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1. Introduction     

The recent revolution in genomics and bioinformatics has taken the world by storm. From 
company boardrooms to political summits, the issues surrounding the human genome, 
including the analysis of genetic variation, access to genetic information and the privacy of 
the individual have fuelled public debate and extended way beyond the scientific and 
technical literature. During the past few years, bioinformatics has become one of the most 
highly visible fields of modern science. Yet, this ‘new’ field has a long history, starting with 
the triumphs of molecular genetics and cell biology of the last century, where bioinformatics 
was used for the computational treatment and processing of molecular and genetic data. 
Despite its widespread use, no single standard definition exists to describe bioinformatics. 
From the biologist’s point of view, it is generally considered to be the use of computational 
methods and tools to handle large amounts of data and the application of information 
science principles and technologies to make the vast, diverse, and complex life sciences data 
more understandable and useful. On the other hand, a computational scientist will generally 
define bioinformatics as a direct application area of existing algorithms and tools and the 
use of mathematical and computational approaches to address theoretical and experimental 
questions in biology. 
In July 2000, the NIH (National Institute of Health) released a working definition of 
bioinformatics as the research, development, or application of computational tools and 
approaches for expanding the use of biological, medical, behavioural or health data, 
including those to acquire, store, organize, archive, analyze, or visualize such data, where as 
computational biology was defined as the development and application of data-analytical 
and theoretical methods, mathematical modelling and computational simulation techniques 
to the study of biological, behavioural, and social systems.  

2. « Omics » science and bioinformatics 

In the last decade, the high throughput genome sequencing techniques and other large scale 
experimental protocols, have led not only to an exponential increase in the amount of 
biological data, but also to the diversification of molecular biology data, leading to a new 
biological research paradigm, one that is data-rich and data-driven. Many of the emerging 
areas of large-scale biology are designated by adding the suffix ‘-omics’ to existing terms. 

Source: Expert Systems, Book edited by: Petrică Vizureanu,  
 ISBN 978-953-307-032-2, pp. 238, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
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The most widely known omics sciences are genomics (the quantitative study of genes, 
regulatory and non-coding sequences), transcriptomics (RNA and gene expression), 
proteomics (proteins and their expression) and metabolomics (metabolites and metabolic 
networks). The importance to the life-science community as a whole of such large-scale 
approaches is reflected in the huge number of citations to many of the key papers in these 
areas, the human and mouse genome papers being the most obvious examples.  
In the context of this huge flood of data, complex data management and integration systems 
are now being introduced to collect, store and curate all this heterogeneous information in 
ways that will allow its efficient retrieval and exploitation. These developments are opening 
up new possibilities for large scale bioinformatics projects, aimed at understanding how 
genetic data is translated into molecules, networks and pathways, all the way to physiology 
and even ecological systems. 

3. Current challenges 

The development of high-throughput biotechnologies and the subsequent omics studies is 
paving the way to exciting new routes of scientific exploration. Instead of being restricted to 
the analysis of a handful of genes or proteins per experiment, whole genomes and 
proteomes (the complete set of proteins encoded by an organism’s genome) can be analyzed 
today. This allows biologists, with the help of bioinformaticians, to explore more 
complicated processes than were possible before (Carroll et al, 2006; Lein et al, 2007; 
Souchelnytskyi, 2005; Spellman et al, 1998; van Steensel, 2005). Nevertheless, the new data 
poses as many problems as it does opportunities. An obvious example is the human genome 
project where, once the technological limitations were lifted and the DNA sequence was 
obtained, the bottleneck rapidly shifted to its annotation, i.e. the identification of the genes 
encoded by the genome and their functions. As a consequence, in a similar way to the new 
biotechnologies, large bioinformatics projects have been initiated, with numerous research 
groups collaborating to tackle complex issues, such as the detailed annotation of the 
complete human genome (The ENCODE Project Consortium, 2004).  
Thus, new layers of bioinformatics annotations and predictions are laid on top of the 
experimental omics data and are made available progressively through public web-
accessible data stores, such as Ensembl (www.ensembl.org) or the UCSC Genome Browser 
(genome.ucsc.edu). The fact that the data is broadcast via the web leads to new issues of 
data management, maintenance and usage. Easy access is a crucial factor that will allow 
biologists to use the data as a rich source of information for in silico data integration 
experiments. Nevertheless, accessing these heterogeneous data sets across different 
databases is technically quite difficult, because one must find a way to extract information 
from a variety of search interfaces, web pages and APIs. To complicate matters, some 
databases periodically change their export formats, effectively breaking the tools that allow 
access to their data. At the same time, most omics databases do not yet provide computer-
readable metadata and, when they do, it is not in a standard format. Hence, expert domain-
specific knowledge is needed to understand what the data actually represents, before it can 
be used efficiently.  
To further complicate matters, today’s bioinformatics analyses require a combination of 
experimental, theoretical and computational approaches and data must be integrated from a 
large variety of different data resources, including genomic sequences, 3D structures, 
cellular localisations, phenotypes and other types of biologically pertinent data. However, 
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several problems related to the ‘omics’ data have been highlighted. For example, data 
emerging from ‘omic’ approaches are noisy (data can be missing due to false negatives, and 
data can be misleading due to false positives) and it has been proposed that some of the 
limitations can be overcome by comparing and integrating data obtained from two or more 
distinct approaches (Ge et al, 2003). In this context, a major challenge for bioinformaticians 
in the post-genomic era is clearly the collection, validation and analysis of this mass of 
experimental and predicted data, in order to identify pertinent biological patterns and to 
extract the hidden knowledge (Roos, 2001). 
Important research efforts are now underway to address the problems of data collection and 
storage. One approach has been data warehousing, where all the relevant databases are 
stored locally in a unified format and mined through a uniform interface. SRS (Etzold et al, 
1996) and Entrez (Sculer et al, 1996)  are probably the most widely used database query and 
navigation systems for the life science community. Alternatively, broadcast systems 
implement software to access mixed databases that are dispersed over the internet and 
provide a query facility to access the data. Examples include IBM’s DiscoveryLink (Haas et 
al, 2001), BioMOBY (Wilkinson et al, 2003). More recently, semantic web based methods 
have been introduced that are designed to add meaning to the raw data by using formal 
descriptions of the concepts, terms, and relationships encoded within the data. Many of 
these technologies are reviewed in more detail in (Romano, 2008).  
Today’s information-rich environment has also led to the growth of numerous software 
tools, designed to analyse and visualize the data. The tools can be merged using pipelines, 
or more recently workflow management systems (WMS), to provide powerful 
computational platforms for performing in silico experiments (Halling-Brown et al, 2008). 
However, the complexity and diversity of the available analysis tools mean that we now 
require automatic processing by ‘intelligent’ computer systems, capable of automatically 
selecting the most appropriate tools for a given task. In particular, one major insight gained 
from early work in intelligent problem solving and decision making was the importance of 
domain-specific knowledge. 
Thus the field of bioinformatics has reached the end of its first phase, where it was mainly 
inspired by computer science and computational statistics. The motivation behind this 
chapter is to characterize the principles that may underlie the second phase of 
bioinformatics, incorporating artificial intelligence techniques. In this context, knowledge-
based expert systems represent an ideal tool for an emerging research field, known as 
‘integrative systems biology’.  

4. Expert systems in bioinformatics 

Expert systems have been used in bioinformatics for many years, although some past and 
current projects have incorporated similar technologies without actually employing the term 
‘expert system’. The domains covered range from fundamental computational biology 
studies to medical research, forensic sciences and environmental protection research. 
In this section we will describe some examples of expert system applications, highlighting 
the importance of knowledge based architectures and their impact on advanced research. 

4.1 Medical diagnostics 

One of the earliest direct applications of expert systems in a biological discipline was in 
medicine. This is a very data-rich domain and knowledge based expert systems (KBS) 
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quickly became an essential tool for diagnostics and personalized treatments. KBS are 
widely used in domains where knowledge is more prevalent than data and that require 
heuristics and reasoning logic to derive new knowledge. The knowledge in a KBS is stored 
in a knowledge base that is separate from the control and inference programs and can be 
represented by various formalisms, such as frames, Bayesian networks, production rules, 
etc. In the medical field, a combination of domain knowledge and data are used for the 
detection, diagnosis, (interpretation) and treatment of diseases. Depending on the problem, 
the balance between data and knowledge varies and appropriate systems are identified and 
deployed, including knowledge biased computing models such as rule-based reasoning 
(RBR), model-based reasoning (MBR) and case-based reasoning (CBR). 
In RBR, the knowledge is represented by symbolic rules (Ligeza, 2006) and inference in the 
system is performed by a process of chaining through rules recursively, either by reverse or 
forward reasoning (Patterson, 1990). In MBR, the knowledge base is represented as a set of 
models (satisfying assignments, examples) of the world rather than a logical formula 
describing it. In CBR, the knowledge is stored as a list of cases, where a case consists of a 
problem, its solution, and some information about how the solution was obtained. New 
problems are then solved by reusing the past cases.  
Each of these approaches has advantages and disadvantages and as a result, many systems 
in the medical domain use a combined approach. One example is the BOLERO expert 
system (Lopez et al, 1997), which uses CBR to improve a RBR medical diagnosis based on 
the information available about the patient. The MIKAS system (Khan et al, 1997) also 
integrates CBR and RBR, with the goal of automatically providing a diet recommendation 
that is strongly tailored to the individual requirements and food preferences of a patient. 
Other systems incorporate a mixture of MBR and CBR, such as PROTOS (Porter et al, 1986), 
which uses knowledge acquisition for heuristic classifications in medical audiology, or 
CASEY (Koton, 1988) which uses CBR to improve the computational efficiency of a causal 
model of heart disease. Finally, T-IDDM (Montani et al, 2003) is a multi-modal reasoning 
system providing an accurate decision support tool for the diagnosis of type 1 diabetes, 
based on a mixture of RBR, MBR and CBR.  
In cases where the translation of implicit knowledge into explicit rules is problematic, 
alternatives to the reasoning systems described above are intelligent computing systems 
(ICS) or statistical inference, such as that based on Bayes' theorem, which assigns a 
probability to each advised output (equivalent to a disease in the medical domain). 
Statistics-based approaches have been exploited in expert systems for the diagnosis and 
management of pacemaker-related problems (Bernstein et al, 1995) or other medical 
predictions (Dragulescu et al, 1995). While this type of expert system is suitable for 
reciprocally exclusive diseases and independent symptoms, they fail when some symptoms 
have the same cause (are connected) or when a patient can suffer from more than one 
disease. In this context, artificial neural networks (ANN) have been developed. ANNs have 
been widely utilized and are an accepted method for the diagnosis of data intensive 
applications. (Grossi et al, 2007) showed that ANN can improve the classification accuracy 
and survival prediction of a number of gastrointestinal diseases. ANN has also been used in 
many other fields, including radiology, urology, laboratory medicine and cardiology 
(Itchhaporia et al, 1996). Finally, ICS, like KBS, often rely on combined approaches or hybrid 
expert systems (HES). For example, (Brasil et al, 2001) developed a HES for the diagnosis of 
epileptic crises, where some of the problems inherent to ANNs were resolved using Genetic 
Algorithms.  
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4.2 DNA sequence analysis: Forensic science  

An interesting application of expert systems is the analysis of DNA sequences in forensic 
science. We have all heard about forensics thanks to Hollywood movies and TV series, 
where a scientist simply inserts a tube into a machine and immediately recognizes the 
suspect. A lot of us think that this is somewhat exaggerated and unrealistic. Well this is not 
the case. Forensics is a very developed science and due to its importance, governments 
devote large budgets to research in this domain.  
The processing of forensic DNA samples and the interpretation of DNA profile data is 
complex and requires important resources both in terms of equipment and in highly trained 
personnel. But the growth of robotic equipment to automate the extraction of DNA from 
forensic samples, to quantify and amplify the samples, together with multi-capillary 
electrophoresis instrumentation has shifted the emphasis to the data analysis stage. 
Traditionally, the analysis and interpretation of DNA profile data was performed manually by 
at least two independent highly trained, experienced human scientists. However, this is a 
time-consuming process and in recent years, DNA profiling interpretation has been automated 
by replacing the human workers with bioinformatics software and notably, expert systems. 
The analysis begins with a sample of an individual's DNA, which is then processed to create a 
sample DNA profile. This stage is performed by two software packages: GeneScan and 
Genotyper (Applied Biosystems, Foster City, CA, USA), and includes a manual review step. 
The subsequent interpretation of the DNA profile involves the comparison of the sample DNA 
profile with another sample or a database to determine whether there is a genetic match. The 
interpretation is not a simple process since extremely high accuracy and consistency of forensic 
evidence is clearly necessary. Therefore, a hierarchy of decision rules has been produced to 
deal with a certain number of biological and technological artefacts and noise in the data. Once 
the artefacts have been removed, all remaining peaks are assumed to be “real” and can be 
assigned either to the individual in the case of single donor samples or can be treated by 
another set of complex decision rules, in the case of mixed donor samples. 
A number of knowledge based expert systems have been developed in order to automate 
this part of the DNA analysis as much as possible, thus reducing the amount of time taken 
to analyse an important number of DNA profiles, e.g. GeneMapper ID (Applied Biosystems, 
Foster City, CA, USA), FaSTR DNA (Power et al, 2008 ) or FSS-i3 (The Forensic Science 
Service DNA Expert System Suite FSS-i3). In each of these expert systems, rules are 
activated when a DNA profile is not from a unique source or when the quality of the profile 
is substandard. The expert system then requests the analyst to manually re-examine the data 
and accept or reject the assignment made. The combined use of such automated systems has 
been shown to provide independent “expert” analyses, which increase consistency and save 
analysis time compared to manual processing. 

4.3 DNA sequence analysis: Genome annotation 

Since the completion of the human genome in 2003, a large number of genomes of other 
organisms have been sequenced. These genome sequences consist of strings of As, Ts, Cs, 
and Gs representing the base pairs that make up the DNA, and have lengths in the order of 
millions of characters. Without marking the locations of biologically important parts of the 
sequence such as the genes and their regulatory elements, this string of characters has little 
usefulness. A major challenge in the “post-genomic era” is therefore the localisation of the 
genes in each genome, their organization, structure and function. Two areas of genomic 
biology are dedicated to this task, namely structural and functional annotation. Structural 
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annotation refers to the task of identifying genes, their location on the genome sequence, 
their exon/intron structure and the prediction of the molecular sequences (RNA and 
proteins) that they encode. Functional annotation aims then to predict the biological 
function of the gene products: RNA and protein molecules. 
Structural annotation methods can be classified into: (1) ab initio methods, based on codon 
usage to discriminate between coding and non-coding regions, and pattern searches for 
regulatory elements, (2) methods that use evolutionary conservation to infer gene 
localization and structure, (3) hybrid methods that combine these two approaches and 
usually present the best compromise in terms of sensibility and specificity in gene detection. 
Computational methods for functional annotation are mainly split into two types: (1) 
similarity based approaches that infer a function based on the comparison of a given 
sequence with a sequence of known function and (2) phylogenomic inference approaches, 
based on evolutionary history and relationships between biological sequences. 
Phylogenomic methods avoid many of the false inference problems associated with the 
simpler similarity-based methods, although they require a high degree of biological 
expertise, are time consuming, complex, and are difficult to automate.  
Both structural and functional annotations usually require the composite chaining of 
different algorithms, software and methods and expert biologists are often needed to make 
important decisions, modify the dataset and to compare intermediate results, which is labor 
intensive and can be error prone. In order to handle the large amounts of data produced by 
genome sequencing projects, automation of these pipelines is an absolute necessity. Diverse 
attempts have been made to develop annotation platforms automating some of these 
pipelines, particularly in the domain of structural annotation (e.g. the Ensembl pipeline 
(Hubbard et al, 2002). With regard to functional annotation, a number of platforms are 
available that can automate either the similarity-based approaches or the more complex 
phylogenomic approaches.  
FIGENIX (Figure 1) (Gouret et al, 2005) is one example of an automated annotation platform 
featuring an expert system that models the biologists' expertise and is able to compare 
results from different methods, and to evaluate the significance of predictions. FIGENIX 
incorporates a number of different pipelines for structural and functional annotation, in 
particular, a structural annotation pipeline, which is a hybrid method combining ab initio 
and similarity-based approaches, and a functional annotation pipeline fully automating a 
complex phylogenomic inference method. 

4.4 Protein sequence analysis 

The complete sequencing of genomes for a number of organisms and their subsequent 
annotation has led to the definition of thousands of new proteins of unknown biological 
function. In order to investigate the biological activity of the proteins, the first step is to 
determine its primary structure, i.e. the ordered sequences of amino acids making up the 
protein. Knowledge of the amino acid sequence then allows predictions to be made about 
protein structure and the relationships between different proteins. Expert systems have been 
used to solve a number of different problems in such protein analyses. 
The precise determination of amino acid sequences in proteins is a very important analytical 
task in biochemistry, and the most common type of instrumentation used for this employs 
Edman degradation (Edman, 1956). In this method, N-terminal amino acid residues are 
repeatedly labelled and cleaved from the protein. The amino acids are then identified as 
their phenylthiohydantoin (PTH) derivatives by high performance liquid chromatography  
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Fig. 1. Figenix architecture : "Annotation Engine" or "Expert System" servers can be cloned 
and distributed on several CPU. 

(HPLC: a form of column chromatography used frequently in biochemistry and analytical 
chemistry to separate, identify, and quantify compounds). Interpretation of the HPLC data 
is often problematic due to unstable baselines (points of reference used to identify peak in 
the chromatograph), drifts in elution times of PTH-amino acids, and additional 
contamination effects which are a consequence of partial cleavage during Edman 
degradations and/or side reactions that occur during the cycles. Such problems may cause 
peak misidentification by onboard software programs on commercial sequencers, and visual 
interpretation of the HPLC data by a human expert is often required for successful 
interpretation of the chromatographic profile. 
In this context (Hu et al, 1996) developed an expert system that uses heuristic rules built by 
human experts in protein sequencing. The system is applied to the chromatographic data of 
PTH-amino acids acquired from an automated sequencer. The peak intensities in the current 
cycle are compared with those in the previous cycle, while the calibration and succeeding 
cycles are used as ancillary recognition criteria when necessary. The retention time for each 
chromatographic peak in each cycle is then corrected by the corresponding peak in the 
calibration cycle at the same run. Such technologies have now been adapted by several 
biotechnology manufacturers and have been incorporated into their laboratory equipment 
to increase precision, making them more useful for experimentalists. 
As another case study of an expert system application, (Praveen et al, 2005) reported an 
expert system for rapid recognition of metallothionein (MT) proteins. MT proteins are 
responsible for regulating the intracellular supply of biologically essential zinc and copper 
ions and play a role in protecting cells from the deleterious effects of high concentration 
metal ions. MT is generally induced when the organism experiences certain stress conditions 
and therefore, recognition of MT from tissues or from animal models is very important. 
In order to develop an expert system for this task, the physical and chemical characteristics 
of MT proteins were derived based on a set of experiments conducted using animal models. 
The derived characteristics were broken into a set of rules, including (1) proteins with low 
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molecular weight versus high molecular weight, (2) proteins with metal content versus no 
metal content, (3) the presence or absence of aromatic amino acids and (4) sulphur content 
versus no sulphur content. The derived rules (consisting of a series of attribute and value 
pairs, followed by a single conclusion that contains the class and the corresponding class 
value) were produced using the ID3 algorithm (Quinlan, 1986), and a minimum number of 
rules were selected using human expertise in order to maximize true positive recognition. 
The rules were then formulated as an IF – THEN – ELSE algorithm and translated into 
VISUAL BASIC language statements, providing an efficient software solution. 
Another important application of expert systems in protein analysis is mass spectrometry 
(MS). MS is an analytical technique for the identification of the composition of a sample or 
molecule. It is also used for the determination of the chemical structures of molecules, such 
as peptides (parts of protein sequences) and other chemical compounds. The method begins 
with degradation of the proteins by an enzyme having high specificity and the resulting 
peptides are subject to analysis by MS. A computer algorithm is then used to compare the 
masses established for the resulting peptides with theoretical masses calculated for every 
sequence in a protein or DNA sequence database and the studied protein is identified based 
on the results of this comparison.  
ProFound (Zhang et al, 2000) is an expert system which employs a Bayesian algorithm to 
identify proteins from protein databases using mass spectrometric peptide mapping data. 
Bayesian probability theory has been widely used to make scientific inference from 
incomplete information in various fields in bioinformatics, including sequence alignment 
and NMR spectral analysis. When the system under study is modelled properly, the 
Bayesian approach is believed to be among the most coherent, consistent, and efficient 
statistical methods. The ProFound system ranks protein candidates by taking into account 
individual properties of each protein in the database as well as other data relevant to the 
peptide mapping experiment, including data from multiple digestions, the amino acid 
content of individual peptides, and protein components in mixtures. The program 
consistently identifies the correct protein(s) even when the data quality is relatively low or 
when the sample consists of a simple mixture of proteins. 

4.5 Comparative genomics and evolutionary studies 

The annotation of a single genome provides important clues to the functions of the encoded 
genes, and how they work together in the complex networks that perform the essential 
processes of living organisms. However, in the famous words of Theodore Dobzhansky: 
“nothing makes sense in biology except in the light of evolution” and therefore, the field of 
comparative genomics (the comparison of genome sequences from two or more organisms) 
and the reconstruction of ancestral genomes are now playing essential roles in understanding 
the evolutionary processes that have shaped the biological complexity of living organisms.  
An expert system, called CASSIOPE (Rascol et al, 2009), has been developed specifically to 
address the problem of ancestral genome reconstruction. CASSIOPE compares the 
organizational structure of genomic regions that have been conserved in a large number of 
informative species. Hypotheses can then be formulated to account for such conserved 
genomic regions: (1) the regions are due to chance and are not biologically important, (2) the 
regions result from a standard ancestral region through inheritance or (3) the regions are 
due to evolutionary convergence with possible selective pressure. The objective then is to 
select the most likely explanation for these conserved regions. CASSIOPE is able to reject the 
null hypothesis (conserved regions are due to chance) in favor of one of the two alternatives, 
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although it cannot differentiate between them (ancestral regions or convergence). The 
system aims to automatically reproduce the chain of analyses and decisions performed by 
human experts and incorporates fundamental evolutionary biology-based concepts. First, 
orthologs (genes in different species that evolved from a common ancestral gene by 
speciation keeping the same functions) and paralogs (genes related by duplication within a 
genome, thus different functions) are detected via phylogenetic analysis. Second, the 
probability that the genomic regions from different species are inherited from a common 
ancestor is estimated based on the neutrality theory. 
The process developed in CASSIOPE (Figure 2) involves various tasks, such as phylogenetic 
reconstruction or consulting web databases, and each task is independent from the others.  
CASSIOPE deploys the following core tasks: (1) data processing: a modular system with 
various agents (virtual machines that work on specific tasks) deployed in conjunction with 
an expert system that communicates with every agent and takes rule-based decisions to 
answer initial biological questions, (2) data comparison: database searches can be performed 
for newly sequenced regions or genomes, (3) detection of orthologous genes by robust 
phylogenetic reconstruction, (4) statistical scoring to assess the significance of conserved 
regions and (5) a reverse-search feature making it possible to extend the initial searches.  

 

Fig. 2. CASSIOPE multi-agent system 

The whole process is controlled by the expert system, which uses the other agents to obtain 
the data required. The expert system communicates with the different agents to answer 
questions, such as which genomic regions are significantly conserved? It receives queries 
and tries to find the necessary, pertinent data in the databases. The knowledge in the system 
is formulated in the form of an advanced rule set allowing decision-taking on the 
information received. For example, if data is partial, unavailable or outdated (> 1 month), 
the system deduces the agent interrogations it has to perform. The rule sets of the expert 
system can be updated, removed or added, just as a human scientist would. 
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5. Conclusion 

Bioinformatics is a cross-disciplinary research field that is concerned with the efficient 
management and analysis of heterogeneous data and the extraction of valuable knowledge. 
Due to the exponential growth of the biological databases, especially in the so-called ‘post-
genomic era’ since the human genome project, the task of extracting the hidden patterns 
underlying the data has become more and more difficult. The situation is further 
complicated by the complexity of biological data (numerous different types, sources, 
quality, etc.) and the creation of tools that can exploit the accumulated human expertise in 
this field is now crucial. 
Thanks to recent developments in IT, the storage and the maintenance of the petabytes of 
data have been widely addressed and efficient solutions are being developed. Future 
challenges will concentrate less on how we can store the huge amount of data, and more on 
how we can explore the hidden knowledge. Success in this domain will have profound 
effects on fundamental research and our knowledge of the mechanisms involved in the 
complex networks that make up living beings. Bioinformatics is also playing an increasing 
important role in a wide range of applications, including medical diagnostics and treatment, 
pharmaceutics and drug discovery, agriculture and other biotechnologies. 
The relatively simple task of annotating genes involves consulting various molecular, 
functional, disease and other databases to verify complete or partial annotations. Online data 
resources such as those furnished by the National Center for Biotechnology Information 
(NCBI), the Wellcome Trust Sanger Institute and many others, have become invaluable in 
helping annotators attribute putative functions to proteins based on computational results. The 
way in which biological information is stored, i.e. in distinct, heterogeneous data sources, 
means that data integration is an essential prerequisite to its annotation. Information regarding 
functional properties of genes for example is distributed in various online databases which 
were developed independently and do not inherently interoperate.  
 Today, new technologies are changing the bioinformatics data landscape and are providing 
new sources of raw data, including gene expression profiles, 3D structures, genetic 
networks, cellular images, DNA mutations involved in genetic diseases and many more. 
The current flood of data provides unique opportunities for systems-level studies. At the 
same time, it also poses as many new challenges. As a consequence, the field of systems 
biology has emerged, focusing on the study of complex biological systems, that exploits the 
new genomic data and the recent developments in bioinformatics. Systems biology studies 
biological systems by systematically perturbing them (biologically, genetically, or 
chemically); monitoring the gene, protein, and informational pathway responses; integrating 
these data; and ultimately, formulating mathematical models that describe the structure of 
the system and its response to individual perturbations (Ideker et al, 2001). Intelligent 
systems, such as the expert systems described in this chapter, will play an essential role in 
these studies, by integrating human expertise and computational and mathematical tools to 
highlight the knowledge underlying the data. 

6. References 

Bernstein, A.D.; Chiang, C.J. & Parsonnet, V. (1995). Diagnosis and management of 
pacemaker-related problems using and interactive expert system. IEEE 17th Annual 
Conference on Engineering in Medicine and Biology Society, 1, (701–702). 

www.intechopen.com



Knowledge Based Expert Systems in Bioinformatics  

 

191 

Brasil, L.M.; De Azevedo, F.M. & Barreto, J.M. (2001). Hybrid expert system for decision 
supporting in the medical area: complexity and cognitive computing International. 
Journal of Medical Informatics, 63, (19–30). 

Carroll, J.S.; Meyer, C.A., Song, J., Li, W., Geistlinger, T.R., Eeckhoute, J., Brodsky, A.S., 
Keeton, E.K., Fertuck, K. C., Hall, G.F., Wang, Q., Bekiranov,S., Sementchenko, V., 
Fox, E.A., Silver, P.A., Gingeras, T.R., Liu, X.S. & Brown, M. (2006). Genome-wide 
analysis of estrogen receptor binding sites. Nat. Genet., 38, (1289–1297). 

Consortium, T.E.P. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 
306, 5696, (636-640). 

Dragulescu, D. & Albu, A. (2007). Expert system for medical predictions. 4th International 
Symposium on Applied Computational Intelligence and Informatics, 13–18. 

Edman, P. (1956). On the mechanism of the phenyl isothiocyanate degradation of peptides. 
Ada Chim. Scand., 10, (761-768). 

Etzold, T.; Ulyanov, A. & Argos, P. (1996). SRS: information retrieval system for molecular 
biology data banks. Meth Enzymol, 266, (114–128). 

Ge, H.; Walhout, A.J.M. & Vidal, M. (2003). Integrating `omic' information: a bridge between 
genomics and systems biology. Trends in Genetics, 19, (551-560). 

Gouret, P.; Vitiello, V., Balandraud, N., Gilles, A., Pontarotti, P.& Danchin, E.G. (2005). 
FIGENIX: Intelligent automation of genomic annotation: expertise integration in a 
new software platform. BMC Bioinformatics., 6, 198. 

Grossi, E.; Mancini, A. & Buscema, M. (2007). International experience on the use of artificial 
neural networks in gastroenterology. Digestive and Liver Disease, 39, (278–285). 

Halling-Brown, M. & Shepherd, A.J. (2008). Constructing computational pipelines. Methods 
Mol Biol, 453, (451-470). 

Hass, L.; Schwartz, P., Kodali, P., Kotlar, E., Rice, J.& Swope, W. (2001). Discovery Link: a 
system for integrating life sciences data. IBM Syst. J., 40, (489-511). 

Hu, L.; Saulinskas, E.F., Johnson, P. & Harrington, P.B. (1996). Development of an expert 
system for amino acid sequence identification. Comput Appl Biosci., 12, 4, (311-318). 

Hubbard, T.; Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., 
Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, 
L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., 
Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, 
W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I. & Clamp, M. 
(2002). The Ensembl genome database project. Nucleic Acids Res., 30, 1, (38-41) 

Ideker, T.; Galitski, T. & Hood, L. (2001). A new approach to decoding life: systems biology.  
Annu Rev Genomics Hum Genet, 2, (343-72). 
Itchhaporia, D.; Snow, P.B., Almassy, R.J. & Oetgen, W.J. (1996). Artificial neural networks: 

current status in cardiovascular medicine. Journal of the American College of 
Cardiology, 28, 2, (515–521). 

Khan, A.S. & Hoffmann, A. (2003). Building a case-based diet recommendation system 
without a knowledge engineer. Artificial Intelligence in Medicine 27, (155–179) 

Koton, P. (1988). Reasoning about evidence in causal explanations. Proceedings of the Seventh 
National Conference on Artificial Intelligence, AAI Press, Menlo Park, CA, (256–263). 

Lein, E.S.; Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, 
M.S., Brockway, K.S., Byrnes, E.J., Chen, L., Chen, L., Chen, T.M., Chin, M.C., Chong, 
J., Crook, B.E., Czaplinska, A., Dang, C.N., Datta, S., Dee, N.R., Desaki, A.L., Desta, T., 
Diep, E., Dolbeare, T.A., Donelan, M.J., Dong, H.W., Dougherty, J.G., Duncan, B.J., 
Ebbert, A.J., Eichele, G., Estin, L.K., Faber, C., Facer, B.A., Fields, R., Fischer, S.R., 
Fliss, T.P., Frensley, C., Gates, S.N., Glattfelder, K.J., Halverson, K.R., Hart, M.R., 

www.intechopen.com



 Expert Systems 

 

192 

Hohmann, J.G., Howell, M.P., Jeung, D.P., Johnson, R.A., Karr, P.T., Kawal, R., 
Kidney, J.M., Knapik, R.H., Kuan, C.L., Lake, J.H., Laramee, A.R., Larsen, K.D., Lau, 
C., Lemon, T.A., Liang, A.J., Liu, Y., Luong, L.T., Michaels, J., Morgan, J.J., Morgan, 
R.J., Mortrud, M.T., Mosqueda, N.F., Ng L.L., Ng, R., Orta, G.J., Overly, C.C., Pak, 
T.H., Parry, S.E., Pathak, S.D., Pearson, O.C., Puchalski, R.B., Riley, Z.L., Rockett, 
H.R., Rowland, S.A., Royall, J.J., Ruiz, M.J., Sarno, N.R., Schaffnit, K., Shapovalova, 
N.V., Sivisay, T., Slaughterbeck, C.R., Smith, S.C., Smith, K.A., Smith, B.I., Sodt, A.J., 
Stewart, N.N., Stumpf, K.R., Sunkin, S.M., Sutram, M., Tam, A., Teemer, C.D., Thaller, 
C., Thompson, C.L., Varnam, L.R., Visel, A., Whitlock, R.M., Wohnoutka, P.E., 
Wolkey, C.K., Wong, V.Y., Wood, M., Yaylaoglu, M.B., Young, R.C., Youngstrom, 
B.L., Yuan, X.F., Zhang, B., Zwingman, T.A.& Jones, A.R. (2007). Genome-wide atlas 
of gene expression in the adult mouse brain. Nature, 445, (168-176). 

Ligeza, A. (2006). Logical Foundations for Rule-Based Systems Studies in Computational 
Intelligence; Springer, Berlin. 11. 

Lopez, B. & Plaza, E.  (1997). Case-based learning of plans and medical diagnosis goal states. 
Artificial Intelligence in Medicine, 9, (29–60). 

Montani, S.; Magni, P., Bellazzi, R., Larizza, C., Roudsari, A.V. & Carson, E.R. (2003). 
Integrating model-based decision support in a multi-modal reasoning system for 
managing type 1 diabetic patients. Artificial Intelligence in Medicine, 29, (131–151). 

Patterson, D.W. (1990). Introduction to Artificial Intelligence and Expert System, Prentice-
Hall,  Inc., Englewood Cliffs, NJ, USA . 

Porter, B.W. & Bareiss, E.R. (1986). PROTOS: an experiment in knowledge acquisition for 
heuristic classification tasks. Proceedings of the First International Meeting on Advances 
in Learning (IMAL), Les Arcs, France, (159–174). 

Power, T.; McCabe, B. & Harbison, S.A. (2008). FaSTR DNA: a new expert system for 
forensic DNA analysis. Forensic Sci Int Genet, 2, 3, (159-165). 

Praveen, B.; Vincent, S., Murty, U.S., Krishna, A.R. & Jamil, K. (2005). A rapid identification 
system for metallothionein proteins using expert system. Bioinformation, 1, 1, (14-15). 

Quinlan, J.R. (1986). Induction of Decision Trees. Readings in Machine Learning, 1, 1, (81-106). 
Rascol, V.L.; Levasseur, A., Chabrol, O., Grusea, S., Gouret, P., Danchin, E.G. & Pontarotti, P. 

(2009). CASSIOPE: An expert system for conserved regions searches. BMC 
Bioinformatics, 10, 284. 

Romano, P. (2008). Automation of in-silico data analysis processes through workflow 
management systems. Brief Bioinform, 9, (57-68). 

Roos, D.S. (2001). Computational biology. Bioinformatics--trying to swim in a sea of data. 
Science, 291, (1260-1261). 

Schuler, G.D.; Epstein, J.A., Ohkawa, H. & Kans, J.A. (1996). Entrez: molecular biology 
database and retrieval system. Methods Enzymol, 266, (141-162). 

Souchelnytskyi, S. (2005). Bridging proteomics and systems biology: what are theroads to be 
traveled? . Proteomics, 5, (4123–4137). 

Spellman, P.T.; Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., 
Botstein, D. & Futcher, B. (1998). Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. 
Mol. Biol. Cell., 9, (3273–3297). 

van Steensel, B. (2005). Mapping of genetic and epigenetic regulatory networks using 
microarrays. Nat. Genet., 37, (18–24). 

Wilkinson, M.D. & Links, M. (2002). BioMOBY: an open source biological web services 
proposal. Brief Bioinform., 3, (331-341). 

Zhang, W. & Chait, B.T. (2000). ProFound: an expert system for protein identification using 
mass spectrometric peptide mapping infocrmation. Anal Chem., 72, 11, (2482-2489). 

 

www.intechopen.com



Expert Systems

Edited by Petrica Vizureanu

ISBN 978-953-307-032-2

Hard cover, 238 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Expert systems represent a branch of artificial intelligence aiming to take the experience of human specialists

and transfer it to a computer system. The knowledge is stored in the computer, which by an execution system

(inference engine) is reasoning and derives specific conclusions for the problem. The purpose of expert

systems is to help and support user’s reasoning but not by replacing human judgement. In fact, expert

systems offer to the inexperienced user a solution when human experts are not available. This book has 18

chapters and explains that the expert systems are products of artificial intelligence, branch of computer

science that seeks to develop intelligent programs. What is remarkable for expert systems is the applicability

area and solving of different issues in many fields of architecture, archeology, commerce, trade, education,

medicine to engineering systems, production of goods and control/diagnosis problems in many industrial

branches.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mohamed Radhouene Aniba and Julie D. Thompson (2010). Knowledge Based Expert Systems in

Bioinformatics, Expert Systems, Petrica Vizureanu (Ed.), ISBN: 978-953-307-032-2, InTech, Available from:

http://www.intechopen.com/books/expert-systems/knowledge-based-expert-systems-in-bioinformatics



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


