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Abstract

In this chapter, a methodology for robust adaptive control design for a class of switched non-
linear systems is developed. Under extensions of typical adaptive control assumptions, a
leakage-type adaptive control scheme guarantees stability for systems with bounded distur-
bances and parameters without requiring a priori knowledge on such parameters or distur-
bances. The problem reduces to an analysis of an exponentially stable and input-to-state sta-
ble (ISS) system driven by piecewise continuous and impulsive inputs due to plant parameter
switching and variation. As a result, a separation between robust stability and robust perfor-
mance and clear guidelines for performance optimization via ISS bounds are obtained. The
results are demonstrated through example simulations, which follow the developed theory
and demonstrate superior robustness of stability and performance relative to non-adaptive
and other adaptive methods such as projection and deadzone adaptive controllers.

1. Introduction

Switched and hybrid systems have been gaining considerable interest in both research and in-
dustrial control communities. This is motivated by the need for systematic and formal meth-
ods to control such systems. These issues arise in systems with discrete changes in energy
exchange elements due to intermittent interaction with other systems or with an environment
or due to the nature of their constitutive relations. This is common in robotic and mechatronic
systems with contact and impact effects, fluidic systems with valves or phase changes, and
electrical circuits with switches.
Despite numerous interesting publications on hybrid systems, there is a lack of constructive
methods for control of a nontrivial class of switched systems with a priori stability and per-
formance guarantees due to the difficulty of this problem. In terms of stability and response
of switched systems, several results have been obtained in recent years, see (10; 2; 25) and
references therein. In this context, sufficient conditions for stability such as common Lya-
punov functions and average dwell time (10) are the most commonly studied approaches.
A corresponding control design requires switching controller gains such that all subsystems
are made stable and such that a common Lyapunov function condition is satisfied, which for
LTI systems requires system matrices to commute or be symmetric, see (17; 18) for more ex-
plicit results. In order to verify that such a condition is met, the system is partitioned into
known subsystems and a set of linear matrix inequalities, of increasing order with the num-
ber of subsystems, is solved if a solution is feasible. The other class of results requires that
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all subsystems are stable (or with some known briefly visited unstable modes) and switching
is slow enough on average, average dwell time condition (10). The corresponding controller de-
sign requires gains to be adjusted to guarantee the stability of each frozen configuration and
knowledge of worst case decay rate among subsystems and condition number of Lyapunov
matrices in order to compute the maximum admissible switching speed. If plant switching
exceeds this switching speed then stability can no longer be guaranteed. Analogous analysis
results have been extended for systems with disturbances (22) and with some uncertainties
(23) as well as related work for linear-parameter varying (LPV) systems in (20; 12). Thus,
there is a need for more explicit methods that can be constructively used to design controllers
for stable switched systems independent of the success of heuristics or feasibility of complex
computational methods.
Adaptive control is another popular approach to deal with system uncertainty. The problem
with conventional adaptive controllers is that the transient performance is not characterized
and stability with respect to bounded parameter variations or disturbances is not guaran-
teed. Robust adaptive controllers, (6), developed to address the presence of disturbances and
non-parametric uncertainties, are typically based on projection, switching-sigma or deadzone
adaptation laws that require a priori known bounds on parameters, and in some cases dis-
turbances as well, in order to ensure state boundedness. Extensions to some classes of time
varying systems have been developed in (13; 14; 15; 24). However, the results are restricted to
smoothly varying parameters with known bounds and typically require additional restrictive
conditions such as slowly varying unknown parameters (24) or constant and known input
vector parameters (14), in order to ensure state boundedness. In this case, such a conclusion
is of very little practical importance if the error can not be reduced to an acceptable level by
increasing the adaptation or feedback gains or using a better nominal estimate of the plant
parameters. Furthermore, performance with respect to rejection of disturbances as well as the
transient response remain primarily unknown.
However, a leakage-type modification as will be shown in this chapter, achieves internal expo-
nential stability and input-to-state stability (ISS), for the class of systems under consideration,
without need for persistence of excitation as required in (6). In this regard, projection and
switching-sigma modifications have been favored over fixed-sigma modifications, (6) due to
its inability to achieve zero steady-state tracking when parameters are constant and distur-
bances vanish. However, this is a situation of no interest to this paper since the focus is on
time varying switching systems. The developed control methodology, which is a general-
ization of fixed-sigma modification, yields strong robustness to time varying and switching
parameters without requiring a priori known bounds on such parameters, as typically needed
in projection and switching-sigma modifications.
In this chapter, the development and formulation of an adaptive control methodology for a
class of switched nonlinear systems is presented. Under extensions of typical adaptive control
assumptions, a leakage-type adaptive control scheme is developed for systems with piecewise
differentiable bounded parameters and piecewise continuous bounded disturbances without
requiring a priori knowledge on such parameters or disturbances. This yields a separation
between robust stability and robust performance and clear guidelines for performance opti-
mization via ISS bounds.
The remainder of the chapter is organized as follows. Section 2 presents the basic adaptive
controller methodology. Analysis of the performance of the control system along with design
guidelines is discussed in Section 3. Section 4 gives an example simulation demonstrating
the key characteristics of the control system as well as comparing it with other non-adaptive
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and adaptive techniques such as projection and dead-zone. Conclusions are given in Section
5. In this chapter, λ(.) and λ(.) denote the maximal and minimal eigenvalues of a symmetric
matrix, ∥.∥ the euclidian norm, and diag(., ., . . .) denotes a block diagonal matrix.

2. Methodology

2.1 Parameterized Switched Systems

A hybrid switched system is a system that switches between different vector fields in a differ-
ential equation (or a difference equation) each active during a period of time. In this chapter
we consider feedback control of continuous-time switched time varying systems described
by:

ẋ(t) = fi(x, t,u,d), ti−1 ≤ t < ti

y(t) = hi(x, t), ti−1 ≤ t < ti

i(t)+ = g(i(t), x, t) (1)

where x is the continuous state, d is for disturbances, u is the control input and y is measured
output. Furthermore, i(t) ∈ {1,2,3 . . .} is a piecewise constant signal with i denoting the ith

switched subsystem active during a time interval [ti−1, ti), where ti is the ith switching time.
The signal i(t), usually referred to as the switching function, is the discrete state of this hybrid
system. The discrete state is governed by the discrete dynamics of g(i(t), x, t), which sees the
continuous state x as an input. This means switching may be triggered by a time event or a
state event, e.g. x reaching certain threshold values, or even memory, i.e, past values for i(t).
on state only implicitly with enforced
In this chapter, we view a switching system as one parameterized by a time varying vector of
parameters, which is piecewise differentiable, see Equation (2). This is a reasonable represen-
tation since it captures many physical systems that undergo switching dynamics, thus we will
focus on such systems described by:

ẋ = f (x, a,u,d)

y = h(x, a)

a(t) = ai(t), ti−1 ≤ t < ti, i = 1,2, . . .

i(t)+ = g(i(t), x, t) (2)

Therefore, we embed the switching behavior in the piecewise changes in a(t), which again
may be triggered by state or time driven events. ai(t) ∈ C1, i.e., at least one time continuously
differentiable. This means a(t) is piecewise continuous, with a well defined bounded deriva-
tive everywhere except at points ti where ȧ = d a/dt consists of dirac-delta functions. Also the
points of discontinuity of a, which are distinct and form an infinitely countable set, are sepa-
rated by a nonzero dwell time, i.e., there are no Zeno phenomena (11; 21). This is a reasonable
assumption since this is how most physical systems behave. The main assumptions on the
class of systems under consideration are formally stated below:

Assumption 1

For a switched system given by Equation (2) the set of switches associated with a switching sequence
{(ti, ai)} is infinitely countable and ∃ a scalar µ > 0 such that ti − ti−1 ≥ µ ∀ i.

Assumption 2 d ∈ R
k is uniformly bounded and piecewise continuous.
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Assumption 3 a ∈ �a is uniformly bounded and piecewise differentiable, where the set �a is an ad-
missible, but not necessarily known, set of parameters.

Note that by allowing piecewise changes in a the parametrization allows structural changes
in the system if we overparametrize such that all possible structural terms are included. Then
some parameters may switch to or from the value of zero as structural changes take place in
the system.

2.2 Robust Adaptive Control

In this section, we discuss the basic methodology based on observation of the general struc-
ture of the adaptive control problem. In standard adaptive control for linearly-parameterized
systems we usually have control and adaptation laws of the form:

u = g(xm, â, ˙̂a,yr, t)

˙̂a = fa(xm, â,yr, t) (3)

where u is the control signal, â is an estimate of plant parameter vector a ∈ Sa, where Sa is
an admissible set of parameters, xm is measured state variables, and yr is a desired reference
trajectory to be followed. This yields the following closed loop error dynamics :

ėc = fe(ec, ã, t) + d(t)

˙̃a = fa(ec, â, t)− ȧ (4)

where ec represents a generalized tracking error vector, which includes state estimation error
in general output feedback problems and can depend nonlinearly on the plant states as in
backstepping designs, ã = â − a is parameter estimation error, and d is the disturbance.
In standard adaptive control we typically design the control and adaptation laws, Equation
(3), such that ∀ a ∈ Sa we have:

eT
c P fe + ãT

Γ(t)−1 fa ≤ −eT
c Cec (5)

where matrices P > 0 and C > 0 are chosen depending on the particular algorithm, e.g. choice
of reference model and the diagonal matrix Γ(t)−1 = diag(Γ−1

o ,γ−1
ρ ∣b(t)∣)> 0 is an equivalent

generalized adaptation gain matrix, where diagonal matrix Γo > 0 and scalar γρ > 0 are the
actual adaptation gains used in the adaptation laws. Whereas, b(t) is a scalar plant parameter,
usually the high frequency gain, which appears in Γ in some adaptive designs. The following
additional assumption is made for b(t):

Assumption 4 b(t) is an unknown scalar function such that b(t) ∕= 0 ∀t, and sign of b(t) is known
and constant.

This is sufficient to stabilize the system with constant parameters and no disturbances. How-
ever, since the error dynamics is not ISS stable, stability is no longer guaranteed in the pres-
ence of bounded inputs such as d and ȧ. In order to deal with time varying and switching
dynamics, a modification to the adaptation law will be pursued.
Now consider the following modified adaptation law:

˙̂a = fa(ec, â, t)− L(â − a∗) (6)
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with the diagonal matrix L = diag(Lo, Lρ) > 0 and a∗(t) is an arbitrarily chosen piecewise
continuous bounded vector, which is an additional estimate of the plant parameter vector.
Then the same system in Equation (4) with the modified adaptation law becomes:

ėc = fe(ec, ã, t) + d(t)

˙̃a = fa(ec, â, t)− Lã + L(a∗ − a)− ȧ (7)

The modified adaptation law shown above is similar to leakage adaptive laws (6), which have
been used to improve robustness with respect to unstructured uncertainties. The leakage
adaptation law, also known as fixed-sigma, uses Lo = σ Γo, where σ > 0 is a scalar and the
vector a∗(t) above is usually not included or is a constant. In fact, the key contribution from
the generalization presented here is not in the algebraic difference relative to leakage adaptive
laws (6) but rather in how the algorithm is utilized and proven to achieve new properties for
control of rapidly varying and switching systems. In particular, internal exponential and ISS
stability of the closed loop system using this leakage-type adaptive controller, without need
for persistence of excitation as required in (6), is shown and used to guarantee stability of the
state xc = [eT

c , ãT ]T , see Theorem 1 below.

Theorem 1 If there exits matrices P,Γo,γρ,C > 0 such that (5) is satisfied for ȧ = d = 0 with

Γ(t)−1 = diag(Γ−1
o ,γ−1

ρ ∣b(t)∣) > 0 and Assumption 2.4 is satisfied then the system given by
Equation (7) with d, ȧ ∕= 0 and diagonal L > 0 is :
(i) Uniformly internally exponentially stable and ISS stable.
(ii) If Assumptions (2.1-2.3) are satisfied and a∗(t) is chosen as a piecewise continuous bounded vector
then state xc = [eT

c , ãT ]T is bounded with

∥ec(t)∥ ≤ c1∥xc(to)∥e−α(t−to) + c2

∫ t

to

eα(τ−t)∥v(τ)∥dτ

where c1, c2 are constants, α = λ̄(diag(P−1C, L)), and v = [P1/2d,Γ−1/2(L(a∗ − a)− ȧ)]T .

The proof of this result is found in Appendix A.

2.3 Remarks

This section presents some remarks summarizing the implications of this result.

∙ The effect of plant variation and uncertainty is reduced to inputs L(a∗ − a) and ȧ acting
on this ISS closed loop system. This, in turn, provides a separation between the robust
stability and robust performance control problems.

∙ The modified adaptation law is a slightly more general version of the leakage modifica-
tion, also known as fixed-sigma, (6), where L = σ Γ, where σ > 0 is a scalar and the vector
a∗(t) above is usually not included or is a constant. This is a robust adaptive control
method that has been less popular than projection and switching-sigma modifications
due to its inability to achieve zero steady-state tracking when parameters are constant
and disturbances vanish. However, this approach yields stronger stability and perfor-
mance robustness for time varying switching systems for which the constant parameter
case is irrelevant.

∙ Plant parameter switching no longer affects internal dynamics and stability but enters
as a step change in input L(a∗ − a) and an impulse in input ȧ at the switching instant.
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∙ Controller switching of a∗ does not affect internal dynamics but enters as a step change
in input L(a∗ − a), which is a very powerful feature that can be used to utilize available
information about the system.

∙ Allowed arbitrary time variation and switching in the parameter vector a are for a plant
within the admissible set of parameters Sa. This set has not been defined here and will
be defined later via design assumptions for the classes of systems of interest.

∙ The authors believe that the use of this robust adaptive controller is useful for switched
systems even in the switched linear uncertainty free plant case, where stability with
switched linear feedback is difficult to guarantee based on currently available tools
(switching between stable LTI closed loop subsystems does not preserve stability). In
this case, knowledge of the switching plant parameter vector a(t) can be used in a ∗ (t).

3. Performance of the Control System

In this section, the tracking performance of the obtained control system is discussed.

3.1 Dynamic Response

Exponential stability allows for shaping the transient response, e.g. settling time, and fre-
quency response of the system to low/high frequency dynamics and inputs by adjusting the
decay rate α, see Theorem 1. This is to be done independent of the parametric uncertainty
a∗ − a, which is contrasted to LTI feedback where closed loop poles change with parametric
uncertainty. Thus the response to step and impulse inputs is as we expect for such an exponen-
tially stable system. However, in this case such inputs will not arise from only disturbances
but also from parameters and their variation. In particular, switches in parameters a(t) yields
step changes in a and impulses in ȧ(t). Furthermore, the system display the frequency re-
sponse characteristics such as in-bandwidth input, disturbances and parametric uncertainty
and variations, rejection and more importantly attenuation of high frequency inputs due to
roll-off.

3.2 Improving Tracking Error

Since stability and dynamic response of the system to different inputs and uncertainties have
been established independent of uncertainty, we are now left with optimizing the control pa-
rameters and gains a∗, L, Γ, P, and C for minimal tracking error. Different methods for im-
proving tracking error are described below with reference to the bound in Theorem 1:

1. Increasing the system input-output gain α = λ(diag(P−1C, L)), which as discussed earlier,
acts on the overall input uncertainty v. This attenuation, however, increases the sys-
tem bandwidth, which suggests its use primarily for low/high bandwidth disturbances
along the line of frequency response analysis of last section.

2. Increasing adaptation gain Γ, which has the effect of attenuating parametric uncertainty
and variation independent of system bandwidth (Recall that α is independent of Γ from
Theorem 1). This is the case since the size of the input v is reduced by reducing the
component Γ

−1/2(L(a∗ − a)− ȧ). Note that a very large Γ has the effect of amplifying
measurement noise, which can be seen from the adaptation law.

3. Using a small gain Γ
−1/2L, which is an agreement with increasing adaptation gain matrix

Γ mentioned above. However, this differs by the fact that this can be also achieved
by simply reducing the size of L. Furthermore, using Γ

−1/2L is effective mainly for

www.intechopen.com



Robust Adaptive Control of Switched Systems 41

parametric uncertainty since the input v contains Γ
−1/2(L(a∗ − a)− ȧ), which suggests

a small Γ
−1/2L does not necessarily attenuate ȧ unless Γ

−1/2 is also small. This is the
case since this condition implies having approximate integral action in the adaptation law
of Equation (7), i.e., approaching integral action in the standard gradient adaptation
law.

4. Adjusting and updating parameter estimate a∗ , which can be any piecewise continuous
bounded function. This allows for reducing the effect of parametric uncertainty
through reducing size of input a∗ − a independent of system bandwidth and control
gains. In this regard, many of the useful and interesting ideas to monitor, select, and
switch between different candidate controllers via multiple models such as those in
(1; 16; 7; 26) can be used with switching between a∗i values playing the role of the ith can-
didate controller. The difference is that this is to be done without frozen-time instability
or switched system instability concerns (verifying dwell time or common Lyapunov
function conditions) as a∗(t) is just an input to the closed loop system. Similarly, gain
scheduling and Linear Parameter Varying (LPV) control (12; 20) can be applied with
a∗ playing the role of the scheduled parameter vector to be varied, again with no con-
cerns with instability and transient behavior since a∗ − a enter as an input to the system.

3.3 Remarks

∙ Exponential stability allows for shaping the transient response, e.g. settling time, and
frequency response of the system to low/high frequency dynamics and inputs by ad-
justing the decay rate α, see Theorem 1. This is to be done independent of the parametric
uncertainty a∗ − a, which is contrasted to LTI feedback where closed loop poles change
with parametric uncertainty.

∙ The attenuation of uncertainty by high input-output system gain in this scheme differs
from robust control by the fact that ISS stability, the pre-requisite to such attenuation, is
never lost due to large parametric uncertainty a∗ − a. This is the case since it no longer
enters as a function of the plant’s state but rather as an input L(a∗ − a).

∙ In switching between different a∗ values many of the useful and interesting ideas to
monitor, select, and switch between different candidate controllers via multiple models
such as those in (1; 16) can be used with a∗i values playing the role of the ith candi-
date controller. The difference is that this is to be done without frozen-time instability
or switched system instability concerns (verifying dwell time or common Lyapunov
function conditions) as a∗ is just an input to the closed loop system. Similarly, gain
scheduling and Linear Parameter Varying (LPV) control (12; 20) can be applied with a∗

playing the role of the scheduled parameter vector to be varied, again with no concerns
with instability and transient behavior since a∗ − a enter as an input to the system.

4. Example Simulation

Consider the following unstable 2nd order plant of relative degree 1 with a 2-mode periodic
switching:

ẋ1 = a1 x3
1 + x2 + (1 + x2

1)b1 u + d

ẋ2 = a2 x1 + (1 + x2
1)b2 u

y = x1 + n
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where u, d, and n are control signal, disturbance, and measurement noise respectively.
Whereas, the plant parameters are given by:

a1 = 3 + 30 square(2πω t) , a2 = −2 − 20 square(2πω t)

b1 = 5 + square(2πω t) ,b2 = 20 + 10 square(2πω t)

where square denotes the unity magnitude square wave function and ω is the plant switching
frequency is Hz.

4.1 Control System Evaluation

In this section, an adaptive controller, which is based on the design procedure of Section 4.
Let us choose the nominal gains C = 100 (feedback gain), adaptation filter gain L = I, where
I is the identity matrix, then we have from Theorem 1 that the decay rate α = 1 rad/sec.
This should yield a settling time of at most 4 seconds for the closed loop system. Also the
nominal value of the adaptation gain Γ = 100I will be used. Whereas, a∗ is chosen to be a
constant vector aave taking the average values of the parameters a1, a2,b1,b2, i.e., when square
functions are set to zero.

Fig. 1. Tracking error for different plant switching frequencies for developed adaptive con-
troller.

Figure 1 shows the response of the modified adaptive controller for the output of the plant
tracking a sinusoidal reference of amplitude 2 and frequency 0.3 rad/sec; the disturbance is
set to zero for this case. The response follows the predicted theoretical behavior. The system
responds to the corresponding impulse change in ȧ and step change in a due to switching in
plant parameter vector a with the error settling after exponentially decaying transient accord-
ing to the system decay rate α. Whereas, by increasing the plant switching frequency, the same
trend follows with no concern of instability. In fact, as the suggested by the bound in Theorem
2, plant parametric uncertainty and variation are inputs to the closed loop system. Therefore,
increasing the frequency of this input, 6 rads/sec in this case, relative system bandwidth, 1
rads/ sec, will lead to attenuation of this input due to system roll-off as in linear systems. This
explains why the tracking error is smaller for the higher switching frequency case.
Figure 2 shows the effect of different choices of the additional parameter estimate a∗ for the
nominal case of Figure 1. The figure shows that the average tracking error is larger when a∗ =
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10 aave and a∗ = 100 aave, since it corresponds to a larger size of the input a∗ − a, as predicted
by the bound of Theorem 2. The third case in Figure 2 shows the effect of switching the choice
of a∗ starting from a a∗ = 100 aave to a∗ = 10 aave at t = 8 seconds. Again, the response is that
due to step changes in input a∗ − a with the transition between these two response takes place
within the estimated settling time of 4 seconds based on a designed for decay rate of α = 1
rads/ sec. This is a key capability that can be utilized in practice to perform robust and stable
gain scheduling and online controller adjustments.

Fig. 2. Effect of parameter estimate a∗ on tracking error for developed adaptive controller.

Fig. 3. Effect of feedback gain on tracking error for developed adaptive controller.

Next, Figures 3 and 4 will include the addition of a sinusoidal disturbance d = 50sin(π t)
to the nominal case discussed above for switching frequency ω = 0.1 Hz. Figure 3 displays
the response of the nominal case of Figure 1 with the addition of a sinusoidal disturbance
d = 50sin(π t), which introduces a clear sinusoidal content to the tracking error. Whereas,
increasing feedback gain, which corresponds to matrix C in Theorem 1, significantly reduces
the tracking error due to both plant switching (jumps and other steady errors) as well as the
disturbance-induced error. This is consistent with the discussion in Section IV.B in that in-
creasing system bandwidth α (via feedback gain) attenuates total input( disturbance an para-
metric uncertainties and variations) as well as speeds up the system bandwidth.
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Fig. 4. Effect of adaptation gain Γ on tracking error for developed adaptive controller.

Whereas, Figure 4 considers the same situation in Figure 3 but with increasing adaptation
gain instead of feedback gain. Again similar performance improvements are achieved along
the lines of the bound in Theorem 1 yet without increasing system bandwidth.
Figures 2-4 show that error can be reduced by adjusting a∗, increasing feedback and adap-
tation gains, with different levels of effectiveness relative to disturbances, parametric uncer-
tainty, and variation in accordance with the discussion in Section 3. The important message
from this case study is not only that the developed control methodology can handel systems
with large and rapid switching dynamics but also that this approach yields systematic and
practical means to improve performance that follow the developed theory.

4.2 Comparison with Other Techniques

Finally, let us compare the system’s response with the developed adaptive controller to other
adaptive control techniques. We consider the same system of Section 5.1 with switching fre-
quency ω = 1 Hz case. The system is required to follow a constant reference of amplitude
2. First consider a non-adaptive backstepping controller, where the parameter estimate â, in
the developed control scheme of is replaced with a fixed value â = aave. Figure 5 shows that
the non-adaptive controller yields an unstable closed loop despite using the same assumed
value of plant parameter vector, which has been used by the modified adaptive controller
with a∗ = aave.
Next, Figure 6 shows the response of the parameter estimates â, when the equivalent standard
adaptive controller, Equation (3), is used. This corresponds to setting L = 0 in the modified
adaptive controller of Equation (6). In this case, some of the parameter estimates â grow
unbounded, which could yield an unstable system in practical implementation. This is a
known issue with standard adaptive control in the presence of parameter variations or even
disturbances, which is usually referred to as parameter drift (6). In contrast, the modified
adaptive controller for the same situation maintains bounded parameter estimates due to ISS
stability of the closed loop, see Figure 7.
The poor robustness of standard adaptive controllers with respect to time varying parameters
and disturbances has lead to modifying the adaptation law by robust adaptation laws such as
deadzone, projection, and leakage modifications (6). Although there have not been any results
reporting guaranteed stability and performance characteristics for rapidly varying switching
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Fig. 5. Tracking error for non-adaptive backstepping controller with â = aave.

Fig. 6. Parameter estimates â for standard adaptive controller with L = 0.

systems using these techniques, we will compare the leakage-based modification developed
in this chapter with deadzone and projection modifications.
A deadzone modification to the standard adaptation law of Equation (3) can be given by:

˙̂a =

{

fa(xm, â,yr, t) if ∥e∥ > ǫ

0 otherwise

This simply means to turn off the adaptation when the tracking error is less than some ac-
ceptable threshold ǫ. Figure 8 compares the modified adaptive controller with a∗ = aave to an
equivalent deadzone adaptive controller with the same adaptation gain Γ = 10000I, where I
is the identity matrix, and a deadzone threshold of ǫ = 0.3. In this case, the modified adaptive
controller outperforms the deadzone adaptive controller in the tracking error. Furthermore,
when attempting to reduce the size of the tracking error threshold for the deadzone, ǫ, to al-
low for improvement in tracking error, the parameter estimates grew unboundedly as in the
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Fig. 7. Parameter estimates â for developed adaptive controller.

Fig. 8. Tracking error comparison for developed adaptive controller and a deadzone adaptive
controller.

standard adaptive controller case of Figure 6. This is expected as the deadzone adaptive con-
troller approaches that of a standard adaptive controller as ǫ → 0. Another limitation to the
deadzone controller is the lack of systematic dependence on control parameters such as the
adaptation gain Γ unlike the modified adaptive controller. Figure 9 shows how increasing the
adaptation gain from Γ = 100I to Γ = 10000I does not necessarily improve tracking but rather
yields reduction and increase in tracking at different times and of different signs. This is con-
trasted with the modified adaptive controller when tested under the same conditions, Figure
10, where a clear reduction in tracking error is observed with increasing Γ, in accordance with
the scaling relationship in Section 3.
Next, we consider a parameter projection modification to the standard adaptive controller of
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Fig. 9. Effect of adaptation gain Γ on tracking error for deadzone adaptive controller.

Equation (3). The projection modification (6) used here is given by:

˙̂a =

{

fa if ∥â∥ ≤ M or âT fa ≤ 0

fa −
â âT

∥â∥2

(

∥â∥2
−M2

M2

)

fa otherwise

Which uses an assumed bound on parameters ∥a∥ ≤ M. This assumption is critical to projec-
tion algorithms. Figure 11 shows the tracking error growing unbounded when a projection
algorithm was implemented with a tight bound M = 1. In this case, the assumed bound on
parameters was too tight as soon as the system switched to a different mode leading to insta-
bility. This is in contrast to the developed adaptive controller, which does not require such
information to guarantee stability. This is the case as the assumed parameter vector a∗ only
affects the size of tracking error for a given choice of control gains.
Nevertheless, it was possible to obtain a choice for the projection bound, M = 10, where the
system remained stable. Figure 12 compares the tracking error for this projection adaptive
controller and the developed adaptive controller with a∗ = aave for the same adaptation gain.
Again, the developed adaptive controller achieved smaller tracking error. As was the case
with deadzone controller, the projection controller does not display the systematic depen-
dence on the adaptation gain Γ unlike the proposed adaptive controller, see Figure 13. This
is the case since both projection and deadzone modification do not achieve a clear bound due
to ISS stability as that in Theorem 1. In fact, most results using such techniques to deal with
disturbances or parameter variations only conclude boundedness. In this case, such a conclu-
sion is of very little practical importance if the error can not be reduced to an acceptable level
by increasing the adaptation gain or using a better nominal estimate of the plant parameters
as with using a∗ in the proposed adaptation law, see Figure 2.

5. Conclusions

A methodology for robust adaptive control design for a class switched nonlinear systems is
presented. Under extensions of typical adaptive control assumptions, a leakage-type adap-
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Fig. 10. Effect of adaptation gain Γ on tracking error for developed adaptive controller.

Fig. 11. Tracking error for projection adaptive controller with small parameter projection
bound M = 1.

tive control scheme guarantees exponential and ISS stability with piecewise differentiable
bounded plant parameters and piecewise continuous bounded disturbances without requir-
ing a priori knowledge on such parameters. The effect of plant variation and switching
is reduced to piecewise continuous and impulsive inputs acting on this ISS stable closed
loop system. This yields a separation between robust stability and robust performance and
clear guidelines for performance optimization via ISS bounds. The results are demonstrated
through example simulations, which follow the developed theory and demonstrate superior
robustness of stability and performance relative to non-adaptive and other adaptive methods
such as projection and deadzone adaptive controllers. The authors believe that the use of
these type of robust adaptive controllers is useful for switched systems even in the switched
linear uncertainty free plant case, where stability with switched linear feedback is difficult to
guarantee based on currently available tools.
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Fig. 12. Tracking error comparison for developed adaptive controller and a projection adap-
tive controller with large parameter projection bound M = 10.

Fig. 13. Effect of adaptation gain Γ on tracking error for projection adaptive controller with
large parameter projection bound M = 10.
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