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1. Introduction 

In the realization of machine intelligence, image processing and recognition technologies are 
gaining in importance. However, it is difficult to construct image processing in each 
problem. In this case, a general-purpose method that constructs image processing without 
depending on problems is necessary. 
On the other hand, Evolutionary Computation studies are widely applied to image 
processing. Evolutionary Computation is an optimizing algorithm inspired by evolutional 
processes of living things. We have previously proposed a system that automatically 
constructs an image-processing filter: Automatic Construction of Tree-structural Image 
Transformation (ACTIT). In this system, ACTIT approximates target image processing by 
combining tree-structurally several image-processing filters prepared in advance with 
genetic programming (GP), which is a type of Evolutionary Computation. We have proven 
that ACTIT is an effective method for many problems. 
However, such complex image processing requires a great deal of computing time to 
optimize tree-structural image processing if ACTIT is applied to a problem that uses large 
and numerous images. Therefore, it is important to obtain fast evolutionary image 
processing. Some methods allow us to obtain fast processing, improve the algorithm, and 
implement fast hardware and parallel processing. 
In this chapter, we employ a Graphics Processing Unit (GPU) as fast hardware to ACTIT for 
realization of fast image processing optimization. Moreover, the system calculates in parallel 
using multiple GPUs and increases in speed. We experimentally show that the optimization 
speed of the proposed method is faster than that of ordinary ACTIT. 
This chapter is composed of the following. Section 2 discusses related works, ACTIT, 
General Purpose GPU (GPGPU), and parallel processing in Evolutionary Computation. 
Section 3 describes Multi-GPUs-ACTIT, which is the proposed system in this chapter. 
Section 4 experimentally shows that the proposed system is effective. Finally, section 5 
describes our conclusions and future work. 

2. Related works 

2.1 ACTIT 

ACTIT is a study of image processing using GP. It automatically constructs a tree-structural 
image transformation by combining several image-processing filters prepared in advance 
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with GP by referring to training image sets. The individual in GP is a tree-structural image 
transformation. A tree-structural image transformation is composed of input images as 
terminal nodes, non-terminal nodes in the form of several types of image-processing filters, 
and a root in the form of an output image. 
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Fig. 1. The processing flow of the ACTIT system. 

Figure 1 shows the processing flow of the ACTIT system. Training image sets are prepared, 
including several original images, their target images and weight images that indicate the 
important degree of pixel. We set the parameters that GP uses to optimize the tree structure 
and feed the training image sets to ACTIT. Then, ACTIT optimizes the tree-structural image 
transformation by means of GP. As a result, we can obtain an optimized tree-structural 
image transformation that has maximum fitness. 
The tree-structural image transformation applies a certain processing mechanism to images 
that have the same characteristics. If the constructed tree-structural image transformation is 
appropriate, we can expect similar effects to the images that have the same characteristics as 
those learned. We prove that ACTIT is an effective method for a number of problems, such 
as 2D image processing for the detection of defects and 3D medical image processing. 

2.2 GPGPU 

The computational power of GPU on general graphics boards has been improving rapidly. 
Simple computational power per unit time of GPU has previously been superior to that of 
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CPU. Past GPUs performed only fast fixed CG processing. However, the latest GPUs have 
graphics pipelines that can be freely programmed and replaced to perform complex CG 
processing. Thus, presently, in research that puts GPU to practical use for the general 
purpose of calculating, GPGPU is a popular technique. 
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Fig. 2. The computational power of CPU and GPU in recent years. 

 

2000 
NVIDIA released DirectX 8 which supports 
programmable shader architecture for the first time. 

2001 
NVIDIA GeForce 3 series GPU, which actually supports 
programmable shader architecture, appeared. 

2002 
NVIDIA released the 3D graphics language, "Cg (C for 
graphics)". 

2004 
Research report on GPGPU, "GP2" is held in Los 
Angeles for the first time. 

2005 
GPGPU session is newly established at CG festival 
SIGGRAPH sponsored by the Association for 
Computing Machinery (ACM). 

Table 1. The history of GPGPU. 

Figure 2 shows the progress of the computational power of CPU and GPU over the past 
several years. Simple computational power per unit time of GPU has previously been 
superior to that of CPU during this time. The growth rate per year of GPU has also been 
superior to that of CPU. 
Table 1 shows the history of GPGPU. Studies relating to GPGPU have only recently begun. 
NVIDIA GeForce 3 series GPU, which in practice supports programmable shader 
architecture, appeared in 2001. In 2002, NVIDIA released a high-level shader language Cg (C 
for graphics) and a toolkit that includes its compiler. Cg is a 3D graphics language similar to 
C language, and NVIDIA co-developed Cg with Microsoft. Formerly, it was necessary to 
code by hand with the assembly language to program using GPU. However, presently it is 
possible to generate an optimized code; GPU made by NVIDIA is the best technique for use 
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with Cg. In 2005, GPGPU session was established at the CG festival SIGGRAPH, sponsored 
by the Association for Computing Machinery. 
GPU programming is without doubt different from CPU programming. For instance, GPU 
does not have random access memory space that can be freely read and written to when it 
calculates. GPU has an architecture specializing in parallel processing. This means that GPU 
is a stream processor. Therefore, GPGPU is effective for applications that satisfy the 
following three demands: 

• Processed data are of a huge size. 

• There is little dependency between each data. 

• The processing of data can be highly parallel. 
Therefore, GPGPU is effective for calculating matrices, image processing, physical 
simulations, and so on. Recently, programming languages specializing in GPGPU, Sh, Scout 
and Brook have been released. In addition, in 2006, NVIDIA released CUDA (Compute 
Unified Device Architecture), which performs general-purpose applications on GPU. Thus it 
is now relatively easy to program with GPU. 

2.3 Parallel processing in evolutionary computation 

Many studies have proven the performance of genetic algorithm (GA) and GP in parallel. 
The following show the main parallel models in GA and GP. 
1. Island model: In an island model (Fig. 3), the population in GA and GP is divided into 

sections of population (Islands). Each section of population is assigned to multiple 
processors and applied to normal genetic operators in parallel. Exchange of individuals 
between sections of population (Migration) is performed. Each section is independently 
evaluated. Therefore, we expect that each section retains the variety of the entire 
population. 

 

Migration

Island 3 Island 2

Island 1

Individual

 

Fig. 3. Island model. 

2. Master–slave model: In the master–slave model (Fig. 4), the fitness of individuals in GA 
and GP is calculated quickly in parallel. A master–slave model is generally composed of 
one control node (Master) and multiple calculation nodes (Slave). In this model, one 
control node performs genetic operators composed of selection, crossover, and 
mutation. Multiple calculation nodes share the task of calculating the fitness of 
individuals that consume computing time. 
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Fig. 4. Master-slave model. 

3. Parallel-MGG model: The Parallel-MGG model (Fig. 5) is based on the master–slave 
model for fast processing. In the Parallel-MGG model, a control node sends two 
individuals as parents to calculation nodes. Each calculation node updates two 
individuals using Minimal Generation Gap (MGG) in parallel. A control node then 
receives two individuals of the next generation as children from each calculation node. 
In Parallel-MGG, the transport time between nodes is reduced because processing is 
asynchronous. 
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Fig. 5. Parallel-MGG model. 

3. Fast evolutionary image processing 

3.1 GPU-ACTIT 

ACTIT requires a large amount of computing time to optimize tree-structural image 
processing when applied to a problem that uses large and numerous training image sets, 
because it needs to repeatedly create tree-structural image transformations and calculate 
their fitness. The computing time of the image transformation part of ACTIT accounts for 
99% of the entire computing time. We therefore implement image-processing filters on 
programmable graphics pipelines of GPU for the purpose of reducing optimization time. 
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Fig. 6. GPU-ACTIT. 

1. The parts of CPU and GPU: Figure 6 shows the processing flow of CPU and GPU for 
the proposed system. First, the system loads training image sets and image-processing 
filters, which are written in Cg and compiled to GPU during initialization. The system 
executes the alternation of generations part, composed of selection, crossover, and 
mutation operators, of GP on CPU. It then performs image transformation and 
calculates fitness on GPU. 
CPU indicates the image-processing filter and its target image that GPU executes from 
the image filters of tree-structural image transformation to GPU one by one during 
image transformation. GPU performs tree-structural image transformation according to 
CPU. GPU calculates the fitness of each individual, i.e., tree-structural image 
transformation from the difference between the target image and the output image that 
is a result of image transformation in calculating fitness part. These processes are 
repeated until the fitness of all updated individuals per iteration are calculated. CPU 
reads back the fitness from GPU immediately. 
The system repeats these processes until the fitness of the best individual becomes 1.0 
or the iteration number becomes max. Finally, we obtain an optimized tree-structural 
image transformation that has maximum fitness. We can obtain faster ACTIT by 
reducing the number of transporting data between CPU and GPU by loading training 
image sets firstly and returning fitness at once. We almost allow GPU to perform 
processing which costs computing time. 

2. Implement on GPU: Programs written for CPU cannot be applied to GPU directly, 
because GPU has some limitations over CPU. Therefore, we are currently implementing 
only simple image-processing filters on GPU. The following describes several image-
processing filters implemented on GPU: 

• Calculation of current and neighboring pixels (Mean Filter, Sobel Filter, and so on). 

• Calculation of two images (Difference Filter and so on). 

• Calculation of mean, maximum, minimum value in the whole image (Binarization 
with Mean Value, Linear Transformation of Histogram, and so on). 
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Figure 7 shows a Binarization filter (mean value). We calculate fast mean value in the 
whole image with parallel reductions. 
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)                           : COLOR0

{

float4 sum = 0.0;
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for (int j = 0; j <= 1; j++)

sum += texRECT(src, coords * 2 + half2(i, j));

return sum / 4;

}

float4 cg_binarization(

float2 coords : WPOS,

uniform samplerRECT src,

uniform samplerRECT src2

)                           : COLOR0

{

float4 t = texRECT(src, float2(0.0, 0.0));

float4 data = texRECT(src2, coords);

return data <= t ? 0.0 : 1.0;

}

Input Image

Output Image  
Fig. 7. Binarization filter (mean value). 

3.2 Proposed parallel model 
GPU-ACTIT is performed in parallel using multiple GPUs for fast processing. Parallel 
processing is effective for ACTIT, because the computing time of the parallelable part of 
ACTIT accounts for most of the entire computing time. 
Figure 8 shows Multi-GPUs-ACTIT. The proposed system is composed of multiple PCs that 
have one GPU. The factors that prevent the system from achieving fast processing are 
synchronous time and transport time. There is no synchronous time, because processing is 
asynchronous in Parallel-MGG. Moreover, we can improve Parallel-MGG for the purpose of 
reducing transport time. In this new Parallel-MGG, the waiting buffer is located in each 
calculation node. The individual is sent to the waiting buffer in advance. Subsequent 
processing then starts as soon as the previous processing is finished, since the waiting buffer 
is utilized. 

4. Experiments 

4.1 Experimental setting 

Here, we compare the optimization speed of the proposed system with ordinary ACTIT. 
The proposed system is composed of five PCs (one server and four clients) connected by a 
LAN network. Figure 9 shows the outside of the system. 
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Fig. 8. Multi-GPUs-ACTIT. 

 

Fig. 9. The outside of the system. 

Table 2 shows the specifications of the PC used. Intel Core 2 Duo E6400 CPU and NVIDIA 
GeForce 7900 GS GPU are utilized in these experiments. We program with GPU using 
OpenGL and Cg. 
We implement 37 types of one or two input and one output simple image-processing filters. 
GPU can calculate four planes (red, green, blue, and alpha) at the same time. Therefore, we 
prepare four training image sets. The dimensions of each image are 64 × 64, 128 × 128, 256 × 
256, 512 × 512, and 1024 × 1024, respectively. GP parameters employ common values. The 
alternation model used by GP is MGG. 
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PC DELL Dimension 9200 

CPU Intel Core 2 Duo E6400 

RAM 2GB 

Graphics Board NVIDIA GeForce 7900 GS (G71) 

Network 100Mbps Ethernet 

OS Microsoft Windows XP Professional SP2 

Graphics API OpenGL 

Shader Language Cg (C for graphics) 

Table 2. Specifications of the PC used. 

4.2 Experimental results 

1. Comparison of ordinary CPU-ACTIT and one GPU-ACTIT: First, we compared the 
optimization speed of one GPU-ACTIT with ordinary CPU-ACTIT. Figure 10 and Table 3 
show the experimental results. The horizontal axis denotes image size, and the vertical axis 
denotes optimization speed. In Fig. 10 and Table 3, values are based on the optimization 

speed of 1.0 for CPU-ACTIT using images of 64 × 64. 
 

Image Size CPU-ACTIT GPU-ACTIT 

64 × 64 1.0 6.3 

128 × 128 0.7 21.1 

256 × 256 0.9 73.3 

512 × 512 1.1 102.0 

1024 × 1024 1.3 104.3 

Table 3. Details of experimental results of a comparison of CPU-ACTIT and GPU-ACTIT. 
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Fig. 10. Experimental results of a comparison of CPU-ACTIT and GPU-ACTIT. 

The optimization of GPU-ACTIT was about 10 times faster than that of CPU-ACTIT with a 
small image, while it was about 100 times faster with a large image. It is well known that 
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GPU is effective when it uses large data. Therefore, the proposed method is very effective, 
because large and numerous training image sets tend to be used in real problems. 
Next, we experimented to explain the influence of transporting data and synchronous time 

between CPU and GPU. Figure 11 shows details of the processing time. "GPU-ACTIT 

(inefficiently)" loads and reads images whenever it calculates the fitness of an individual. 

Loading and reading images influence the performance. As a result, the proposed method 

essentially performed the process that costs large computing time on GPU. 

 

CPU-ACTIT

GPU-ACTIT

(inefficiently)

GPU-ACTIT

GPU Runs

0 265500 266000500 1000 2500 3000 3500 400020001500

Processing Time [sec]

Image

Transformation

Calculate

Fitness

Transport between

CPU and GPU

GP Operation

 
 

Fig. 11. Details of processing time. 

2. Parallel of GPU-ACTIT: We compared the optimization speed of Multi-GPUs-ACTIT with 

one GPU-ACTIT. Parallel models used were master–slave, Parallel-MGG, and Parallel-MGG 

with waiting buffer. The number of GPUs was 1–4. Image size was only 512 × 512. 
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Fig. 12. Experimental results of Multi-GPUs-ACTIT. 
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Number 
of GPUs 

CPU-ACTIT Master-slave Parallel-MGG 
Parallel-MGG 

with 
Waiting Buffer 

1 1.0 94.5 (1.0) 94.5 (1.0) 94.5 (1.0) 

2 - 107.7 (1.1) 120.6 (1.3) 189.7 (2.0) 

3 - - 177.9 (1.9) 274.9 (2.9) 

4 - 125.0 (1.3) 244.4 (2.6) 362.2 (3.8) 

Table 4. Details of experimental results of Multi-GPUs-ACTIT. 

Figure 12 and Table 4 show experimental results. The horizontal axis denotes the number of 
GPUs, and the vertical axis denotes optimization speed. In Fig. 12 and Table 4, values are 

based on the optimization speed of 1.0 for CPU-ACTIT using 512 × 512 images. Parenthetic 

values are based on the optimization speed of 1.0 for one GPU-ACTIT using 512 × 512 
images. 
The optimization of four GPUs-ACTIT was about 3.8 times faster than that of one GPU-
ACTIT in the proposed parallel model. The optimization of four GPUs-ACTIT was about 
360 times faster than that of CPU-ACTIT in the proposed parallel model. We experimentally 
showed that the proposed parallel method is efficient. 

5. Conclusions 

We employed GPU to ACTIT for the purpose of reducing optimization time. The proposed 
method essentially performed the process that costs large computing time on GPU. 
Moreover, we proposed an efficient parallel model and instructed GPU-ACTIT to perform 
in parallel using multiple GPUs for fast processing. The optimization of the proposed 
method was several hundred times faster than that of the ordinary ACTIT. We 
experimentally showed that the proposed method is effective. 
In future work, we plan to implement complex filters for ACTIT using only CPU that can be 
implemented on GPU. We propose image-processing algorithms that are effective for 
GPGPU. We also aim to construct a fast evolutionary image-processing system. 
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