRx     (11) 
)(xV , as x     (12) 

 

and, along each possible nonzero solution of (1), a control signal u exists such that )(xV  
monotonically decreases.        ■ 

Similar to the statement about multiple Lyapunov function in the previous subsection, for 
simplifying the design procedure, we make the assumption that the SCLF is continuous 
everywhere. By Definition 1, if we can find a SCLF for the switched system (1), then for each 
solution of (1) we can derive a control signal u such that SCLF monotonically decreases. The 
next problems are how to derive SCLFs for (1) and how to develop stabilizing feedback 
controllers by the obtained SCLF. 

 
3. Stabilizing Controller Synthesis 

In this section we propose the main results, a sufficient condition for the existence of SCLFs 
for (1) and a stabilizing feedback law derived by the obtained SCLF.  
We first define the regional control Lyapunov functions (RCLFs) for the subsystems in (3), 
which will be used to construct SCLFs for (1).  
Definition 2: A differentiable function )(xVi  is a i -RCLF for the i-th subsystem of (3) if,  

00 )(iV         (13) 
0)(xVi , }{\ 0ix                                   (14) 

)(xVi , as ix   and x                                          (15) 

and 

  0





uxgBxfCxA
x

xV
iiiii

i

Ru m
)()(

)(
inf , }{\ 0ix    (16) 

        ■ 

Define 

 )(
)(

)( xfCxA
x

xV
xa iii

i
i 




                  (17) 

and  

             )(
)(

)( xgB
x

xV
xb ii

i
i 


 .          (18) 

By Definition 2, a differentiable function Vi(x), satisfying (13)-(15), is a i -RCLF for the i-th 
subsystem if 

}{\ 0ix  , 00  )()( xaxb ii .         (19) 

Notice that if we can find a i -RCLF, )(xVi , for the i-th subsystem, then for all  }{\ 0ix   
we can derive an u such that 0 uxbxa ii )()( .  
Now we recall the S-procedure and the Finsler’s lemma which will be used latter for 
deriving conditions for the existence of RCLFs. 

www.intechopen.com



Controller Synthesis for a Class of State-Dependent Switched Nonlinear Systems 55

 

)()( xhu x                   (8) 

to globally asymptotically stabilize the switched control system (1). That is, we want to find 
a feedback law (8) such that the closed-loop system 

)()()( )()()()()()( xhxgBxfCxAx xxxxxx    

     

(9) 

becomes globally asymptotically stable under the switching rule (7).  

 
2.5 Multiple Lyapunov functions 
As stated in (Liberzon, 2003), common Lyapunov function approach will be too conservative 
for stability analysis of state-dependent switched systems. The multiple Lyapunov function 
approach will be less conservative. Here we briefly review the concept of multiple Lyapunov 
functions.  
To analyze the stability of state-dependent switched system (9), for each SIi , we first find 
a Lyapunov-like function )(xVi , which vanishes at the origin and is positive for all 

}{\ 0ix  , for the i-th subsystem of (9). System (9) is stable if, for each SIi , the values of 
)(xVi  at every switching instants, when we enter (switch into) the i-th subsystem, form a 

monotonically decreasing sequence.  
 
However, using the multiple Lyapunov function approach in practically analyzing stability is 
difficult since, for verifying the monotonically decreasing property, one must have some 
information about the solutions of the switched systems (Liberzon, 2003). That is, one needs 
to know the values of suitable Lyapunov-like functions at switching times, which in general 
requires the knowledge of the state at these times. This is to be contrasted with the classical 
Lyapunov stability results, which do not require the knowledge of solutions, see (Liberzon, 
2003). To simply the analysis procedure, an additional assumption that the multiple Lyapunov 
function is continuous on the boundaries between regions (i.e., switching surfaces) can be 
introduced. This assumption is conservative but leads to a simpler condition for verifying 
stability.  

 
2.6 Switched control Lyapunov functions 
Multiple Lyapunov function approach can be used to determine the stability of switched 
systems without input signals. However, it cannot tell us how to find a stabilizing feedback 
law (8) for the switched control system (1). Here we introduce the switched control Lyapunov 
function (SCLF) for feedback controller synthesis.  
Definition 1: A switched function )()( )( xVxV x , which is differentiable in iInt , for all 

SIi , and continuous on ijS , for all AIji },{ , is a SCLF of (1) if,  

00 )(V        (10) 

0)(xV , }{\ 0nRx     (11) 
)(xV , as x     (12) 

 

and, along each possible nonzero solution of (1), a control signal u exists such that )(xV  
monotonically decreases.        ■ 

Similar to the statement about multiple Lyapunov function in the previous subsection, for 
simplifying the design procedure, we make the assumption that the SCLF is continuous 
everywhere. By Definition 1, if we can find a SCLF for the switched system (1), then for each 
solution of (1) we can derive a control signal u such that SCLF monotonically decreases. The 
next problems are how to derive SCLFs for (1) and how to develop stabilizing feedback 
controllers by the obtained SCLF. 

 
3. Stabilizing Controller Synthesis 

In this section we propose the main results, a sufficient condition for the existence of SCLFs 
for (1) and a stabilizing feedback law derived by the obtained SCLF.  
We first define the regional control Lyapunov functions (RCLFs) for the subsystems in (3), 
which will be used to construct SCLFs for (1).  
Definition 2: A differentiable function )(xVi  is a i -RCLF for the i-th subsystem of (3) if,  

00 )(iV         (13) 
0)(xVi , }{\ 0ix                                   (14) 

)(xVi , as ix   and x                                          (15) 

and 

  0





uxgBxfCxA
x

xV
iiiii

i

Ru m
)()(

)(
inf , }{\ 0ix    (16) 

        ■ 

Define 

 )(
)(

)( xfCxA
x

xV
xa iii

i
i 




                  (17) 

and  

             )(
)(

)( xgB
x

xV
xb ii

i
i 


 .          (18) 

By Definition 2, a differentiable function Vi(x), satisfying (13)-(15), is a i -RCLF for the i-th 
subsystem if 

}{\ 0ix  , 00  )()( xaxb ii .         (19) 

Notice that if we can find a i -RCLF, )(xVi , for the i-th subsystem, then for all  }{\ 0ix   
we can derive an u such that 0 uxbxa ii )()( .  
Now we recall the S-procedure and the Finsler’s lemma which will be used latter for 
deriving conditions for the existence of RCLFs. 

www.intechopen.com



Switched Systems56

 

Lemma 1 (S-procedure) (Boyd et al., 1994): Let nnRP   and nnRQ   be symmetry. Then 

0PxxT  for all 0x  satisfies 0QxxT  

if there exists a scalar 0  such that  

0 QP  .      ■ 

Lemma 2 (Finsler’s Lemma) (Boyd et al., 1994): Consider a symmetric matrix nnRP   and a 
matrix mnRN  , with rank(N)<n. The following statements are equivalent: 
  1) 0PxxT  0x  such that 0xN T  
  2) R  such that 0 TNNP   
  3) nmRL   such that 0 NLNLP TT .    ■ 

By the particular structure of the switched control system (1), RCLFs of the subsystems in (3) 
can be chosen as quadratic form and then can be obtained by solving bilinear matrix 
inequalities (BMIs). From Definition 2, a quadratic function xPxxV i

T
i )( , with 

nnT
ii RPP  , is a i -RCLF for the i-th subsystem of (3) if 

0xPx i
T  for all 0x  such that 0xQx i

T    (20) 

and 

  0


uxgBPxxfCxAPx iii
T

iiii
T

Ru m
)()(inf , for all 0x  such that 0xQx i

T  (21) 

We have the following result.  

Theorem 1: There exists a quadratic i -RCLF for the i-th subsystem of (3) if there exist 

scalars 0i  and 0i , and matrices nm
i RL   and nnT

ii RPP   satisfy the following 
bilinear matrix inequalities: 

0 iii QP      (22) 

0 iiii
T
i

T
iiiiii

T
i LBPPBLQAPPA     (23) 

In this case, the quadratic function xPxxV i
T

i )(  is a i -RCLF for the i-th subsystem of (3). 
Proof: From (20), (22) and Lemma 1, it is clear that 0)(xVi  for all }{\ 0ix  . Notice that  

)()(
)(

)( xgBPxxgB
x

xV
xb iii

T
ii

i
i 2




             (24) 

and  

 

  )()(
)(

)( xfCPxxAPxxfCxA
x

xV
xa iii

T
ii

T
iii

i
i 22 




                 (25) 

For }{\ 0ix   such that 0)(xbi , we have )( T
ii BNxP   since )(xg i  is nonsingular. Then, 

)( T
ii CNxP   by (2) and therefore 0)(xfCPx iii

T . From (23), for }{\ 0ix   satisfying 
0)(xbi , we have 

)()( xfCPxxAPxxa iii
T

ii
T

i 22   

 xAPx ii
T2  

 xLBPPBLQx iiii
T
i

T
iii

T )(    

 xQx i
T

i  
 0  

This proves the result by noting (19).      ■ 

It should be noted that, by the conditions in Theorem 1, xPxxV i
T

i )(  is not a classical 
control Lyapunov function for the i-th subsystem. This is obvious since the solution iP  may 
not be positive definite. 
By solving (22) and (23) for all SIi , if all the subsystems in (3) have their RCLFs, 

PxxxV T
i )( , i=1,…,q, one might think that the switched function )()( xV x  is a SCLF for 

switched control system (1). However, this is not true since these RCLFs in general have 
different values on the switching surfaces. That is, )()( xV x  will be discontinuous on the 
switching surfaces. If we use )()( xV x  as a control Lyapunov function for (1), we can find 
control signal u such that )()( xV x  decreases between sequel switching times. However, 

)()( xV x  may increase at the switching instants (i.e., as the trajectories of (1) pass through 
the switching surfaces). In this case, the design of stabilizing feedback laws is difficult. To 
simply the design procedure, an additional continuity requirement is included for SCLFs. In 
the next theorem we introduce additional constraints in solving the matrix inequalities to 
guarantee the continuity of SCLFs on the switching surfaces. Moreover, a stabilizing 
feedback controller is given provided that a SCLF is obtained. 
Theorem 2: There exists a piecewise quadratic SCLF for the switched control system (1) if 
there exist scalars 0i  and 0i , and matrices  nm

i RL   and nnT
ii RPP  , i=1,2,…,q, 

and scalars ij , for all AIji },{ , satisfy the following matrix inequalities and equalities: 

0 iii QP  , i=1,2,…,q,             (26) 

0 iiii
T
i

T
iiiiii

T
i LBPPBLQAPPA  , i=1,2,…,q,  (27) 

)( jiijji QQPP   , for all AIji },{ .   (28) 

In this case, the function xPxxV x
T

x )()( )(    is a SCLF for (1). In addition,  
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This proves the result by noting (19).      ■ 
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is an asymptotically stabilizing feedback law for (1) under the switching rule (7). 
Proof: By (28) it is clear that xPxxPx j
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continuous in all state space. By Definition 1 and Theorem 1 and noting (26) and (27), it is 
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(and ixσ )( ) such that 0)(xbi , we have 

.
)(

)()()(
)()()()()(

0               
              
              








xa
xhxbxa

uxbxaxVxV

i

iii

iiix




 

Moreover, if }{\ 0ix   (and ixσ )( ) such that 0)(xbi , then 

 
.

)()()(

)()()(
)()()()()(

0              
              

              
22









xbxbxak

xhxbxa
uxbxaxVxV

T
iii

iii

iiix




 

That is, if no sliding motions occur on the switching surfaces, the closed-loop system is 
asymptotically stable since 0 )()( xV x

  0x  (notice that the index set SI  is countable).  
In the case that sliding motion occurs, we need to prove the stability of sliding motion. If a 
sliding motion occurs on ijS  for some AIji },{ , first suppose that )()( xVxV ji   for ix   
and )()( xVxV ji   for jx   in a neighbourhood of ijS . The existence of a sliding mode on 

ijS  is characterized by the inequalities 
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Since a sliding motion occurs on ijS ,   is not uniquely defined on ijS . So let ix )(  
without loss of generality (Liberzon, 2003). Along the corresponding Filippov solution, by 
(32), we have (for ),( 10 ) 
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0 , if 0x . 

That is, )(xVi  monotonically decreases along the corresponding Filippov solution. Similarly, 
if )()( xVxV ji   for ix   and )()( xVxV ji   for jx   in a neighbourhood of ijS , we can 

show that 0)(xV j
  along the corresponding Filippov solution. This implies that the 

switched closed-loop system is still asymptotically stable even if sliding motions occur on 
the switching surfaces.          ■ 
 
The formula in (30) is from the well known Sontag’s formula (Sontag, 1989). We can also 
construct the feedback law by the Freeman’s formula, see (Krstic et al., 1995).  
 
Remark 1: In the case that the partition of state space is not predetermined and the switching 
signal is also a design parameter, by the covering property (Pettersson, 2004), some 
additional matrix inequalities must be included together with (26)-(28) to guarantee the 
existence of feedback controllers and switching laws for stabilizing the switched control 
systems.          ■ 

 
4. An Illustrative Example 

Consider the switched nonlinear control system  
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with the following system parameters: 
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The state space is partitioned as 21
2 R , where 
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is a stabilizing feedback controller for (33) under the switching rule (34).  
 
Fig. 1 shows the state trajectories of the closed-loop switched system starting from several 
different initial conditions with 010.k . Notice that sliding motions occur.  
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Fig. 1. State trajectories of the closed-loop switched system with k=0.01. 

 
5. Conclusion 

In this chapter, based on the use of switched control Lyapunov function approach, it has 
been shown that the design of stabilizing feedback laws for state-dependent nonlinear 
control systems in feedback linearizable form can be achieved by solving matrix problems. 
An example is given to illustrate the success of the method. However, solving the resultant 
bilinear matrix inequalities with equality constraints is not easy. 
Further research topics include the development of feasible and efficient algorithms for 
solving the resultant matrix problem, the extension of the proposed approach to nonlinear 
control systems in some more general forms, and the search of stabilizing feedback laws to 
guarantee the non-existence of sliding motions.  
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