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Enhancing Ultrasound Images  
Using Hybrid FIR Structures 

L. J. Morales-Mendoza, Yu. S. Shmaliy and O. G. Ibarra-Manzano  
Electronics Department, Guanajuato University 

México 

1. Introduction      

The problem of saving a sharp edge with a simultaneous enhancing in the image is typical 

for ultrasound applications. Ultrasound imaging is a technique that is widely used in a 

variety of clinical applications, such as cardiology (Najarian & Splinter, 2007), obstetrics and 

gynecology (Jan, 2006), and others. Due to the blur and typically non Gaussian noise, an 

origin ultrasound image has a poor resolution. That forces researches to create image 

processing algorithms having a contradictive ability of cleaning the image of noise but 

saving its sharp edge. An overall panorama of nonlinear filtering following the median 

strategy has been presented by Pitas and Venetsanopoulos (Pitas & Venetsanopoulos, 1990) 

along with important modifications for a large class of nonlinear filters employing the order 

statistics. The algorithm issues for the filter design have been discussed in (Kalouptsidis & 

Theodoridis, 1993). In (Astola & Kuosmanen, 1997), the finite impulse response (FIR) 

median hybrid filters (MHF) strategy has been proposed with applications to image 

processing. An important step ahead has been made in (Heinonen & Neuvo, 1987; 1988), 

where the FIR MHF structures have been designed. In the sequel, the MHF structures have 

extensively been investigated, developed, and used by many authors. 

Basically, hybrid FIR structures can be designed using different types of estimators. Among 
possible solutions, the polynomial estimators occupy a special place, since the polynomial 
models often well formalize a priori knowledge about different processes. Relevant signals 
are typically represented with degree polynomials to fit a variety of practical needs. 
Examples of applications of polynomial structures can be found in signal processing 
(Dumitrescu, 2007; Mathews & Sicuranza, 2001), timescales and clock synchronization 
(Shmaliy, 2006), image processing (Bose, 2004), speech processing (Heinonen & Neuvo, 
1988), etc. The polynomial estimators suitable for such structures can be obtained from the 
generic form of the p-step predictive unbiased FIR filter proposed in (Shmaliy, 2006; 2009).  
Such estimators usually process data on finite horizons of N points that typically obtain a 
nice restoration. 
In this Chapter, we first give the theory of the p-step smoothing unbiased FIR estimator of 
polynomial signals viewing an image as a multistate space model. We then use the 
polynomial solutions in the design of FIR MHF structures and justify optimal steps p from 
the standpoint of minimum produced errors. We show advantages of the approach 
employing the three generic ramp FIR solutions. Namely, we exploit the 1-step predictive 
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filter (p = 1), the filter (p = 0), and the 1-lag smoothing filter (p = -1). The hybrid structures 
investigated are compared in terms of the root mean square errors (RMSEs) and the signal-
to-noise ratio (SNR) in the enhanced image. The rest of the chapter is organized as follows: 
In section II, we describe the polynomial image. In section III, the gains for the optimal and 
unbiased smoothing FIR filters are derived. The low-degree polynomials gains for unbiased 
smoothing FIR filters are considered in detain in section IV. Section V is defined to design 
and applications of unbiased FMH structures. Finally, the concluding remarks are drawn in 
section VI. 

2. Polynomial image model 

A two-dimensional image is often represented as a kc × kr matrix }{ , jiμ=M . To provide 

two dimensional filtering, the matrix can be written in the form of a row-ordered vector or a 

column-ordered vector, respectively, 

 [ ]Tkkkkkkr rcccrr ,2,1,´,22,21,2´,12,11,1́ μμμμμμμμμ AAAA=x ,  (1) 

 [ ]Tkkkkkkc rcrrcc ,,2,1́2,2,22,1́1,1,21,1́ μμμμμμμμμ AAAA=x .  (2) 

The filtering procedure is then often applied twice, first to (1) and then to (2), or vice versa.  
If to represent a two-dimensional electronic image with (1) and (2), then one may also 
substitute each of the vectors with the discrete time-invariant deterministic signal x1n that, in 
turn, can be modeled on a horizon of some N points in state space. If x1n projects ahead from 
n – N + 1 – p to n – p, then the p-lag smoothing FIR filtering estimate can be provided at a 
current point n with a lag p, p < 0, as shown in Fig. 1. Referring to Fig. 1, a signal x1n can 
further be projected on a horizon of N points from n – N + 1 – p, to n with the finite order 
Taylor series as follows: 

 

 

Fig. 1. Smoothing FIR filtering on a horizon of N points with a lag p, p < 0. 
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where x(q + 1)(n – N + 1 – p), q ∈ [0, K – 1], can be called the signal (q + 1)-state at n – N + 1 – p and 

the signal thus characterized with K states, from 1 to K. Here, τ is the sampling time. 

In such a model, the k-state, k ∈ [1, K], is determined by the time derivative of the (k – 1)-
state, starting with k = 2. Therefore, most generally, we have 

( )( )
( )∑

−

=
−+−+

+−
=

kK

q

qq

pNnkqkn
q

pN
xx

0

1
!

1τ
 

( ) ( )( ) ( )pNxx pNnkpNnk +−+= −+−+−+− 1111 τ ( )( ) ( ) ++−+ −+−+
22

2

1
12 1 pNx pNnk τ  

 ( ) ( ) ( ) kKkK

kKpNnK pNx
−−

−−+− +−+ 1
!

1
1 τA .  (4) 

If we now suppose that x1n (1) is contaminated in the measurement to be sn with noise vn 
having zero mean E{vn} = 0, and arbitrary distribution and covariance Q = E{vivj}, then the 
model and the measurement can be represented in state space, using (4), with the state and 
observation equations as, respectively 

 pNn

pN

n −+−
+−= 1

1
xAx ,  (5) 

 nnn vs +=Cx ,   (6) 

where the K × 1 state vector is given by 

 [ ]TKnnnn xxx A21=x .   (7) 

The K × K triangular matrix Ai, projecting the state at n – N + 1 – p to the present state at n, is 

specified with 
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A ,  (8) 

and the 1 × K measurement matrix is 

 [ ]001 A=C .  (9) 

If we now think that the state space model (5) and (6) represents an electronic image, then 

we would like to find the optimal and unbiased gains for the smoothing FIR filter producing 

at n the estimate 
pnn −|x̂
, p < 0, associated with the enhanced image.  
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3. Smoothing FIR filtering of polynomial models 

In FIR filtering, an estimate is obtained via the discrete convolution applied to 
measurement. That can be done if to represent the state space model on an averaging 
interval of some N points as shown in (Shmaliy, 2008). Referring to Fig. 1, we thus can 
represent the model (3) and (4) on a horizon from n – N + 1 – p to n – p. The recursively 
computed forward-in-time solutions given us 

 ( ) pNnNN p −+−= 1xAX ,  (10) 

  ( ) ( )pp NpNnNN VxCS += −+− 1 ,  (11) 

where 

 ( ) [ ]TT

pNn

T

pn

T

pnpN −+−−−−= 11 xxxX A ,  (12) 

 ( ) [ ]TpNnpnpnN sssp −+−−−−= 11 AS ,  (13) 

 ( ) [ ]TpNnpnpnN vvvp −+−−−−= 11 AV ,  (14) 

 [ ]TTpTpTpNTpN

N )()()()( 121
AAAAA

++−+−= A ,  (15) 
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where (Z)1 means the first row of a matrix Z. Given (10) and (11), the smoothing FIR filtering 
estimate is obtained as in the following. 
It is known that FIR estimates can be found for each of the states separately. Following this 
line and utilizing N measurements from n – N + 1 – p to n – p, the smoothing FIR filtering 

estimate x̂ 1n|n – p of x1n can be obtained at n as 

 ( )∑
+−

=
−− =

pN

pi

inlipnn yphx
1

|1̂ ,  (17a) 

                                                       ( ) N

T

l p SW= ,                                             (17b) 

 ( ) ( )[ ]pp NpNnN

T

l VxCW += −+− 1 ,  (17c) 
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where hli(p) ≡ hli(N, p) is the l-degree filter gain (Shmaliy, 2006) dependent on N and p and 

the l-degree and 1 × N filter gain matrix is given with 

 ( ) ( ) ( )( ) ( )( )[ ]phphphp pNlpllp

T

l +−+= 11 AW .  (18) 

Note that hli(p) in (17a) and (18) can be specified in different sense depending on 
applications. Below, we investigate this gain in the sense of the minimum bias in order to 
design the hybrid FIR filters. 

3.1 Unbiased estimate 

The unbiased smoothing FIR filtering estimates can be found if we start with the 
unbiasedness condition 

 { } { }npnn xExE 1|1ˆ =−   (19) 

substitute x1n with  

 ( ) pNn

pN

nx −+−
+−= 11

1

1 xA   (20) 

and 
pnnx −|1ˆ  with (17c). That leads to the unbiasedness (or deadbeat) constraint 

 ( ) ( ) N

T

l

pN p CWA =+−
1

1
,   (21) 

where ( )plW
 mean the l-degree unbiased gain matrix (Shmaliy, 2006).  

It can be show that the constraint (21) does not give us a direct solution for the gain matrix. 
Instead, one can equate the components of the row matrices in (21) and, similarly to 
(Shmaliy, Apr. 2009), arrive at 
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( ) ( ) ( ) ( )∑ ∑
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1 1

11 ττ  
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K
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KpN

pi

li

K ττ
 

 ( ) ( ) ( )∑ ∑
+−

=

+−

=

++−−++
pN

pi

pN

pi

lili phpiNph
1 1

1τA .  (22) 

Further accounting the first identity in the remaining ones of (22) leads to the fundamental 
properties of the p-lag unbiased smoothing FIR filter gain: 
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( )∑
+−

=

=
pN

pi

li ph
1

1  

 ( )∑
+−

=

=
pN

pi

u

li iph
1

0 ,     lu ≤≤1 .  (23) 

A short matrix form (23) is thus 

 ( ) ( ) TT

l pp JVW = ,  (24) 

where 

 

T

N
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= *)*(' A 001J   (25) 

and the p-lag and N × (l + 1) Vandermonde matrix is specified by 

 ( )
( )
( )

( ) ⎥
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⎥
⎥
⎥
⎥

⎦
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⎢
⎢
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⎢
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111
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pNpN
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V .  (26) 

Now note that the inverse ( ) ( )[ ] 1−
ppT

VV  always exists. Then multiply the right-side of (24) 

with the identity matrix ( ) ( )[ ] ( ) ( )pppp TT
VVVV

1− , discard V(p) from the both sides, and finally 

arrive at the fundamental solution for the gain, 

 ( ) ( ) ( )[ ] ( )pppp TTT

l VVVJW
1−

=   (27) 

that can be used for unbiased FIR filtering of polynomial models. Because no restriction is 
imposed upon p, the gain (27) can be used for FIR filtering with p = 0, smoothing FIR 
filtering with p < 0, and predictive FIR filtering with p > 0.  

3.2 Unbiased polynomial gain 

Although (27) is an exact and simple solution for unbiased FIR estimation, there is an 
inconvenience in using the Vandermonde matrix acquiring large dimension when N is large. 
On the other hand, we still have no idea about the gain function hli(p). To find this function, 
the following fundamental property can be invoked from the Kalman-Bucy filter theory: the 
order of the optimal (and unbiased) filter is the same as that of the system. This property 
suggests that the kth state of the model characterized with K states can unbiasedly be filtered 
with the l = K – k degree FIR filter (Shmaliy, 2006). In other words: the first state xkn, k = 1, of 
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the K-state model can unbiasedly be filtered, smoothed, and predicted with the gain of 
degree l = K – 1. 
Most generally, following (Shmaliy, 2006), we thus can represent the filter gain with the 
degree polynomial 

 ( ) ( )∑
=

=
l

j

j

jlli ipaph
0

,  (28) 

where l ∈[1, K], i ∈ [p, N – 1 + p], and ajl(p) ≡ ajl(N, p) is still unknown coefficient. 
Substituting (28) to (27) and rearranging the terms lead to a set linear equations, having a 
compact matrix form of 

 ( ) ( )pp γDJ = ,  (29) 

where 

 

T

K
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= **)*(' A 001J ,  (30) 

 ( ) ( ) ( )( )

T

K

KKKK aaa
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −−−− ***** )***** (' A 111110γ ,  (31) 

and a short symmetric l × l matrix D(p) is specified via the Vandermonde matrix (26) as 

( ) ( ) ( )ppp T
VVD =  

 

( ) ( ) ( )
( ) ( ) ( )
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⎢
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+

+
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pdpdpd
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l

l

21

121
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A
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A
A

.  (32) 

The component for (32) is defined by 

 ( ) ∑
+−

=

=
pN

pi

m

m ipd
1

, lm 21,0 …= ,  (33) 

 ( ) ( )[ ]pBpNB
m

mm 11
1

1
++ −+

+
= ,  (34) 

where Bn(x) is the Bernoulli polynomial. 
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An analytic solution to (29), with respect to the coefficients ajl(p) of the polynomial (28), 
gives us 

 ( ) ( ) ( ) ( )
D

pM
pa

jj

jl

11
1

+−= ,  (35) 

where |D| is the determinant of D(p) that turns out to be p-invariant, and M(j + 1)1(p) is the 
minor of D(p). 
Determined ajl(p) and hli(p), the unbiased smoothing FIR filter of the polynomial signal x1n is 
provided as follows. Given a discrete time-invariant polynomial state space model, (5) and 
(6), then the p-lag unbiased smoothing FIR filtering estimate of the model x1n having K states 
is obtained at n on a horizon of N points using the data sn taken from n – N + 1 – p to n – p, p 
< 0, by 

 ( ) ( )∑
+−

=
−+− =

pN

pi

iniKpnn sphx
1

1|1ˆ ,  (36) 

 ( ) N

T

l p SW= ,  (37) 

where ( )plW
 is specified with (18), hli(p) with (28) and (35), and SN is the data vector (13).  

3.2.3 Properties of the polynomial gain 
The l-degree and p-lag polynomial gain hli(p) has the following fundamental properties: 

• Its range of existence is 

 ( ) ( )
⎩
⎨
⎧ +−≤

=
otherwise0

1 pNpph
ph

li

li
.  (38) 

• The gain has unit area and zero moments as follows, respectively, 
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• Its energy, referring to (39) and (40), calculates 
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 ( )pa l0= ,   (41) 

where a0l(p) is the zero-order coefficient in (28).  

3.3 Estimate variance 
For the zero-mean measurement noise vn having arbitrary distribution and covariance, the 
variance of the unbiased smoothing FIR filtering estimate can be found via the mean square 
error (MSE) 

2

|11 )ˆ( pnnn xxEJ −−=  

( ) ( ) ( )[ ] 2

11  pppxE N

T

lpNnN

T

ln VWxCW −−= −+−  

 ( ) ( )[ pNnN

T

lpNn

pN pE −+−−+−
+− −= 111

1
xCWxA ( ) ( )] 2 pp N

T

l VW− .  (42) 

Embedded the unbiasedness (21) and accounted for the commutativity 
l

T

NN

T

l WVVW = , the 

MSE (42) represents the variance 

( ) ( ) ( )[ ] 22  ppEp N

T

l VW=σ  

( ) ( ) ( ) ( )[ ]ppppE N

T

lN

T

l VWVW= ( ) ( ) ( )[ ] ( )pppEp l

T

NN

T

l WVVW=  

 ( ) ( ) ( )ppp l

T

l WΦW
V

= .  (43) 

In an important special case when vn is a white sequence having a constant variance σv2, (43) 
becomes 

 ( ) ( ) ( )ppp l

N

vvv

T

l WW
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= *** )*** (' A 2222 diag σσσσ ( )pglv

2σ= ,  (44) 

where the noise power gain (NG) gl(p) is specified by (Heinonen & Neuvo, 1987) 

 ( ) ( ) ( )pppg l

T

ll WW=   (45a) 

 ( )∑
+−

=

=
pN

pi

li ph
1

2
  (45b) 

 ( )pa l0= .  (45c) 

and states that reducing noise in the estimate, by diminishing gl(p), means reducing a0l(p). 

4. Low degree polynomial gains for unbiased smoothing FIR filters 

Typically, smoothing of images is provided on short horizons with low-degree polynomials. 
Below, we derive and investigate the relevant unique gains for the uniform, linear, quadratic 
and cubic models covering an overwhelming majority of practical needs. 
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4.1 Uniform model 

A model that is uniform over an averaging horizon of N points is the simplest one. The 
relevant image is characterized with single state and the filter gain is represented, by (36), 
with the 0-degree polynomial as 

 ( )
⎩
⎨
⎧ +−≤

==
otherwise0

11

00

pNp
hph

N

ii .  (46) 

By (45c), the NG of this filter becomes p-invariant, namely g0(p) = g0 = 1/N. Because this gain 
is associated with simple averaging, it is also optimal for a common task (Smith, 1999): 
reducing random noise while retaining a sharp step response. No other filter is better than 
the simple moving average in this sense. However, this gain is not good in terms of the 
estimate bias that reaches 50% when the model behaves linearly. Therefore, the best smooth 
is obtained by this gain at a centre of the averaging horizon, namely when p = – (N – 1)/2. 

4.2 Linear model 
For linear models, the p-lag gain, existing from p to N – 1 + p, becomes ramp 

 ( ) ( ) ( )ipapaph i 11011 += ,  (47) 

having the coefficients 

 ( ) ( )( ) ( )
( )1

1121122
201 −

+−+−−
=

NN

pNpNN
pa ,  (48) 

 ( ) ( )
( )1

216
211 −
+−

−=
NN

pN
pa .  (49) 

At a centre of the averaging horizon provided with p = – (N – 1)/2, the ramp gain 
degenerates to the uniform one (46), 

  ⎟
⎠
⎞

⎜
⎝
⎛ −

−=⎟
⎠
⎞

⎜
⎝
⎛ −

−
2

1
,

2

1
, 11

N
Ng

N
Nh i

N
gh i

1
00 === .  (50) 

With this lag, the ramp gain (47) is thus optimal with its zero bias and minimum possible 
noise produced by simple averaging. It can be shown that an increase in |p| from 0 to (N – 
1)/2 results in reducing the ramp gain negative slope. As stated by (50), the lag p = – (N – 
1)/2 can degenerate this gain to the uniform one (46) featured to simple averaging. Further 
increase in |p| from (N – 1)/2 to N – 1 produces an opposite effect: the gain slope becomes 
positive and such that, with p = – N + 1, the gain function looks like symmetrically reflected 
from that corresponding to p = 0. Definitely, an ability of the ramp gain of becoming 
uniform with p = – (N – 1)/2 must affect the noise amount in the smooth. An investigation of 
the noise reduction can be provided using the NG 

 ( ) ( )papg 101 =
( )( ) ( )

( )1

1121122
2 −

+−+−−
=

NN

pNpNN
.   (51) 
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Instantly one realizes that noise in the smooth has lower intensity than in the filtering 
estimate (p = 0).  Indeed, when p ranges as – N + 1 < p < – (N – 1)/2, the NG traces below the 
bound produced by p = 0. A situation changes when |p| exceeds N – 1. With such values of 
the lag, the NG rises dramatically. One should not be surprised of this fact, because 
smoothing with lags exceeding and averaging horizon is nothing more than the backward 
prediction producing noise lager than in the filtering estimate. 

4.3 Quadratic model 

For the quadratic model, the gain of the unbiased smoothing FIR filter becomes 

 ( ) ( ) ( ) ( ) 2

2212022 ipaipapaph i ++= ,  (52) 

in which the coefficients are defined as 

 ( )

( ) ( )( )
( ) ( )

( )( )41
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3
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NNN
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pNNNNNNN

pa ,  (53) 
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pNNNNN

pa ,  (54) 

 ( ) ( ) ( )
( )( )41

61623
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22

22

22 −−
+−++−

=
NNN

ppNNN
pa .  (55) 

As well as the ramp gain (47), the quadratic one (52) has several special points. Namely, by 
the lags 
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2

1 2

21

−
+

−
−=

NN
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this gain degenerates to the ramp one and, with p = – (N – 1)/2, it becomes symmetric. At 
the middle of the averaging horizon, p = – (N – 1)/2, the gain (52) simplifies to 

 ( )4

2073

4

3

2

1
,

2

22

2 −
−−

=⎟
⎠
⎞

⎜
⎝
⎛ −

−
NN

iNN
Nh i

.  (58) 

The NG associated with the quadratic gain (52) is given by 

 ( ) ( )papg 022 = ,  (59) 

where a02(p) is described with (53).  
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Unlike the p-lag ramp gain (47) having a lower bound for the NG at 1/N, the relevant bound 

for the p-lag quadratic gain (52) ranges upper and is given by 
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This value appears if to put to zero the derivative of g2(N, p) with respect to p and find the 

roots of the polynomial. Two lags correspond to (60), namely, 
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Like the ramp gain case, here noise in the smooth is lower than in the filtering estimate, if p 

does not exceed and averaging horizon. Otherwise, we watch for the increase in the error 

that can be substantial. 

4.4 Cubic model 

The p-lag cubic gain can now be derived in a similar manner to have a polynomial form of 

 ( ) ( ) ( ) ( ) ( ) 3
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with the coefficients defines as 
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As well as the ramp and quadratic gains, the cubic one demonstrates several important 

features, including an ability of converting to the quadratic gain. The special values of p 

associated with this gain are listed below 
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The lags p31, p = – (N – 1)/2, and p36 convert the cubic gain to the quadratic one. These lags 

are therefore preferable from the standpoint of filtering accuracy, because the quadratic gain 

produces lower noise. The lag p32, p = – (N – 1)/2, and p35 correspond to minima on the 

smoother NG characteristic. The remaining lags, p33 and p34, cause two maxima in the range 

of – N + 1 < p < 0. 

The NG corresponding to the cubic gain (63) is given by 

 ( ) ( )papg 033 = .  (74) 

where a03(p) is specified with (64). It can be shown that this NG ranges above the lower 

bound 
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and, with p = const, it asymptotically approaches g3(N, 0), by increasing N. As well as in the 
quadratic gain case, noise in the cubic-gain smoother can be much lower than in the relevant 
filter (p = 0). On the other hand, the range of uncertainties is broadened here to N = 3 and 
the smoother becomes thus lower inefficient at short horizons. In fact, when the gain (74) 
exceeds unity, the 3-degree unbiased smoothing FIR filter loses an ability of denoising and 
its use becomes hence meaningless. 

4.5 Generalizations 

Several important common properties of the unbiased smoothing FIR filters can now be 
outlined as in the following. Effect of the lag p on the NG of low-degree unbiased smoothing 
FIR filters is reflected in Fig. 2. As can be seen, the NG of the ramp gain is exactly that of the 
uniform gain, when p = – (N – 1)/2. By p = p21 and p = p22, where p21 and p22 are specified by 
(61) and (62), respectively, the NG of the quadratic gain degenerates to that of the ramp 
gain. Also, by p = p31 (68), p = – (N – 1)/2, and p = p36 (73), the NG of the cubic gain 
degenerates to that of the quadratic gain. Similar deductions can be made for higher degree 
gains.  
 

 
Fig. 2. Effect of a lag p, p < 0, on the NG of the low-degree unbiased smoothing FIR filters. 
 

The following generalization can now be provided for a two-parameter family of the l-
degree and p-lag, p < 0, unbiased smoothing FIR filters specified with the gain hli(p) and NG 
gl(p):   
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i. Any smoothing FIR filter with the lag p lying on the averaging horizon – (N – 1) < p < 0, 
produces smaller errors then the relevant FIR filter with p = 0. 

ii. Without loss in accuracy, the l-degree unbiased smoothing FIR filter can be substituted, 
for some special values of p, with a reduced (l – 1)-degree one. Namely, the 1-degree 
gain can be substituted with the 0-degree gain for p = – (N – 1)/2, the 2-degree gain 
with the 1-degree gain for p = p21 and p = p22, and the 3-degree gain with the 2-degree 
gain, if p = p31, p = – (N – 1)/2, or p = p36. 

iii. Beyond the averaging horizon, the error of the smoothing FIR filter with p < – N + 1 is 
equal to that of the predictive FIR filter with p > 0. 

iv. The error lower bounds for the smoothing FIR filters with the ramp gain, g1min, 
quadratic gain g2min, and cubic gain, g3min, are given by, respectively, 
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v. With large N, error in the l-degree smoother for p = – N + 1 are defined by 

 ( ) ( )
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NNg
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2

1

1
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+
≈+−

>>
.  (79) 

The initial conditions can hence be ascertained using the ramp and quadratic gains with 

the NGs ≈ 4/N and ≈ 9/N, respectively. 
vi. By increasing N for a constant p such that p << N, the error in the smoother 

asymptotically approaches the error in the relevant unbiased FIR filter with p = 0. 

5. Design and applications of unbiased FMH structures 

In this section, we employ the above derived p-dependent gains in order to design efficient 
hybrid structures suitable for biomedical applications, specifically for ultrasound image 
processing. Every image is considered as an array of two signals, xr and xc, as showed in (1) 
and (2), respectively, and processed as in the following. First, we filter out noise in the row 
vector and then reconstruct the image. Next, the partly enhanced image is decomposed to 
the column vector, the filtering procedure is applied once again, and the fully enhanced 
image is reconstructed. For the sake of minimum errors in the enhanced image, all of the 
above designed low-degree polynomial gains have been examined in the FMH structure. 
Namely, we employ all p-dependent, the ramp gain (47), the quadratic gain (52), and the 
cubic one (63). Two metrics, namely the signal-to-noise ratio (SNR) and the root mean 
square error (RMSE) have been used for the quantitative evaluation of the filter efficiency. It 
is known that FMH structures can be designed to have k substructures and that a number of 
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such substructures needs to be optimized that is a special topic. Postponing the optimization 
problem to further investigations, we mostly examine in this Chapter the basic FMH 
structure and demonstrate the effect of a number of sub-blocks.  

5.1 Basic FIR median hybrid structure 

Figure 3 sketches the block diagram of the basic FIR median hybrid (FMH) structure 
developed in (Heinonen & Neuvo, 1987) to maximize the SNR in the row and column 
vectors. Here, the input signal yn is filtered with 2 FIR filters. The forward FIR filter (FIRFW) 
computes the points on a horizon to the left from the point n. In turn, the backward FIR filter 
(FIRBW) processes data on the same length horizon lying to the right from n. The estimates 
are hence formed as, respectively, 

 ( )∑
+−

=
−=

pN

pi

inli

FW

n yphpx
1

)(ˆ ,  (80) 

 ( )∑
+−

=
+=

pN

pi

inli

BW

n yphpx
1

)(ˆ ,  (81) 

 

Fig. 3. Block diagram of the basic FIR median hybrid (FMH) structure. 

The output signal )(ˆ pxn  is obtained using the nonlinear operator called the “median”. In 

the median structure MED[ )(ˆ pxBWn , yn , )(ˆ pxFWn ] (Fig. 3), the input yn and the outputs of the 

FIR filters, )(ˆ pxBWn  and )(ˆ pxFWn , play the role of entries. Following the median filter 

strategy, the output )(ˆ pxn  becomes equal to the intermediate value that is stated by the 

operator 

 ( ) ( ) ( )[ ]pxypxpx FW

nn

BW

nn ˆ ,  , ˆMEDˆ =  .  (82) 

Note that the best filtering result can be obtained if one sets properly the smoother lag p or 
prediction step p in the FIR filters. Because the basic structure shown in Fig. 3 is commonly 
unable to obtain nice image enhancing, owing to a small number of the entries, a more 
sophisticated FIR FMH structure exploiting different p would provide better performance. 

www.intechopen.com



Enhancing Ultrasound Images Using Hybrid FIR Structures  

 

303 

In this Chapter, we employ the combined FIR FMH structure with k > 1 as shown in 
(Heinonen & Neuvo, 1987). 

5.2 SNR and RMSE metrics 

Image enhancement can quantitatively be evaluated using the SNR and RMSE metrics. 

Given the discrete image mapping ( , )nx i j , where [1, ]i P∈  and [1, ]j Q∈ , and the relevant 

enhanced and reconstructed mapping ˆ ( , )nx i j , the SNR can be estimated (in dB) by  
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In turn, the RMSE in the enhanced image can be estimated with 
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2
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1
.  (84) 

Below, we apply these metrics to ultrasonic images.  

5.3 Simulation and numerical evaluations 

For further investigations, we chose a renal ultrasound image shown in Fig.4. This image 

has been obtained under the conditions accepted in (K. Singh & N. Malhotra, 2004) and 

(Levine, 2007). A part of the image having 250 × 320 pixels of size within the rectangular 

area (Fig. 4) has been processed. We call this part the origin and show in Fig. 5.  

 

 
 

Fig. 4. The original ultrasound image. 
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Fig. 5. A Section of the original ultrasound image of 250 × 320 pixels. 

 

Fig. 6. A contaminated image (Fig. 5) with speckle noise and Gaussian noise, both having 

the variance σ2 = 0.01. 

The image was then intentionally contaminated with Gaussian noise and speckle noise, both 

having the variance σ2 = 0.01, is shown in Fig. 6. To examine and exhibit an efficiency of the 
basic FIR FMH structure, we chose the following parameters: the number of points in the 

average, N = 11, the filter degree, l = 1, and the p parameter p ∈[–1, 1]. The reader must be 
aware that determination of a certain set of the parameters is a special topic of optimization 
(minimizing both the SNR and the MSE) of the enhanced image. 
Figure 7 shows us what is going on with the image if we let in the hybrid structure p = 1 
(one-step predictive FIR filtering). In turn, Fig. 8 and Fig. 9 give us the pictures provided 
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with p = 0 (FIR filtering) and p = –1 (unit-leg smoothing FIR filtering). One can deduce that a 
visual comparison of Fig. 7—Fig. 9 does not reveal dramatic enhancements and a numerical 
analysis is in order. We apply such an analysis below postponing the results to several 
tables. 

 

Fig. 7. An enhanced ultrasound image with N = 11, l = 1, and p = 1. 

 

Fig. 8. An enhanced ultrasound image with N = 11, l = 1, and p = 0. 

5.4 Analysis and discussions 

In order to evaluate numerically the trade-off between the different filtering solutions 
employed in the FIR FMH structures, we use the SNR metric (83) and the RMSE metric (84) 
and apply them both to the reconstructed images obtained with different number k of sub-

blocks, p-parameters, and degrees of the FIR filters, l ∈[0, 3], allowing N = 11. 
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Fig. 9. An enhanced ultrasound image with N = 11, l = 1, and p = –1. 

Fig. 10 and Fig. 11 show the RMSE and SNR as functions of p and Table 1 gives us several 

particular values of these measures. As can be seen, each of the degrees, l ∈[1, 3], allows 

obtaining both the maximum SNR and minimum RMSE. It is also seen that extremes of 

these functions are placed in the range of negative p. Specifically, it was revealed that the 

minimum errors are obtained with the p = -1 lag of the smoothing filter (Table 1). The latter 

speaks in favor of smoothing FIR filters for FMH structures, contrary to the predictive ones 

implemented in (Heinonen & Neuvo, 1987).  

Effect of the FIR filter degree l on the RMSE and SNR is demonstrated in Table 2 for p = -1, p 

= 0, and p = 1. One can observe that the ramp filter (l = 1) produces minimum RMSEs and 

maximum SNRs in each of the cases, although the errors are minimum when p = -1. The 

quadratic gain (l = 2) and the cubic gain (l = 3) produce a bit worse results and simple 

averaging (l = 0) is not a rival with its large RMSE and small SNR. We thus infer that 
 

 
Fig. 10. RMSE in the enhanced image vs. p with N = 11, k = 1, – 5 ≤ p ≤ 5, and 0 ≤ l ≤ 3. 
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Fig. 11. SNR in the enhanced image vs. p with N = 11, k = 1, – 5 ≤ p ≤ 5, and 0 ≤ l ≤ 3. 
 

 p = –3 p = –2 p = –1 p = 0 p = 1 p = 2 p = 3 

RMSE 43.78 42.24 43.31 44.83 45.25 44.31 43.87 
SNR (dB) 15.83 16.24 15.96 15.57 15.46 15.70 15.81 

Table 1. Quantitative evaluation with N = 11, k = 1, and l = 1. 
 

p = –1 l = 0 l = 1 l = 2 l = 3 

RMSE 43.24 43.31 45.87 44.88
SNR, dB 15.97 15.96 15.31 15.55

 

p = 0 l = 0 l = 1 l = 2 l = 3 

RMSE 43.24 44.83 48.33 52.63
SNR, dB 15.97 15.57 14.74 13.81

 

p = 1 l = 0 l = 1 l = 2 l = 3 

RMSE 43.24 45.25 48.49 59.27
SNR, dB 15.97 15.46 14.70 12.56

Table 2. Quantitative evaluation with N = 11, k = 1, and p ∈[–1, 1]. 

complex FIR FMH structures need to be optimized in the sense of the minimum RMSE over 

l and p simultaneously and that there is an optimal solution behind each of such structures. 

The next important point for the optimization is the k of the sub-blocks. At a first glance, 
every new sub-block should reduce errors in the median filter, because the latter acquires 
more entries to make a decision. Indeed, in our experiment illustrated in Fig. 12 and Fig. 13 
this deduction has not been confirmed: an increase in k from 1 to 3 results in these figures in 
the RMSE reduction and increasing the SNR. Table 3 gives us extreme points of these 
functions in the p-domain. 
Effect of noise on the RMSE and SNR in the enhanced image has been investigated by 
changing the noise variance. Fig. 14 and Fig. 15 give an idea about such an influence. First, 
we arrive at an almost self-obvious conclusion that the RMSE rises and the SNR diminishes 
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when the noise variance increases. That is neatly seen in Fig. 14 and Fig. 15. What has 
appeared to be lesser expected is that the RMSE minimum and the SNR maximum both 
remove to the range of larger p since the variance increases. In fact, we watch in Fig. 14 for 

the RMSE minimum at p = -1 with σ2 = 0.02 and at p = 1 with σ2 = 0.08. Certainly this effect 
needs more investigations as being affecting the optimal set of parameters.  
 

 
 

Fig. 12. RMSE in the enhanced image vs. p with N = 11, l = 1, – 5 ≤ p ≤ 5, and 1 ≤ k ≤ 3. 
 

 
 

Fig. 13. Sketches of SNR vs. p with N = 11, l = 1, – 5 ≤ p ≤ 5, 1 ≤ k ≤ 3. 

 

 k = 1 k = 2 k = 3 

RMSEmin 15.13 17.29 18.27

SNRmax (dB) 48.85 47.74 46.63

 
Table 3. Quantitative evaluation with N = 11, l = 1, and p = –1. 
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Fig. 14. RMSE vs. p with N = 11, l = 1, k = 1, – 5 ≤ p ≤ 5, and 0.01 ≤ σ2 ≤ 0.1. 

 

Fig. 15. SNR vs. p with N = 11, l = 1, k = 1, – 5 ≤ p ≤ 5, and 0.01 ≤ σ2 ≤ 0.1. 

6. Conclusion 

In this chapter, we developed the theory of smoothing FIR filtering and applied the results 
to the design of FIR median hybrid filters in order to enhance ultrasound images. General 
smoothing filter gain has been derived in line with the most widely used low-order ones. 
We propose an unbiased solution.  The gain for the unbiased smoother had been developed 
in the unique polynomial form that does not involve any knowledge about noise and initial 
state, thus having strong engineering features. It has been shown experimentally that, as a 
rule of thumb, the smoothing FIR filters with p < 0 allow for lower RMSEs and larger SNRs 
in the enhanced image. On the other hand, our experiments reveal that predictive filtering 
solutions earlier used in (Heinonen & Neuvo, 1987) in ultrasound image processing 
(Morales-Mendoza et. al, 2008, 2009) produce large errors. 

www.intechopen.com



 Image Processing 

 

310 

7. References 

K. Najarian and R. Splinter, Biomedical Signal and Image Processing. New York: CRC Taylor & 
Francis, 2007. 

J. Jan, Medical Image Processing, Reconstruction and Restoration: Concept and Methods. Florida 
USA: CRC Taylor & Francis Press, 2006. 

I. Pitas and A. Venetsanopoulos, Nonlinear Digital Filters – Principles and Applications, Kluwer 
Academic Publishers, 1990. 

N. Kalouptsidis and S. Theodoridis, Adaptive system Identification and signal processing 
Algorithms, Prentice Hall, 1993. 

J. Astola and P. Kuosmanen, Fundamentals of Nonlinear Digital Filters, CRC Press, 1997. 
P. Heinonen and A. Neuvo, FIR median hybrid filters, IEEE Trans. on Acoustic, Speech, and 

Signal Processing, vol. 35, no. 6, pp. 832-838, June 1987. 
P. Heinonen and A. Neuvo, FIR-median hybrid filter with predictive FIR substructures, 

IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. 36, no. 6, pp. 892-899, June 
1988. 

Dumitrescu; B. Positive Trigonometric Polynomials and Signal Processing Applications, Springer, 
Dordrecht, ISBN  978-1402051241, 2007.  

Mathews; V. J. & Sicuranza ; G. L. Polynomials Signal Processing, John Wiley & Sons, New 
York, ISBN 978-0471034148, 2001. 

Y. Shmaliy, An unbiased FIR filter for TIE model of a local clock in applications to GPS-
based timekeeping, IEEE Trans. on Ultrasonic, Ferroelectrics and Frequency Control, 
vol. 53, no. 5, pp. 862-870, May 2006. 

T. Bose, F. Meyer, and M.-Q. Chen, Digital Signal and Image Processing, J. Wiley, New York, 
2004 

Y. Shmaliy, An unbiased p-step predictive FIR filter for a class of noise-free discrete time 
models with independently observed states, Signal, Image & Video Processing, vol. 3, 
no. 2, pp. 127-135, Jun. 2009. 

Y. Shmaliy, Optimal gains of FIR estimators for a class of discrete-time state-space models, 
IEEE Signal Processing Letters, vol. 15, pp. 517-520, 2008. 

Y. Shmaliy, Unbiased FIR filtering of discrete-time polynomial state-space models, IEEE 
Transactions on Signal Processing, vol. 57, no. 4, pp. 1241-1249, Apr. 2009. 

S. W. Smith, The Scinetist and Engineer’s Guide to Digital Signal Processing, 2nd Ed., California 
Technical Publishing, 1999. 

D. Levine, Ultrasound Clinics, ELSEVIER INC., Boston USA, 2007. 
K. Singh & N. Malhotra, Step-by-Step Ultrasound in Obstetrics, Mc-Graw Hill, 2004.  
L. J. Morales-Mendoza, Y. Shmaliy, O. G. Ibarra-Manzano, L. J. Arceo-Miquel and M. 

Montiel-Rodriguez, Moving Average Hybrid FIR Filter in Ultrasound Image 
Processing, Proceeding of 18th International Conference of CONIELECOMP, ISBN: 0-
7695-3120-2, pp. 160 – 164, Cholula, Pue. Mexico, March 2008.  

L. J. Morales-Mendoza, Y. Shmaliy and O. G. Ibarra-Manzano, An analysis of Hybrid FIR 
Structures in application to Ultrasound Image Processing, Proceeding of 1st  
International Conference of WSEAS, ISBN: 978-960-474-071-0, pp. 344-349, Houston 
Tx, USA, May 2009. 

www.intechopen.com



Image Processing

Edited by Yung-Sheng Chen

ISBN 978-953-307-026-1

Hard cover, 516 pages

Publisher InTech

Published online 01, December, 2009

Published in print edition December, 2009

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

There are six sections in this book. The first section presents basic image processing techniques, such as

image acquisition, storage, retrieval, transformation, filtering, and parallel computing. Then, some applications,

such as road sign recognition, air quality monitoring, remote sensed image analysis, and diagnosis of industrial

parts are considered. Subsequently, the application of image processing for the special eye examination and a

newly three-dimensional digital camera are introduced. On the other hand, the section of medical imaging will

show the applications of nuclear imaging, ultrasound imaging, and biology. The section of neural fuzzy

presents the topics of image recognition, self-learning, image restoration, as well as evolutionary. The final

section will show how to implement the hardware design based on the SoC or FPGA to accelerate image

processing.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

L. J. Morales-Mendoza, Yu. S. Shmaliy and O. G. Ibarra-Manzano (2009). Enhancing Ultrasound Images

Using Hybrid FIR Structures, Image Processing, Yung-Sheng Chen (Ed.), ISBN: 978-953-307-026-1, InTech,

Available from: http://www.intechopen.com/books/image-processing/enhancing-ultrasound-images-using-

hybrid-fir-structures



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


