
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322388092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

22

Fast Evolutionary Image Processing
using Multi-GPUs

Jun Ando and Tomoharu Nagao
Yokohama National University

Japan

1. Introduction

In the realization of machine intelligence, image processing and recognition technologies are
gaining in importance. However, it is difficult to construct image processing in each
problem. In this case, a general-purpose method that constructs image processing without
depending on problems is necessary.
On the other hand, Evolutionary Computation studies are widely applied to image
processing. Evolutionary Computation is an optimizing algorithm inspired by evolutional
processes of living things. We have previously proposed a system that automatically
constructs an image-processing filter: Automatic Construction of Tree-structural Image
Transformation (ACTIT). In this system, ACTIT approximates target image processing by
combining tree-structurally several image-processing filters prepared in advance with
genetic programming (GP), which is a type of Evolutionary Computation. We have proven
that ACTIT is an effective method for many problems.
However, such complex image processing requires a great deal of computing time to
optimize tree-structural image processing if ACTIT is applied to a problem that uses large
and numerous images. Therefore, it is important to obtain fast evolutionary image
processing. Some methods allow us to obtain fast processing, improve the algorithm, and
implement fast hardware and parallel processing.
In this chapter, we employ a Graphics Processing Unit (GPU) as fast hardware to ACTIT for
realization of fast image processing optimization. Moreover, the system calculates in parallel
using multiple GPUs and increases in speed. We experimentally show that the optimization
speed of the proposed method is faster than that of ordinary ACTIT.
This chapter is composed of the following. Section 2 discusses related works, ACTIT,
General Purpose GPU (GPGPU), and parallel processing in Evolutionary Computation.
Section 3 describes Multi-GPUs-ACTIT, which is the proposed system in this chapter.
Section 4 experimentally shows that the proposed system is effective. Finally, section 5
describes our conclusions and future work.

2. Related works

2.1 ACTIT

ACTIT is a study of image processing using GP. It automatically constructs a tree-structural
image transformation by combining several image-processing filters prepared in advance

Source: Image Processing, Book edited by: Yung-Sheng Chen,
 ISBN 978-953-307-026-1, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Image Processing

404

with GP by referring to training image sets. The individual in GP is a tree-structural image
transformation. A tree-structural image transformation is composed of input images as
terminal nodes, non-terminal nodes in the form of several types of image-processing filters,
and a root in the form of an output image.

optimization

of

tree-structure

by GP

ACTIT

O

F1

F2

F3

F4

F5

I

I

I

optimized tree-structural image transformation

(I: Input Image, O: Output Image, Fi: i-th Image-processing Filter)

Input

Image

Non-training Image

O

F1

F2

F3

F4

F5

I

I

I

Output

Image

Non-training Image

application of optimized tree-structural image transformation

to non-training image

Original

Images

Target

Images

Training Image Sets

Weight

Images

Fig. 1. The processing flow of the ACTIT system.

Figure 1 shows the processing flow of the ACTIT system. Training image sets are prepared,
including several original images, their target images and weight images that indicate the
important degree of pixel. We set the parameters that GP uses to optimize the tree structure
and feed the training image sets to ACTIT. Then, ACTIT optimizes the tree-structural image
transformation by means of GP. As a result, we can obtain an optimized tree-structural
image transformation that has maximum fitness.
The tree-structural image transformation applies a certain processing mechanism to images
that have the same characteristics. If the constructed tree-structural image transformation is
appropriate, we can expect similar effects to the images that have the same characteristics as
those learned. We prove that ACTIT is an effective method for a number of problems, such
as 2D image processing for the detection of defects and 3D medical image processing.

2.2 GPGPU

The computational power of GPU on general graphics boards has been improving rapidly.
Simple computational power per unit time of GPU has previously been superior to that of

www.intechopen.com

Fast Evolutionary Image Processing using Multi-GPUs

405

CPU. Past GPUs performed only fast fixed CG processing. However, the latest GPUs have
graphics pipelines that can be freely programmed and replaced to perform complex CG
processing. Thus, presently, in research that puts GPU to practical use for the general
purpose of calculating, GPGPU is a popular technique.

 0

 50

 100

 150

 2002 2003 2004 2005 2006

G
F

L
O

P
S

Year

NVIDIA

ATI

Intel Pentium 4

Fig. 2. The computational power of CPU and GPU in recent years.

2000
NVIDIA released DirectX 8 which supports
programmable shader architecture for the first time.

2001
NVIDIA GeForce 3 series GPU, which actually supports
programmable shader architecture, appeared.

2002
NVIDIA released the 3D graphics language, "Cg (C for
graphics)".

2004
Research report on GPGPU, "GP2" is held in Los
Angeles for the first time.

2005
GPGPU session is newly established at CG festival
SIGGRAPH sponsored by the Association for
Computing Machinery (ACM).

Table 1. The history of GPGPU.

Figure 2 shows the progress of the computational power of CPU and GPU over the past
several years. Simple computational power per unit time of GPU has previously been
superior to that of CPU during this time. The growth rate per year of GPU has also been
superior to that of CPU.
Table 1 shows the history of GPGPU. Studies relating to GPGPU have only recently begun.
NVIDIA GeForce 3 series GPU, which in practice supports programmable shader
architecture, appeared in 2001. In 2002, NVIDIA released a high-level shader language Cg (C
for graphics) and a toolkit that includes its compiler. Cg is a 3D graphics language similar to
C language, and NVIDIA co-developed Cg with Microsoft. Formerly, it was necessary to
code by hand with the assembly language to program using GPU. However, presently it is
possible to generate an optimized code; GPU made by NVIDIA is the best technique for use

www.intechopen.com

 Image Processing

406

with Cg. In 2005, GPGPU session was established at the CG festival SIGGRAPH, sponsored
by the Association for Computing Machinery.
GPU programming is without doubt different from CPU programming. For instance, GPU
does not have random access memory space that can be freely read and written to when it
calculates. GPU has an architecture specializing in parallel processing. This means that GPU
is a stream processor. Therefore, GPGPU is effective for applications that satisfy the
following three demands:

• Processed data are of a huge size.

• There is little dependency between each data.

• The processing of data can be highly parallel.
Therefore, GPGPU is effective for calculating matrices, image processing, physical
simulations, and so on. Recently, programming languages specializing in GPGPU, Sh, Scout
and Brook have been released. In addition, in 2006, NVIDIA released CUDA (Compute
Unified Device Architecture), which performs general-purpose applications on GPU. Thus it
is now relatively easy to program with GPU.

2.3 Parallel processing in evolutionary computation

Many studies have proven the performance of genetic algorithm (GA) and GP in parallel.
The following show the main parallel models in GA and GP.
1. Island model: In an island model (Fig. 3), the population in GA and GP is divided into

sections of population (Islands). Each section of population is assigned to multiple
processors and applied to normal genetic operators in parallel. Exchange of individuals
between sections of population (Migration) is performed. Each section is independently
evaluated. Therefore, we expect that each section retains the variety of the entire
population.

Migration

Island 3 Island 2

Island 1

Individual

Fig. 3. Island model.

2. Master–slave model: In the master–slave model (Fig. 4), the fitness of individuals in GA
and GP is calculated quickly in parallel. A master–slave model is generally composed of
one control node (Master) and multiple calculation nodes (Slave). In this model, one
control node performs genetic operators composed of selection, crossover, and
mutation. Multiple calculation nodes share the task of calculating the fitness of
individuals that consume computing time.

www.intechopen.com

Fast Evolutionary Image Processing using Multi-GPUs

407

Master

Calculate

Fitness

Calculate

Fitness

Calculate

Fitness

Calculate

Fitness

Genetic Operator

Slave 1 Slave 2 Slave 3 Slave 4

FitnessIndividuals

Fig. 4. Master-slave model.

3. Parallel-MGG model: The Parallel-MGG model (Fig. 5) is based on the master–slave
model for fast processing. In the Parallel-MGG model, a control node sends two
individuals as parents to calculation nodes. Each calculation node updates two
individuals using Minimal Generation Gap (MGG) in parallel. A control node then
receives two individuals of the next generation as children from each calculation node.
In Parallel-MGG, the transport time between nodes is reduced because processing is
asynchronous.

N
2

Master
Slave 1

1

Start

Initialize

Send Parents

Receive Children

Yes

End

Evaluate
No

Receive Parents

Crossover, Mutation

Calculate Fitness

Selection

Send Children

Fig. 5. Parallel-MGG model.

3. Fast evolutionary image processing

3.1 GPU-ACTIT

ACTIT requires a large amount of computing time to optimize tree-structural image
processing when applied to a problem that uses large and numerous training image sets,
because it needs to repeatedly create tree-structural image transformations and calculate
their fitness. The computing time of the image transformation part of ACTIT accounts for
99% of the entire computing time. We therefore implement image-processing filters on
programmable graphics pipelines of GPU for the purpose of reducing optimization time.

www.intechopen.com

 Image Processing

408

CPU

Start

Alteration

Send Image

Transformation

Evaluate

End

Receive

Fitness

Initialize

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

Fitness

tree-structural image transformations
(I: Input Image, O: Output Image, Fi: Image-processing Filter)

GPU

Image

Transformation

Calculate

Fitness

Send Fitness

Receive Image

Transformation

Fig. 6. GPU-ACTIT.

1. The parts of CPU and GPU: Figure 6 shows the processing flow of CPU and GPU for
the proposed system. First, the system loads training image sets and image-processing
filters, which are written in Cg and compiled to GPU during initialization. The system
executes the alternation of generations part, composed of selection, crossover, and
mutation operators, of GP on CPU. It then performs image transformation and
calculates fitness on GPU.
CPU indicates the image-processing filter and its target image that GPU executes from
the image filters of tree-structural image transformation to GPU one by one during
image transformation. GPU performs tree-structural image transformation according to
CPU. GPU calculates the fitness of each individual, i.e., tree-structural image
transformation from the difference between the target image and the output image that
is a result of image transformation in calculating fitness part. These processes are
repeated until the fitness of all updated individuals per iteration are calculated. CPU
reads back the fitness from GPU immediately.
The system repeats these processes until the fitness of the best individual becomes 1.0
or the iteration number becomes max. Finally, we obtain an optimized tree-structural
image transformation that has maximum fitness. We can obtain faster ACTIT by
reducing the number of transporting data between CPU and GPU by loading training
image sets firstly and returning fitness at once. We almost allow GPU to perform
processing which costs computing time.

2. Implement on GPU: Programs written for CPU cannot be applied to GPU directly,
because GPU has some limitations over CPU. Therefore, we are currently implementing
only simple image-processing filters on GPU. The following describes several image-
processing filters implemented on GPU:

• Calculation of current and neighboring pixels (Mean Filter, Sobel Filter, and so on).

• Calculation of two images (Difference Filter and so on).

• Calculation of mean, maximum, minimum value in the whole image (Binarization
with Mean Value, Linear Transformation of Histogram, and so on).

www.intechopen.com

Fast Evolutionary Image Processing using Multi-GPUs

409

Figure 7 shows a Binarization filter (mean value). We calculate fast mean value in the
whole image with parallel reductions.

389476630823251

868014827967011

4253823480629889

2086624016783092

45948374982551

379993169741882

9527833364628423

9397585326594131

389476630823251

868014827967011

4253823480629889

2086624016783092

45948374982551

379993169741882

9527833364628423

9397585326594131

53524941

50555977

69675737

78575345

53524941

50555977

69675737

78575345

5357

6848

5357

6848
5757

00010100

11011010

00101111

01100101

01110100

01101010

10101110

11100100

00010100

11011010

00101111

01100101

01110100

01101010

10101110

11100100

float4 cg_calc_mean(

float2 coords : WPOS,

uniform samplerRECT src

) : COLOR0

{

float4 sum = 0.0;

for (int i = 0; i <= 1; i++)

for (int j = 0; j <= 1; j++)

sum += texRECT(src, coords * 2 + half2(i, j));

return sum / 4;

}

float4 cg_binarization(

float2 coords : WPOS,

uniform samplerRECT src,

uniform samplerRECT src2

) : COLOR0

{

float4 t = texRECT(src, float2(0.0, 0.0));

float4 data = texRECT(src2, coords);

return data <= t ? 0.0 : 1.0;

}

Input Image

Output Image
Fig. 7. Binarization filter (mean value).

3.2 Proposed parallel model
GPU-ACTIT is performed in parallel using multiple GPUs for fast processing. Parallel
processing is effective for ACTIT, because the computing time of the parallelable part of
ACTIT accounts for most of the entire computing time.
Figure 8 shows Multi-GPUs-ACTIT. The proposed system is composed of multiple PCs that
have one GPU. The factors that prevent the system from achieving fast processing are
synchronous time and transport time. There is no synchronous time, because processing is
asynchronous in Parallel-MGG. Moreover, we can improve Parallel-MGG for the purpose of
reducing transport time. In this new Parallel-MGG, the waiting buffer is located in each
calculation node. The individual is sent to the waiting buffer in advance. Subsequent
processing then starts as soon as the previous processing is finished, since the waiting buffer
is utilized.

4. Experiments

4.1 Experimental setting

Here, we compare the optimization speed of the proposed system with ordinary ACTIT.
The proposed system is composed of five PCs (one server and four clients) connected by a
LAN network. Figure 9 shows the outside of the system.

www.intechopen.com

 Image Processing

410

Client 1 (CPU)

Receive

Parents

Crossover,

Mutation

Send Image

Transformation

Selection

Receive

Fitness

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

I I

F1

F2

O

Fitness

tree-structural image transformations
(I: Input Image, O: Output Image, Fi: Image-processing Filter)

Client 1 (GPU)

Image

Transformation

Calculate

Fitness

Send Fitness

Receive Image

Transformation

Server

Start

Initialize

Send Parents

Evaluate

End

Receive

Children

Send Children

Waiting

Buffer

Client 2 (CPU) Client 2 (GPU)

Client N (CPU) Client N (GPU)

.

.

.

.

Individual

Fig. 8. Multi-GPUs-ACTIT.

Fig. 9. The outside of the system.

Table 2 shows the specifications of the PC used. Intel Core 2 Duo E6400 CPU and NVIDIA
GeForce 7900 GS GPU are utilized in these experiments. We program with GPU using
OpenGL and Cg.
We implement 37 types of one or two input and one output simple image-processing filters.
GPU can calculate four planes (red, green, blue, and alpha) at the same time. Therefore, we
prepare four training image sets. The dimensions of each image are 64 × 64, 128 × 128, 256 ×
256, 512 × 512, and 1024 × 1024, respectively. GP parameters employ common values. The
alternation model used by GP is MGG.

www.intechopen.com

Fast Evolutionary Image Processing using Multi-GPUs

411

PC DELL Dimension 9200

CPU Intel Core 2 Duo E6400

RAM 2GB

Graphics Board NVIDIA GeForce 7900 GS (G71)

Network 100Mbps Ethernet

OS Microsoft Windows XP Professional SP2

Graphics API OpenGL

Shader Language Cg (C for graphics)

Table 2. Specifications of the PC used.

4.2 Experimental results

1. Comparison of ordinary CPU-ACTIT and one GPU-ACTIT: First, we compared the
optimization speed of one GPU-ACTIT with ordinary CPU-ACTIT. Figure 10 and Table 3
show the experimental results. The horizontal axis denotes image size, and the vertical axis
denotes optimization speed. In Fig. 10 and Table 3, values are based on the optimization

speed of 1.0 for CPU-ACTIT using images of 64 × 64.

Image Size CPU-ACTIT GPU-ACTIT

64 × 64 1.0 6.3

128 × 128 0.7 21.1

256 × 256 0.9 73.3

512 × 512 1.1 102.0

1024 × 1024 1.3 104.3

Table 3. Details of experimental results of a comparison of CPU-ACTIT and GPU-ACTIT.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

O
p

ti
m

iz
a

ti
o

n
 S

p
e

e
d

Image Size (x10^3)

About 100 times!

CPU-ACTIT

GPU-ACTIT

Fig. 10. Experimental results of a comparison of CPU-ACTIT and GPU-ACTIT.

The optimization of GPU-ACTIT was about 10 times faster than that of CPU-ACTIT with a
small image, while it was about 100 times faster with a large image. It is well known that

www.intechopen.com

 Image Processing

412

GPU is effective when it uses large data. Therefore, the proposed method is very effective,
because large and numerous training image sets tend to be used in real problems.
Next, we experimented to explain the influence of transporting data and synchronous time

between CPU and GPU. Figure 11 shows details of the processing time. "GPU-ACTIT

(inefficiently)" loads and reads images whenever it calculates the fitness of an individual.

Loading and reading images influence the performance. As a result, the proposed method

essentially performed the process that costs large computing time on GPU.

CPU-ACTIT

GPU-ACTIT

(inefficiently)

GPU-ACTIT

GPU Runs

0 265500 266000500 1000 2500 3000 3500 400020001500

Processing Time [sec]

Image

Transformation

Calculate

Fitness

Transport between

CPU and GPU

GP Operation

Fig. 11. Details of processing time.

2. Parallel of GPU-ACTIT: We compared the optimization speed of Multi-GPUs-ACTIT with

one GPU-ACTIT. Parallel models used were master–slave, Parallel-MGG, and Parallel-MGG

with waiting buffer. The number of GPUs was 1–4. Image size was only 512 × 512.

 0

 100

 200

 300

 400

 1 2 3 4

O
p

ti
m

iz
a

ti
o

n
 S

p
e

e
d

Number of GPUs

with Waiting Buffer

Master-Slave

Parallel-MGG

Parallel-MGG

Fig. 12. Experimental results of Multi-GPUs-ACTIT.

www.intechopen.com

Fast Evolutionary Image Processing using Multi-GPUs

413

Number
of GPUs

CPU-ACTIT Master-slave Parallel-MGG
Parallel-MGG

with
Waiting Buffer

1 1.0 94.5 (1.0) 94.5 (1.0) 94.5 (1.0)

2 - 107.7 (1.1) 120.6 (1.3) 189.7 (2.0)

3 - - 177.9 (1.9) 274.9 (2.9)

4 - 125.0 (1.3) 244.4 (2.6) 362.2 (3.8)

Table 4. Details of experimental results of Multi-GPUs-ACTIT.

Figure 12 and Table 4 show experimental results. The horizontal axis denotes the number of
GPUs, and the vertical axis denotes optimization speed. In Fig. 12 and Table 4, values are

based on the optimization speed of 1.0 for CPU-ACTIT using 512 × 512 images. Parenthetic

values are based on the optimization speed of 1.0 for one GPU-ACTIT using 512 × 512
images.
The optimization of four GPUs-ACTIT was about 3.8 times faster than that of one GPU-
ACTIT in the proposed parallel model. The optimization of four GPUs-ACTIT was about
360 times faster than that of CPU-ACTIT in the proposed parallel model. We experimentally
showed that the proposed parallel method is efficient.

5. Conclusions

We employed GPU to ACTIT for the purpose of reducing optimization time. The proposed
method essentially performed the process that costs large computing time on GPU.
Moreover, we proposed an efficient parallel model and instructed GPU-ACTIT to perform
in parallel using multiple GPUs for fast processing. The optimization of the proposed
method was several hundred times faster than that of the ordinary ACTIT. We
experimentally showed that the proposed method is effective.
In future work, we plan to implement complex filters for ACTIT using only CPU that can be
implemented on GPU. We propose image-processing algorithms that are effective for
GPGPU. We also aim to construct a fast evolutionary image-processing system.

6. References

Aoki, S. & Nagao, T. (1999). ACTIT; Automatic Construction of Tree-structural Image
Transformation, The Institute of Image Information and Television Engineers, Vol.53,
No.6, pp.888-894.

Buck, I.; Foley, T.; Horn, D.; Sugerman, J.; Fatahalian, K.; Houston, M. & Hanrahan, P.
(2004). Brook for GPUs: Stream Computing on Graphics Hardware, SIGGRAPH
2004.

Erick Cantu-Paz. (1998). A survey of parallel genetic algorithms, Calculateurs Paralleles,
Vol.10, No.2.

Fernando, R. & Kilgard, M. J. (2003). The Cg Tutorial: The Definitive Guide to Programmable
Real-Time Graphics, the Addison Wesley, ISBN978-0321194961.

Fernando, R. (2004). GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time
Graphics, the Addison Wesley, ISBN978-0321228321.

Fung, J.; Mann, S. & Aimone, C. (2005). OpenVIDIA: Parallel GPU Computer Vision,
Proceedings of the ACM Multimedia 2005, pp.849-852, Nov.6-11, Singapore.

www.intechopen.com

 Image Processing

414

GoldBerg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning, the
Addison Wesley, ISBN978-0201157673.

Holland, J. H. (1975, 1992). Adaptation in Natural and Artificial Systems, the Univ. Michigan
Press, ISBN978-0472084609, MIT Press, ISBN978-0262581110.

Koza, J. R. (1992). Genetic Programming on the Programming of Computers by Means of Natural
Selection, MIT Press, ISBN978-0262111706.

Mura, H.; Ando, J. & Nagao, T. (2006). A research on fast tree-structural image
transformation using PC cluster, The Institute of Image Information and Television
Engineers Technical Report, Vol.30, No.17, pp.87-88, Japan.

Nagao, T. (2002). Evolutionary Image Processing, Shokodo, ISBN978-4785690632, Japan.
Nakano, Y. & Nagao, T. (2006). Automatic Extraction of Internal Organs Region from 3D

PET Image Data using 3D-ACTIT, International Workshop on Advanced Image
Technology 2006, Jan.10, Okinawa, Japan.

Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.; Kruger, J.; Lefohn, A. E. & Purcell, T.
J. (2005). A Survey of General-Purpose Computation on Graphics Hardware,
EUROGRAPHICS 2005.

Pharr, M. & Fernando, R. (2005). GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, the Addison Wesley, ISBN978-
0321335593.

Sato, H.; Ono, I. & Kobayashi, S. (1997). A New Generation Alternation Model of Genetic
Algorithms and its Assessment, The Japanese Society for Artificial Intelligence, Vol.12,
No.5, pp.734-744.

Tanese, R. (1989). Distributed Genetic Algorithms, Proc. 3rd International Conference on
Genetic Algorithms, pp.434-439.

www.intechopen.com

Image Processing

Edited by Yung-Sheng Chen

ISBN 978-953-307-026-1

Hard cover, 516 pages

Publisher InTech

Published online 01, December, 2009

Published in print edition December, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

There are six sections in this book. The first section presents basic image processing techniques, such as

image acquisition, storage, retrieval, transformation, filtering, and parallel computing. Then, some applications,

such as road sign recognition, air quality monitoring, remote sensed image analysis, and diagnosis of industrial

parts are considered. Subsequently, the application of image processing for the special eye examination and a

newly three-dimensional digital camera are introduced. On the other hand, the section of medical imaging will

show the applications of nuclear imaging, ultrasound imaging, and biology. The section of neural fuzzy

presents the topics of image recognition, self-learning, image restoration, as well as evolutionary. The final

section will show how to implement the hardware design based on the SoC or FPGA to accelerate image

processing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jun Ando and Tomoharu Nagao (2009). Fast Evolutionary Image Processing Using Multi-GPUs, Image

Processing, Yung-Sheng Chen (Ed.), ISBN: 978-953-307-026-1, InTech, Available from:

http://www.intechopen.com/books/image-processing/fast-evolutionary-image-processing-using-multi-gpus

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

