
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322388068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

25

New Concepts of Asynchronous Circuits
Worst-case Delay and Yield Estimation

Miljana Milić and Vančo Litovski
University of Niš, Faculty of Electronic Engineering

Serbia

1. Introduction

Although the benefits of asynchronous design style are undeniable, this style is still a road

that designers rather avoid. There are, however, serious advantages of this digital design

concept that are making it favourable for many applications. Asynchronous circuits need no

clock generation and distribution (Sparso, 2006; Martin & Nystrom 2006), which leaves the

problems related to clock skew behind and saves a lot of chip area. Asynchronous circuits

are characterized with much easier technology migration and good modularity. Very low

EMI occurs during operation, while achieving high noise immunity (Lewis & Brackenbury

2001). Power is consumed only when useful work is done. The absence of the clock itself

reduces the power consumption. These issues are very important while designing portable

systems where battery size and lifetime are important.

Synchronous circuit design styles have enormous commercial practice and very significant

pedigree, and those are the major reasons for the lack of motivation to apply asynchronous

circuit techniques (Davis & Nowick, 1997). Nevertheless, the motivation to pursue the study

of asynchronous circuits is based on the simple fact that all high-performance

‘‘synchronous” design styles are ‘‘asynchronous in the small” (Cortadella et al. 1999)

Because of that, some techniques for desynchronization of synchronous circuits have

appeared lately (Cortadella et al. 2006; Andrikos 2007).

Beside their benefits, some problems related to asynchronous circuit design are still waiting
to be solved. One of the most important is the estimation of asynchronous circuit
performances. That is, determining the delays of the paths in a particular asynchronous
circuit. Early evaluation of the path delays in the circuit helps avoiding early timing
problems as well as circuit performance characterization (Sokolovic, Litovski & Zwolinski
2009). Precise paths delays, of course, can be estimated only in the final steps of the design
process. That is because the delay is extracted from the circuit after layout synthesis. If the
delays do not satisfy the required speed of the circuit, the circuit has to be redesigned. The
same conclusion stands when timing problems occur. This strongly suggests that new
methods are to be offered enabling delay estimation to be performed during the early
phases of digital system design. Our aim here is to establish the application of a standard
logic simulator in asynchronous circuit path delay analysis and parametric yield estimation.
The simplest way to determine the circuit delay is simulation. At the transistor level
complex circuits’ simulation becomes inefficient. To verify the logic function and the timing

Source: Micro Electronic and Mechanical Systems, Book edited by: Kenichi Takahata,
 ISBN 978-953-307-027-8, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Micro Electronic and Mechanical Systems

456

specifications of the circuit, logic simulators dealing with gate level descriptions are used.
However, the delay of the circuit obtained by a logic simulator depends on the input test
vectors. In order to determine the longest and the shortest possible delays in a

combinational circuit, it has to be simulated using all 2n possible input vectors, where n
stands for the number of inputs. Therefore, the simulation is not an efficient solution for
most circuits. On the other hand, since logic simulation is one of the first design steps,
embedding worst-case delay analysis into a logic simulator would ensure early detection of
incorrect design solutions.
The causes of the parameter values’ variations are following: temperature and environment;
technology and process; and specific phenomena within components (such as
electromigration). These variations affect the circuit behaviour over time. Because of them, a
100% parametric yield is not achievable since the responses of all the manufactured circuits
do not satisfy the required timings. The nature of parameter variations is statistical in the
sense that all parameter values are random within a probability interval. As a result, the
response values in particular delays are also randomly distributed within an interval that
depends on the nature of the mapping of parameter tolerances onto response tolerances
(Litovski & Zwolinski 1997).
Timing analysis of a circuit consisting of primitive gates is performed by a timing analysis
tools. These tools can calculate circuit delays that are the result of parametric variations. The
aim of static timing analysis is to verify that a logic circuit satisfies its timing constraints, i.e.
that the logic circuit will function correctly when run at an intended speed (Spence & Soin
1988).
Commercial timing analysis systems are based on statistical timing verification. A problem
that often appears in statistical timing analysis is that the longest paths often become false
paths. Moreover, when considering DSM (deep-submicron) technologies, almost every path
can be considered critical. The critical path of a digital circuit is the longest path or the path
with the largest delay between the input and the output of the circuit (Mak et al. 2004).
Direct methods and sampling methods can be used instead of worst-case and statistical
timing analysis. Direct methods are using formulae that map the parameter tolerances into
the response tolerances. These methods are applied to cases where the parameter variations
are small. Nevertheless, this analysis is, although more accurate, still very time consuming,
since it requires all gate sensitivities with respect to all possible variations to be calculated.

2. How to analyze timings

The purpose of the timing analysis is to determine the following timing constraints:

• Do the signals arrive at ports in time?

• Do the signals stay long enough at the required state to be useful?

• Will the signals propagate with a proper slope?

• Can the hardware run with a specified speed?

• Are there any paths which need additional analysis and modification?
Timing measurements, as already mentioned, can be performed using a circuit simulation,
but such an approach is too slow to be practical. There are two simulation alternatives for
delay estimation in logic circuits. The first approach is based on static timing analysis (STA)
and statistical static timing analysis (SSTA), while the second includes Monte-Carlo analysis.
STA methods evaluate digital circuit timing without simulation. For nanometre
manufacturing processes, which have increased parameter variability, a corner-based STA

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

457

has become inadequate. To avoid this problem, a statistical approach has been proposed:
statistical static timing analysis (SSTA). As a result of SSTA analysis probability density
functions (pdfs) are obtained. The percentage of fabricated dies which meet a required
delay, can then be calculated or conversely, the expected performance for a particular
parametric yield (Maksimović 2000). SSTA aims to determine the distribution of the delay of
a design by accounting for actual statistics of process variations.
In practice, however, complete and exact statistical information is not always available or
might be difficult to obtain from the foundries. In (Sokolović & Litovski 2005) a method for
worst-case estimation of timing-yield that deals with those difficulties is presented. This
method is based on distributional robustness theory (DRT). Nevertheless, since finding the
worst-case estimate is defined as an optimization problem, it requires comparable
simulation and data processing time. The probabilistic nature of the timing behaviour of a
circuit, for selection of the critical path, imposes implementation of statistical analysis and
simulation. However, even with their clear advantages, developing and using statistical
models and methods requires considerable effort. The complexity of the statistical
techniques is still significantly high. These can be reasons for avoiding statistical methods,
but higher process integration and increasing operational speed also make them inevitable
(Mak et al. 2004).
The Monte-Carlo method is based on a large number of circuit simulations (analyses). As a
result, it gives the mean and standard deviation of the delay at the output of the circuit. A
Monte-Carlo simulation cycle has two steps: a sampling step and an analysis step. In the
sampling step, for a given set of parameters (delays of gates in this case) a single random
value for every parameter is produced according to the given probability distribution.
An analysis of the circuit must be performed for each new version of the parameter vector.
In this way a set of different parameter values (properties) of the circuit’s output signals are
obtained. The analysis step, in addition, utilizes these sampled values to derive the arrival
times of all output signals for the given circuit instance.
The desired accuracy determines convergence criteria of the process i.e. the number of
cycles. In fact, there should be no convergence, since the simulation results do not approach
to any particular value. This is why the statistical properties of the responses are monitored.
Once the mean or variance converges to the desired precision range, the procedure
terminates. It takes from a several tens to a few hundreds of Monte-Carlo cycles to achieve
convergence of the results. This means that the timing analysis step should be repeated that
many times (Lin & Davoodi 2008). If, however, each iteration of Monte-Carlo analysis
involves a transistor level simulation of the entire circuit (or the entire circuit path), this
approach will have an unacceptable run time (iscas89.html --).
The design and analysis can significantly be accelerated by application of a logic simulator
for the timing analysis in the Monte-Carlo analysis. A way for timing analysis with a VHDL
logic simulator based on the research in (Maksimović 2000; Maksimović & Litovski 1999;
Maksimović & Litovski 2002) will be presented next. It simplifies the delay evaluation
procedures and speeds them up. In this way a good base for evaluation of asynchronous
circuits’ performances is established. This method will now be explained in more detail.

3. Estimating delays with a logic simulator

Our method for path-delay estimation in asynchronous nonsequential digital circuits is
based on a robust delay estimation algorithm. It makes sense to analyze the circuit paths

www.intechopen.com

 Micro Electronic and Mechanical Systems

458

only in one operating sequence. Because of that, and to be able to implement the suggested
method to sequential circuits, one needs to pay special attention when dealing with circuits
that have feedback loops. When sequential circuits are analysed at the circuit level, the
feedback loops, need to be broken, while, for analysis at the gate level, complex models of
element descriptions are required. The proposed concept can enable acceleration of Monte-
Carlo analysis if it is embedded within the analysis step of the Monte-Carlo loop. The
sampling step of the Monte-Carlo analysis is performed in the usual manner.
To perform a timing analysis that is, a delay estimation of all the paths in a circuit using a
logic simulator, the logic simulation mechanism needs a small modification (Maksimović
2000). Neutral events that do not change the logic value of the signal in a standard logic
simulator are ignored. If the signal description is extended to have a few additional
attributes, such as event, delay value, etc. (Mak et al. 2004; Maksimović & Litovski 1999),
then a change in any of those attributes will be considered as a non-neutral event.
Simultaneous propagation of all input vectors through the circuit is assumed. The values of
delay attributes are accumulated along structural paths, starting from the primary inputs
and ending at the primary outputs or, if necessary, at any particular node inside a circuit. At
the end of this very fast delay estimating process, after only one run of the logic simulator,
all delays of both output signal edges are available.

3.1 Models of gates and signals

For each output signal of the circuit, S, four delay values are estimated:

d1mn(S) – the shortest path delay for a rising edge at S,

d0mn(S) – the shortest path delay for a falling edge at S,

d1mx(S) – the longest path delay for a rising edge at S,

d0mx(S) – the longest path delay for a falling edge at S.

In order to evaluate all worst-case path delays to all the signals in the circuit with just one

simulation, it is necessary to perform simultaneous simulation of the circuit for all input

vectors. To enable this, signals that connect logic gates within the circuit must contain two

types of information: events on the signal, and the shortest and the longest path delays to

the signal. This information is stored within a signal description in the form of two types of

attributes: attributes that contain the delay information, as listed above, and the attributes

for triggering the delay calculation processes in a gate. For a signal, S, the four attributes for

triggering the calculation are:

arr1mn(S) – rising transition of shortest path arrival flag,

arr0mn(S) – falling transition of shortest path arrival flag,

arr1mx(S) – rising transition of longest path arrival flag,

arr0mx(S) – falling transition of longest path arrival flag.

It should be noticed that the signal now does not contain any logic values, as would be the
case in a standard logic simulation.
To process signals described in this way and to perform the delay estimation, the gate model
must include two modes: the activation – propagation mode and the delay calculation
mode. Moreover, the gate description must contain two separate processes; first to calculate
the maximal delay of the falling and rising transitions, and the second to calculate the

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

459

minimal delay of the falling and rising transitions. The activation – propagation mode of the
model in each of these processes in a gate is sensitive to every change of the signal
triggering attribute. After the delay calculation level of the model is activated, it then
updates the output signal delay according to the input signal delay attributes and gate delay
parameters. When the resulting output delay type (delay attribute of the output signal) is
calculated, the output signal changes the particular triggering attribute to trigger processes
in the following gates.

generic (ifo_izl: integer:= 1;
tpd_hlmn : real := 0.9e-9;
tpd_lhmn : real := 1.0e-9;
tpd_hlmx : real := 0.95e-9;
tpd_lhmx : real := 1.05e-9);
. . .

p1: process (in1.d0mn, in1.d1mn, in1.arr0mn, in1.arr1mn,
in2.d0mn, in2.d1mn, in2.arr0mn, in2.arr1mn,
in3.d0mn, in3.d1mn, in3.arr0mn, in3.arr1mn)
variable r,p: real;
variable multipl : real;

begin
multipl := real(ifo_izl);
r:= ((multipl*1.0) + (0.03*(gauss_rng)));
p:= (multipl*0.9 + (0.03*(gauss_rng)));
if (in1.arr0mn or in2.arr0mn or in3.arr0mn) then

out1.d1mn <= min(min(in1.d0mn, in2.d0mn), in3.d0mn) + r;
out1.arr1mn <= true;

end if;
if (in1.arr1mn and in2.arr1mn and in3.arr1mn) then

out1.d0mn <= min(min(in1.d1mn, in2.d1mn), in3.d1mn) + p;
out1.arr0mn<= true;

end if;
end process p1;

p2: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx,
in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx,
in3.d0mx, in3.d1mx, in3.arr0mx, in3.arr1mx)
variable r,p: real;
variable multipl : real;

begin
multipl := real(ifo_izl);
r:= (multipl*1.05 + (0.03*(gauss_rng)));
p:= ((multipl*0.95) + (0.03*(gauss_rng)));
if (in1.arr0mx or in2.arr0mx or in3.arr0mx) then

out1.d1mx <= max(max(in1.d0mx, in2.d0mx), in3.d0mx) + r;
out1.arr1mx <= true;

end if;
if (in1.arr1mx and in2.arr1mx and in3.arr1mx) then

out1.d0mx <= max(max(in1.d1mx, in2.d1mx), in3.d1mx) + p;
out1.arr0mx<= true;

end if;
end process p2;

Fig. 1. Process for assigning minimal and maximal delay of the falling and rising edges for a
tree input NAND gate.

An example of the process for assigning the minimal and maximal delay of the falling and
rising edges for a tree input NAND gate is shown in Fig. 1. The gate inputs are denoted as

www.intechopen.com

 Micro Electronic and Mechanical Systems

460

in1, in2 and in3, and the output as out1. The gate propagation delays for the rising and
falling edges at the output out1 in both processes are denoted by tpd_lhmn/mx (minimal or
maximal time propagation delay from low to high) and tpd_hlmn/mx, respectively
(minimal or maximal time propagation delay from high to low). Each falling transition at an
input of the gate means that one of the falling transition flags at one of the input signals
(in1.arr0mn/mx or in2.-arr0mn/mx or in3.arr0mn/mx) becomes ‘‘true”. This sets a rising
transition flag at the output signal attribute of the gate (out1.-arr1mn/mx) to ‘‘true”. This
corresponds to an OR function. Simultaneously with setting the output flag, the gate model
calculates a new value for the shortest and the longest path delays. The resulting output
shortest and longest path-delay attributes for the rising edge is denoted by out1.d1mn/mx
and is calculated after taking into account the arriving shortest/longest path delays for all
tree gate input signals (in1.d0mn/mx, in2.d0mn/mx, in3.d0mn/mx), the minimal/maximal
delay of the rising edge for this gate (a separate function assigns this value) and the function
f which depends on the gate fanout value. Conversely, a rising transition flag at any of the
gate input signals (in1.arr1mn/mx, in2.arr1mn/mx, in2.arr1mn/mx) produces a falling
transition at the output only if a rising transition has previously arrived at all other gate
inputs (Spence & Soin 1988; Agarwal et al. 2003). This corresponds to an AND function. The
resulting output shortest/longest path-delay attributes for the falling edge, denoted by
out1.d0mn/mx, take into account arrived shortest of longest path-delay input signal
attributes (in1.d1mn/mx, in2.d1mn/mx, in3.d1mn/mx), the minimal/maximal delay of the
falling edge for this gate and the fanout dependent function f. A process denoted with p1
calculates minimal path delays for rising and falling edges while the process denoted with
p2 calculates maximal path delays for rising and falling edges. In this figure, it is also shown
that the delays of a particular gate can be generated by different random functions which
can take into account different input signal slopes, loading capacitances and other
parameters that influence the ranges of rising and falling gate delays, tpd_lhmx and
tpd_hlmx.

3/4

2/3

2/3

2/3

3=max(0,0,0)+3 4=max(0,0,0)+4

3=max(0,0,0)+3

2=max(0,0,0)+2

4/5

7=max(3,2,2,2)+4
9=max(4,3,3,3)+5

3=max(0,0,0)+3

2=max(0,0,0)+2

3=max(0,0,0)+3

2=max(0,0,0)+2

(0) (0)

(0) (0)

(0) (0)

(0) (0)

(3) (4)

(2) (3)

(2) (3)

(2) (3)

(7) (9)

Fig. 2. Illustration of maximal delay estimation method for a possible implementation of a
three input C-element.

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

461

The basic principle of delay accumulation is described in Fig. 2. The figure describes the
maximal delay calculation of all paths in the simple asynchronous circuit which represents
one possible implementation of the tree input C-element. Here, both rising and falling
transitions are applied to all inputs of the circuit. Both, rising and falling transition delays
are updated by each gate. The delay estimation of the circuit stops when all transitions reach
the primary outputs. To analyze delays of the paths the feedback line had to broken.

3.2 Dealing with isolated asynchronous sequential elements

It may be of interest to estimate maximal delays of the rising and falling edges for the path
that is going through the feedback in this circuit. The method that we suggest can be
extended to be able to deal with the elements with loops or feedbacks. In these circuits
longest paths will probably be ones that go through the feedback branches and return to the
input of the circuit. The approach is similar to one used to generate test vectors in sequential
digital circuits described in Ref. (Cheng & Agrawal 1989). Since more sequences must be
observed, the circuit is replicated more times, representing each time sequence, and the
delay along the paths is estimated for as many sequences as necessary. Fig. 3 shows how the
principle would be used to estimate the delay of the longest path for the circuit of a simple
asymmetric C-element. Assume that elements’ delays in this figure are given in
nanoseconds. In the implementation sense, the circuit will not be replicated many times.
Instead of complicating the circuitry, only the results of one estimating simulation will be
applied to the circuit input signals that are connected to the feedback loop. After that the
circuit can be simulated again, with new initial delay parameters. Table 1 shows the results
of repeated estimation for tree sequences.

2/3

1/2
(0) (0)

(0) (0)

(0) (0)

2/3

1/2
(0) (0)

(0) (0)

(3) (5)
(2) (3) (5) (8)

(6) (10)a

b

z'

z

Fig. 3. Illustration of maximal delay estimation method in an isolated sequential element.

time
sequence

tmxr(z)
[ns]

tmxf(z)
[ns]

I 3 5

II 6 10

III 9 15

Table 1. Results of the delay analysis for the asymmetric C gate in tree sequences.

3.3 Assigning the delay to a gate

In order to calculate four different worst-case delays for all paths in one digital circuit, the
gate models must contain all four types of delays. It means that each gate in a circuit is
characterized with four parameters: the maximal delay of the rising edge, the maximal delay
of the falling edge, the minimal delay of the rising edge and the minimal delay of the falling
edge. Nevertheless, assigning a particular delay to the gate and calculating the result is a

www.intechopen.com

 Micro Electronic and Mechanical Systems

462

complex task. There are two delay components in each of gate delay functions (they are
denoted with r and p in Fig. 1). One takes into account the fact that we want to use the gate
models for statistical worst-case delay estimation, and the second must take care of the
netlist of the entire digital circuit, that is the fanout information for each gate in the circuit.
This is expressed by Eq. (1)

random_value_of(tpd_lhmx/tpd_hlmx/tpd_lhmn/tpd_hlmx)*fanout_func(output)=
func(tpd_lhmx/tpd_hlmx/tpd_lhmn/tpd_hlmx)

(1)

where the slash sign (/) represents the OR function.
Considering the first component, we must introduce randomness into the delay assignment

process. This is the crucial step which enables Monte-Carlo analysis. The need for statistical

delay analysis comes from the variations of the circuit parameters. Therefore, the delay

estimation method must also include the influence of parameter variance on minimal and

maximal delays of all signals in the circuit. If the delays were modelled as fixed values, the

worst-case delay values would not be the real worst-case values due to the process

variations. If we consider this fact, we conclude that the solution to this problem can be

delay estimation in the usual manner, while all delay ranges in each gate instance are

generated randomly. Each time the calculation process is activated in a gate, new worst-case

delay values are considered in the signal delay calculations. Since simple models are used

and the calculations are still very time-efficient, the simulations can be performed a few

hundred times to enable statistical delay analysis. In this way a method for statistical static

timing analysis using a standard logic simulator has been developed (SSTA for SLog).

The given delay probability density function determines the delay randomness. Hence, the
gate parameters are the mean values of the probability density function for a particular gate
type. The gate delay information given as parameters incorporates the real fabrication
variations of a particular technology since worst-case delay distributions are characterized
with mean and variance values that should be given as the fabrication technology
parameters. Each gate randomly generates the maximal and minimal delays of the rising
and falling edges with a Gaussian distribution, with the mean and standard deviation
defined according to Eq. (2)

 () () ()[]
πσ

σμ
ϕ

2

2exp
22

p

ppp
p

−−
= (2)

where µp represents the mean value and 2
pσ is the variance of the random variable p

(Litovski & Zwolinski 1997). This function can, of course, be changed if necessary.
The second component of Eq. (1) deals with the real position of the particular gate in the
netlist of the entire circuit. It is well known that the delay of the output signal for a single
gate depends on the number of gates that are driven by that particular gate. If a gate has to
drive two gates, the delay is larger than in the case of driving a single gate. In order to
increase the accuracy of the gate delay model and the entire delay estimation algorithm, the
fanout information of each gate in the circuit netlist must be included in the delay
calculations. To do this, two major modifications must be introduced. One modification
affects the logic gate descriptions. The second must be performed on the digital circuit
netlist. In this way, the real implementation of the circuit is taken into account. For example,

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

463

if one gate output drives two inputs of following gates, it means that all delays of the
particular gate will be increased according to the approximation function. Also, the
technology has a large impact on the fanout_func(output) value, since the function that
gives the fanout dependence of the delay is specific to each technology and each gate type,
and would be given by the manufacturer. The VHDL implementation of this idea will be
shown later.

3.4 The algorithm for path-delay estimation

For statistical estimation of worst-case delays, that is SSTA using a standard logic simulator

– it is necessary to perform a few hundred estimation simulations. The exact number of

simulations, thanks to the nature of the Monte-Carlo process, is not influenced by the

number of parameters but by the required precision and accuracy of the results.

Table 2 gives a description of estimation phases for one sample.

Input:

Output:
step 1:

step 2:

step 3:
initializa
tion
step 4:

-Ranges of delays for rising and falling transition for each gate
-circuit netlist
-library of circuit elements described to support the timing analysis
-Ranges of delays for rising and falling transition for all circuit output signal
-Set all signals in the circuit to be a composite type consisting of the following
attributes:
 4 different delay information (maximal and minimal delays of rising edge and
 maximal and minimal delays of falling edge)
 4 different flags for triggering each delay type calculation in a particular gate
-Initialize all signals triggering flags to "false" value. Setting them to value
"true" starts the calculations.
-Initialize all signals to have zero values of the delay attributes
-Initialize the calculation process by setting the primary input signal triggering
flags to "true"
-Until all signals and gates are processed (all signal triggering flags should be
set to "true") perform the following steps by moving through the topological
levels of the circuit:
-The delay calculation is activated when all input signals of the gate have
triggering flags set to "true". When the delay calculation depends on the logic
function of the gate, it is taken into account. For example, each falling transition
(flag for falling transition is set to "true" at the input of the gate) at an AND
gate input, produces a falling transition at its output (sets the gate output
signal triggering flag for falling transition to "true"), but a rising transition at an
input is able to produce a rising transition at the output only if the rising
transition had previously arrived at all other gate inputs.
-In order to complete all attributes of the gate output signal, before activating
its output transition flag, the corresponding gate delay should be calculated by
processing delays that arrived with input signals of the gate. The particular
delay of the chosen gate is also added to the resulting corresponding delay.
-The estimation terminates when all triggering flags for all output signals are
set to "true".

Table 2. Path-delay estimation algorithm with a logic simulator.

www.intechopen.com

 Micro Electronic and Mechanical Systems

464

The delay values of a particular gate have standard deviation r, which is in our case set to be
3%. This can be varied if necessary. This value is derived from the parameter tolerances for
an integrated circuit fabrication technology.
The circuit is described and simulated at the structural (gate) level, while having available
delay ranges values (minimum and maximum delays) of all building blocks for both rising
and falling edges. When this estimation process is embedded in a Monte-Carlo loop, the
delays for a gate in a circuit will be characterized with a mean and a variance and then
randomly chosen in each estimation process. At the start of the simulation, the circuit is
excited with both rising and falling transitions at all primary inputs. This is referred to as the
initialization phase, where all triggering attributes of all signals at the primary circuit inputs
are set to ‘‘true”, that is the transitions at all primary inputs are initialized. All these
transitions initiate the estimation processes in the gates at the first topological level of the
digital circuit. When these processes are completed, the processes in the first topological
level gates activate the transitions at their outputs to enable the calculation processes of the
gates in the second topological level. As the transitions propagate from primary inputs
towards primary outputs, the gate delays are accumulated along the paths, since an
activation transition for the gate output signal is possible only if the delay of that gate has
been already estimated. Signal attributes for the delay calculation and the calculation
activation are used by the processes in the gate models and their values are dynamically
updated, while the wave of activation shifts from the input to the outputs of the gates and
the entire circuit. Once the circuit calculation activity is exhausted, the shortest and the
longest path delays are available in signal attributes d1mn, d1mx, d0mn and d0mx of each
output signal in the circuit.
It should be mentioned that these simulations, in addition, do not require any kind of
stimuli selection, since they take into account all possible signal transitions. Only
initialization is needed for the calculation processes in the entire circuit.

4. VHDL implementation

As already mentioned, the proposed concept is implemented using the VHDL hardware
description language and simulator. Matlab was used for processing data obtained after
simulations.
In order to have statistical simulation results, a random number generator is needed. Fig. 4
shows a VHDL implementation of the random number generator with a Gaussian
distribution (Zwolinski 2004).

function gauss_rng return real is
variable u1, u2, v1, v2, r, q, p: real;
begin

loop u1:=rand;
u2:=rand;
v1:=u1*2.0 -1.0;
v2:=u2*2.0 -1.0;
r:=v1*v1 + v2*v2;
exit when r<1.0;

end loop;
q:=log2(r);
p:=(sqrt((0.0-2.0)*q/r))*v1;

return p;
end function gauss_rng;

Fig. 4. Gaussian random function generation implementation.

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

465

This function is executed 4 times within each gate, once for each delay type. Function rand
in this description generates random numbers in the interval [0,1], with a uniform
distribution.
In order to verify the efficiency of the applied gate models, we created a simple test circuit
that calls the delay random generation function 600 times. The result of this can be used for
random delay generation of rising or falling edges at the output of this circuit. The resulting
histogram is shown in Fig. 5. In this case, the mean in the distribution is set to 1 ns, while the
standard deviation is 3%. The x-axis shows the delays in [ns] units, and the y-axis represents
the number of particular delay appearances within the corresponding range.

Fig. 5. Histogram of the function for random delays generation.

The shape of the particular delay type distribution function can be of arbitrary complexity. It
is even possible to implement the spatial correlations within those random processes.
Nevertheless, since we speak about a pre layout analysis no data are available for doing that
at this stage.
VHDL models of primitive logic gates and simple asynchronous elements are kept in a
VHDL library. Figs. 6–8 show VHDL modelling of a D-latch, RS-latch and two input C-
element, respectively. It should be noted that D-latch circuit does not have specific
conditions for activating a calculation process, because these circuits have only one data
input.
Considering RS-latch circuit, the situation is far more complicated. It is assumed that this
circuit has two inputs, R and S, and two outputs Q and its complement NQ. At the
beginning of the description, it can be noticed that this circuit requires 18 different generics.
There are 16 delay generics that are related to minimal and maximal delays through the
latch, of four possible input–output combinations (R–Q, R–NQ, S–Q, and S–NQ), and to
both possible signal transitions. The first and the second generics consider fanout values for
the first and the second output. As at the other gate descriptions, these two values are
initially set to one. In the latch instantiation, and after the circuit netlist is being processed,
these values become their actual values that correspond to their actual topological position

www.intechopen.com

 Micro Electronic and Mechanical Systems

466

entity DLatch is
generic (ifo_izl: integer:= 1;

tr_en_qmn : real := 1.0e-9;
tf_en_qmn : real := 0.9e-9;
tsu_d_enmn : real := 0.45e-9;
tr_en_qmx : real := 1.05e-9;
tf_en_qmx : real := 0.95e-9;
tsu_d_enmx : real := 0.55e-9);

port (q : out SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false,
false);
d, en: in SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false,
false));
end DLatch;

architecture only of DLatch is
begin

p1: process (en.d0mn, en.d1mn, en.arr0mn, en.arr1mn,
en.d0mx, en.d1mx, en.arr0mx, en.arr1mx)

variable i, j, k ,l, m, n: real;
variable multipl : real;

begin
multipl := real(ifo_izl);
f<=fanout_func(multipl)
i:= (f*1.0 + (0.03*(gauss_rng)));
j:= (f*0.9 + (0.03*(gauss_rng)));
k:= (f*0.45 + (0.03*(gauss_rng)));
l:= (f*1.05 + (0.03*(gauss_rng)));
m:= (f*0.5 + (0.03*(gauss_rng)));
n:= (f*0.55 + (0.03*(gauss_rng)));

q.arr1mn <= true;
q.arr0mn <= true;
q.d1mn <= en.d1mn + i + k;
q.d0mn <= en.d1mn + j + k;
q.arr1mx <= true;
q.arr0mx <= true;
q.d1mx <= en.d1mx + l + n;
q.d0mx <= en.d1mx + m + n;

end process;
end only;

Fig. 6. VHDL model of the D-latch.

and implementation in the entire circuit. There are two processes in the circuit description,

for determining all maximal (process p1, shown in Fig. 7a) and all minimal delay types

(process p2, described in Fig. 7b). For example, the rising transition at the output Q happens

if both falling transition at input R and rising transition at input S have arrived. The

maximal delay of the rising transition at output Q is then calculated as a maximum between

the maximal delays of the falling transition at R and rising transition S, which arrived at

those inputs, plus the maximal of new, randomly generated maximal delays of the rising

transition delays between S–Q and R–Q ports. The same conditions must be established for

achieving the falling transition at the output NQ, while the maximal delays of the falling

edge at this output are calculated using other values. The falling transition at the output Q

happens if both rising transition at input R and falling transition at input S have arrived. The

maximal delay of the falling transition at output Q is then calculated as a maximum between

the maximal delays of the rising transition at R and falling transition S, which arrived at

those inputs, plus the maximal of new, randomly generated maximal delays of the falling

transition delays between S–Q and R–Q ports. Similar process stands for determining the

minimal delay types.

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

467

entity RSLatch is
generic (ifo_izl_1: integer:= 1;

ifo_izl_2: integer:= 1;
tr_rq_mn : real := 1.0e-9;
tf_rq_mn : real := 0.9e-9;
tr_rq_mx : real := 1.05e-9;
tf_rq_mx : real := 0.95e-9;
tr_rnq_mn : real := 1.0e-9;
tf_rnq_mn : real := 0.9e-9;
tr_rnq_mx : real := 1.05e-9;
tf_rnq_mx : real := 0.95e-9;
tr_sq_mn : real := 1.0e-9;
tf_sq_mn : real := 0.9e-9;
tr_sq_mx : real := 1.05e-9;
tf_sq_mx : real := 0.95e-9;
tr_snq_mn : real := 1.0e-9;
tf_snq_mn : real := 0.9e-9;
tr_snq_mx : real := 1.05e-9;
tf_snq_mx : real := 0.95e-9);

port (q, nq : out SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false, false);
r, s : in SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false, false));

end RSLatch;
architecture only of RSLatch is
begin

p1: process (r.d0mx, r.d1mx, r.arr0mx, r.arr1mx, s.d0mx, s.d1mx, s.arr0mx, s.arr1mx)
variable i, j ,k, l, m, n, o, p : real;
variable multipl1, mulitipl2 : real;

begin
multipl1 := real(ifo_izl1);
multipl2 := real(ifo_izl2);
f1<=fanout_func(multipl1);
f2<=fanout_func(multipl2);

i:= (f1* tr_rq_mx + (0.03*(gauss_rng)));
j:= (f1* tr_sq_mx + (0.03*(gauss_rng)));
k:= (f2* tf_rnq_mx + (0.03*(gauss_rng)));
l:= (f2* tf_snq_mx + (0.03*(gauss_rng)));
if (r.arr0mx and s.arr1mx) then

q.d1mx<=max(r.d0mx,s.d1mx)+max(i, j);
q.arr1mx <= true;

nq.d0mx<=max(r.d0mx,s.d1mx)+max(k, l);
nq.arr0mx <= true;

end if;

m:= (f1* tf_rq_mx + (0.03*(gauss_rng)));
n:= (f1* tf_sq_mx + (0.03*(gauss_rng)));
o:= (f2* tr_rnq_mx + (0.03*(gauss_rng)));
p:= (f2* tr_snq_mx + (0.03*(gauss_rng)));
if (r.arr1mx and s.arr0mx) then

q.d0mx<=max(r.d1mx,s.d0mx)+max(m, n);
q.arr0mx <= true;

nq.d1mx<=max(r.d1mx,s.d0mx)+max(o, p);
nq.arr1mx <= true;

end if;
end process;

Fig. 7. VHDL model of the RS-Latch.

www.intechopen.com

 Micro Electronic and Mechanical Systems

468

p2: process (r.d0mn, r.d1mn, r.arr0mn, r.arr1mn, s.d0mn, s.d1mn, s.arr0mn, s.arr1mn)
variable i, j ,k, l, m, n, o, p : real;
variable multipl1, mulitipl2 : real;

begin
multipl1 := real(ifo_izl1);
multipl2 := real(ifo_izl2);
f1<=fanout_func(multipl1);
f2<=fanout_func(multipl2);

i:= (f1* tr_rq_mn + (0.03*(gauss_rng)));
j:= (f1* tr_sq_mn + (0.03*(gauss_rng)));
k:= (f2* tf_rnq_mn + (0.03*(gauss_rng)));
l:= (f2* tf_snq_mn + (0.03*(gauss_rng)));
if (r.arr0mn and s.arr1mn) then

q.d1mn<=min(r.d0mn,s.d1mn)+min(i, j);
q.arr1mn <= true;

nq.d0mn<=min(r.d0mn,s.d1mn)+min(k, l);
nq.arr0mn <= true;

end if;

m:= (f1* tf_rq_mn + (0.03*(gauss_rng)));
n:= (f1* tf_sq_mn + (0.03*(gauss_rng)));
o:= (f2* tr_rnq_mn + (0.03*(gauss_rng)));
p:= (f2* tr_snq_mn + (0.03*(gauss_rng)));
if (r.arr1mn and s.arr0mn) then

q.d0mn<=min(r.d1mn,s.d0mn)+min(m, n);
q.arr0mn <= true;

nq.d1mn<=min(r.d1mn,s.d0mn)+min(o, p);
nq.arr1mn <= true;

end if;
end process;
end only;

Fig. 7. (continued)

To simulate the circuit few hundred times, a specific VHDL testbench is necessary. This is
shown in Fig. 9. Now, for each particular input of the circuit (instantiated few hundred
times), for the responses to the logic analysis, and for initialization and for the simulation
itself, a specific matrices are formed. The process that performs the timing analysis –
log_timing1, is used for determining the minimal delay of the rising edges of the output
signals for one asynchronous encoder circuit with five outputs. The results of the analysis
are written to a text file.

5. Examples

After completing Monte-Carlo sampling and simulation steps, a huge amount of data can be
expected. Since each gate model consists of four parallel processes, for each of the signal
transitions, which gives the equivalent to four parallel simulations during each run of the
analysis. For example, when the circuit was run through 600 analyses, then the equivalent of
4·600 = 2400 simulations are performed per output. For a circuit that has a small number of
outputs, the resulting statistical data can be presented in the form of a histogram.
Fig. 10 shows the results (histogram) obtained for C-element, described as a logic gate. This
is the easiest form of statistical representation of the simulation results. It is adequate only
for circuits with a small number of outputs.
Considering particular delays of the gate outputs the, the corresponding yield can be easily
determined by counting the number of the delays that fall into the acceptable range, and

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

469

p1: process (in1.d0mn, in1.d1mn, in1.arr0mn, in1.arr1mn,
in2.d0mn, in2.d1mn, in2.arr0mn, in2.arr1mn)
variable r,p: real;
variable multipl : real;

begin
multipl := real(ifo_izl);
f<=fanout_func(multipl)
r:= ((f*1.0) + (0.03*(gauss_rng)));
p:= ((f*0.9 + (0.03*(gauss_rng)));
if (in1.arr0mn and in2.arr0mn) then

out1.d0mn <= min(in1.d0mn, in2.d0mn) + r;
out1.arr0mn <= true;

end if;
if (in1.arr1mn and in2.arr1mn) then

out1.d1mn <= min(in1.d1mn, in2.d1mn) + p;
out1.arr1mn<= true;

end if;
end process p1;

p2: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx,
in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx)
variable r,p: real;
variable multipl : real;

begin
multipl := real(ifo_izl);
r:= (multipl*0.95 + (0.03*(gauss_rng)));
p:= ((multipl*1.05) + (0.03*(gauss_rng)));
if (in1.arr0mx and in2.arr0mx) then

out1.d0mx <= max(in1.d0mx, in2.d0mx) + r;
out1.arr0mx <= true;

end if;
if (in1.arr1mx and in2.arr1mx) then

out1.d1mx <= max(in1.d1mx, in2.d1mx) + p;
out1.arr1mx<= true;

end if;
end process p2;

Fig. 8. VHDL timing processes for the two input C-element.

initialization: for J in 1 to 600 generate
encoder_inst: encoder port map (inp => inputs(J), outp => outputs(J));
inputs(J) <= (others => (0.0, 0.0, true, true, 0.0, 0.0, true, true));

end generate;
log_timing1: process

use std.textio.all;
file log: text open write_mode is "encoder_mn_r.statdel";
variable line_1: line;
variable I, J:integer;
variable izlaz: SDA_std_logic_vector(0 to 4);
variable delay_mn_r : real;

begin
wait for 1 ps;
for J in 1 to 600 loop

for I in 0 to 4 loop
izlaz := outputs(J);
delay_mn_r:= izlaz(I).d1mn;
write (line_1, delay_mn_r, left, 15);

end loop;
writeline (log, line_1);

end loop;
wait;

end process log_timing1;

Fig. 9. Testbench process for writing simulation results for minimal delay of the rising edge
of all encoder output signals into a file

www.intechopen.com

 Micro Electronic and Mechanical Systems

470

dividing it by a total number of simulated circuits. Nevertheless, since the yield is
contributed not only with the speed of the circuit but also based on the defects present
during the chip manufacturing. Many of those defects are timing defects. Therefore, this
methodology can be indirectly used to estimate the yield loss caused by the number of chips
that are not operating with needed performance, or are having timing defects due to the
fabrication process tolerances.

Fig. 10. Histograms of the C-element maximal delays.

Table 3 shows the simulation results of the C-element described at the structural level of

abstraction shown in Fig. 2. The first column of the table shows the output number, the

second shows the delay type for that output, and the third column gives the topological

level of the particular delay type. The next two columns give the worst-case delay

estimation results excluding randomness of the delay value, without and with the fanouts of

each gate. In this case all fanouts are equal to one, giving the same values in these two

columns. The last column shows the results of the statistical analysis of the results. It gives

the mean value and the deviation value of the particular delay type.

statistical
output

delay
type

topol.
level

min/
max

fan-
out mean dev.

mnr 2 1.9ns 1.9ns 1.854 0.455

mxr 2 2.0ns 2.0ns 2.041 0.418

mnf 2 1.9ns 1.9ns 1.859 0.441
1.

mxf 2 2.0ns 2.0ns 2.033 0.439

Table 3. C gate – structural.

Table 4 shows the simulation results of the four stage asynchronous binary counter

consisting of 4 T latches. Table 5 gives the timing analysis results for a generalized C-

element (Myers 2001), shown in Fig. 11. A simple asynchronous address comparator unit

(Myers & Alain 1993) is shown in Fig. 12, and its simulation results are presented in Table 6.

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

471

statistical
output

delay
type

topol.
level

min/
max

fan-
out mean dev.

mnr 4 3.7ns 3.7ns 3.704 0.705

mxr 4 3.9ns 3.9ns 3.898 0.071

mnf 4 3.6ns 3.6ns 3.599 0.681
1.

mxf 4 3.8ns 3.8ns 3.799 0.687

Table 4. T counter.

s00

s01

s10

s11

r00

r01

r10

r11

fset

freset

fc

Fig. 11. Generalized C-element.

statistical
output

delay
type

topol.
level

min/
max

fan-
out mean dev.

mnr 3 2.7ns 2.7ns 2.682 0.058

mxr 4 4.2ns 4.2ns 4.217 0.071

mnf 3 3ns 3ns 2.981 0.058
1.

mxf 4 3.8ns 3.8ns 3.816 0.070

Table 5. Generalized C-element.

b0

ma k
maFk

maTk

maT-k

maF -k

ackk

Fig. 12. Address comparator.

www.intechopen.com

 Micro Electronic and Mechanical Systems

472

statistical
out.

delay
type

topol.
level

min/
max

fan-
out mean dev.

mnr 1 0.9ns 0.9ns 0.900 0.035

mxr 1 0.95ns 0.95ns 0.954 0.036
mnf 1 1.0ns 1ns 1.000 0.036

1.

mxf 1 1.05ns 1.05ns 1.051 0.035
mnr 2 2.0ns 2ns 1.999 0.050

mxr 2 2.1ns 2.1ns 2.101 0.050
mnf 2 1.8ns 1.8ns 1.801 0.053

2.

mxf 2 1.9ns 1.9ns 1.905 0.049

mnr 3 2.8ns 2.8ns 2.773 0.055
mxr 4 4.0ns 4ns 4.000 0.072

mnf 3 2.9ns 2.9ns 2.898 0.060
3.

mxf 4 4.0ns 4ns 4.000 0.072

mnr 2 2.0ns 2ns 1.999 0.052

mxr 3 3.05ns 3.05ns 3.051 0.060
mnf 2 1.8ns 1.8ns 1.802 0.051

4.

mxf 3 2.95ns 2.95ns 2.954 0.064
mnr 1 0.9ns 0.9ns 0.900 0.036

mxr 2 2.0ns 2ns 2.002 0.053
mnf 1 1.0ns 1ns 1.006 0.035

5.

mxf 2 2.0ns 2ns 2.002 0.049

Table 6. Address comparator.

Finally, Fig. 13 shows one complex asynchronous encoder circuit described in (Kondratyev
& Lwin 2002), while table 7 gives its timing analysis results.

Fig. 13. Encoder circuit

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

473

Table 8 gives the simulation run times and the corresponding allocated memory for all these

circuits. These results are for 600 timing simulations per circuit, achieved on an AMD

Athlon processor at 1.14 GHz with 1 GB RAM.

statistical
out.

delay
type

topol.
level

min/
max

fan-
out mean dev.

mnr 1 0.90ns 0.9ns 0.902 0.036
mxr 3 2.85ns 3.8ns 3.823 0.055
mnf 1 1.00ns 1.0ns 0.999 0.036

1.

mxf 3 3.15ns 4.2ns 4.218 0.060
mnr 1 0.9ns 0.9ns 0.900 0.038
mxr 3 2.95ns 3.9ns 3.917 0.060
mnf 1 1.00ns 1.0ns 0.998 0.035

2.

mxf 3 3.05ns 4.1ns 4.121 0.067
mnr 2 1.80ns 1.8ns 1.802 0.049
mxr 5 4.95ns 5.9ns 5.957 0.066
mnf 2 2.00ns 2.0ns 1.999 0.049

3.

mxf 5 5.15ns 6.2ns 6.263 0.066
mnr 1 0.90ns 0.9ns 0.901 0.036
mxr 3 2.85ns 3.8ns 3.819 0.058
mnf 1 1.00ns 1.0ns 1.001 0.037

4.

mxf 3 3.15ns 4.2ns 4.222 0.055
mnr 1 0.90ns 0.9ns 0.897 0.037
mxr 3 2.95ns 3.9ns 3.920 0.060
mnf 1 1.00ns 1.0ns 0.999 0.036

5.

mxf 3 3.05ns 4.1ns 4.120 0.069

Table 7. Encoder.

circuit CPU time [s] allocated memory [kB]

C element 6.3 19.697
T counter 7.7 20.277

Addr. comp 8.2 25.734
Gen C elem 10.5 40.443

Encoder 28.5 92.583

Table 8. Simulation run times and allocated memory.

We have chosen to compare our method with Monte-Carlo analysis based on the application

of standard logic simulations. The merits for comparison are estimation times, complexities

of the approach (number of simulator runs or simulations), required resources. Considering

the quality of the results, it is very difficult to compare these two approaches, since classical

Monte-Carlo analysis requires a huge amount of time for data processing, and obtaining it

in a form that can be comparable with our method. The Table 9 gives the results of

comparison.

www.intechopen.com

 Micro Electronic and Mechanical Systems

474

circuit
allocated

memory [kB]
Estimation time [s]

(CPU time)
Number of
simulations

C element 444 1 16
T counter 375 2 2

Addr.
comp

446 3 4

Gen C
elem

452 4 255

Encoder 480 436 1048576

Table 9. Allocated memory, simulation run times and number of simulations for Monte-
Carlo analysis.

Beside the columns that show simulation run times and the corresponding allocated

memory for this approach, the last column in the table shows how many Monte-Carlo

standard simulations are performed. These simulations are performed for all possible that

for complex circuit the number of possible input combinations can be high enough to enable

statistical processing of the results. But, with a simple circuits, where the number of inputs is

not large enough (if all possible combinations of inputs signals is less than few hundreds),

statistical results processing is impossible. The major improvement achieved with the

proposed method is that all possible input vector combinations are analysed with only one

run of the simulator, that is, with only one timing analysis cycle. Only one run of the

simulator is needed for obtaining all possible worst-case delays.

The proposed method was previously verified on a set of combinational ISCAS benchmark

circuit (Sokolović & Litovski 2005; Lin & Davoodi 2008; iscas89.html --), with up to 9000

gates, and no bottleneck resulted.

6. Conclusion

A new concept for asynchronous circuit delay analysis was presented in this paper. The

method is based on a specific signal and gate modelling. Signals in the circuit do not carry

the information about the logic value of the signal, but the information about the delay and

about the arrival of the information instead. Specific attributes of the signals are introduced

in order to implement that property. The method generates and exploits information about

the fanout of each gate implemented in a complex digital system. It has the ability to deal

with sequential elements containing loops and feedbacks. It was implemented in VHDL and

verified on some particular asynchronous circuits. This way of delay modelling allows for

the delay to become a random variable so that the delay estimation method was

incorporated into Monte-Carlo analysis to produce statistical worst-case delay distributions.

The obtained delay distributions of the output signals can be used for any kind of timing

analysis which will consider the simulated circuit as a whole. This also includes the for

example incremental timing analysis. Having in mind the number and the complexity of the

gate processes, and the number of simulations required to achieve high accuracy, the

simulation times for each gate, as well as the allocated memory show high efficiency of the

proposed method, comparing to very intensive and complex Monte-Carlo analysis.

www.intechopen.com

New Concepts of Asynchronous Circuits Worst-case Delay and Yield Estimation

475

7. References

Agarwal, A. et al. (2003). Statistical delay computation considering spatial correlations. Proc.
of the ASP-DAC 2003, pp. 271 – 276, ISBN: 0-7803-7659-5, Kitakyushu, Japan,
January 2003.

Agarwal, A. et al. (2005). Circuit Optimization using Statistical Static Timing Analysis. Proc.
of the 42nd Annual Conf. on Design Automation, pp. 321-324, ISBN: 1-59593-058-2, San
Diego, California, 2005.

Andrikos, N. (2007). A fully-automated desynchronization flow for synchronous circuits.
Proceedings of the 44th annual conference on Design automation, pp. 982-985, San Diego,
California, Juns 2007, ISSN: 978-1-59593-627-1.

Cheng, T. & Agrawal, V. (1989). Unified Methods for VLSI Simulation and Test Generation,
Kluwer Academic Publishers, Boston/Dordrecht/London, 1989, ISBN: 978-0-7923-
9025-1.

Cortadella, J. et al. (1999). Synthesis of asynchronous control circuits with automatically
generated relative timing assumptions. Proceedings of the 1999 IEEE/ACM
international conference on CAD, pp. 324-331, ISBN:0-7803-5832-5, 1999, IEEE Press
Piscataway, NJ, San Jose, California.

Cortadella, J. et al. (2006). Desynchronization: Synthesis of Asynchronous Circuits From
Synchronous Specifications. IEEE Transactions on CAD of Integrated Circuits and
Systems, Vol. 25, No. 10, October 2006, pp. 1904-1921, ISSN: 0278-0070.
http://courses.ece.uiuc.edu/ece543/iscas89.html

Davis, A. & Nowick, S. (1997). An Introduction to Asynchronous Circuits Design, Technical
Report UUCS-97-013. Septemper 1997, Computer Science Department, University
of Utah.

Kondratyev, A. & Lwin, K. (2002). Design of Asynchronous Circuits Using Synchronous
CAD Tools. IEEE Design & Test, Vol. 19, Issue 4, July 2002, pp. 107 – 117, ISSN:
0740-7475.

Lewis, M. & Brackenbury, L. (2001). CADRE: A Low-power, Low-EMI DSP Architecture for
Digital Mobile Phones. VLSI Design, special issue on low power system design, Vol. 3,
Issue 12, September 2001, pp. 333-348.

Lin, X. & Davoodi, A. (2008). Robust Estimation of Timing Yield with Partial Statistical
Information on Process Variations. Proc. of A Quality Electronic Design, ISQED 2008,
pp. 156 – 161, ISBN: 978-0-7695-3117-5, San Jose, California, USA, March 2008.

Litovski, V. & Zwolinski, M. (1997). VLSI circuit simulation and optimization. Chapman and
Hall, London, ISBN: 0412638606, 1997.

Maksimović, D. (2000). Logic Simulation – Estimation of the Worst-case characteristics of the
Designed Digital Circuits. PhD thesis, Faculty of Electronic Engineering, University
of Niš, Serbia, June 2000.

Maksimović, D. & Litovski, V. (1999). Tuning Logic Simulators for Timing Analysis.
Electronic Letters, Vol. 35, No. 10, May 1999, pp. 800-802, ISSN: 0013-5194.

Maksimović, D. & Litovski, V. (2002). Logic Simulation Methods for Longest Path Delay
Estimation. IEE Proc. Computers and Digital Technique, Vol. 149, No. 2, March 2002,
pp. 53-59, ISSN: 1350-2387.

Mak, T.M. et al. (2004). New Challenges in Delay Testing of Nanometer, Multigigahertz
Designs. Design & Test of Computers, Vol. 21, Issue 3, May-June 2004, pp. 241-248,
ISSN: 0740-7475.

www.intechopen.com

 Micro Electronic and Mechanical Systems

476

Martin, A. & Nystrom, M. (2006). Asynchronous Techniques for System-on-Chip Design.
Proceedings of the IEEE, pp. 1089 – 1120, Vol. 94, Issue 6, June 2006, ISSN: 0018-9219.

Myers, C. (2001). Asynchronous Circuit Design. University of Utah, John Wiley & Sons, Inc.
May, 2001, ISBN: 0-471-41543-X.

Myers, C. & Alain, M. (1993). The Design of Asynchronous Memory Management Unit. Technical
Report CS-TR-93-30, California Institute of Technology, April 1993.

Sokolovic, M. & Litovski, V. (2005). Using VHDL Simulator to Estimate Logic Path Delays in
Combinational and Embedded Sequential Circuits, Proceedings of IEEE Region 8
EUROCON 2005. Conference, pp. 547-550, ISBN: 1-4244-0049-X, November 2005,
Belgrade.

Sokolovic, M., Litovski, V. & Zwolinski, M. (2009) New concepts of worst-case delay and
yield estimation in asynchronous VLSI circuits. Microelectronics Reliability, Vol. 49,
Issue 2, pp. 186-198. ISSN 0026-2714.

Sparso, J. (2006). Asynchronous Circuit Design – A Tutorial. April 2006, Technical University of
Denmark.

Spence, R. & Soin, R. (1988). Tolerance design of Electronic circuits. Addison-Wesley Publ.
Comp. Wokingham, England, ISBN: 978-1-86094-040-8, 1988.

Zwolinski, M. (2004). Digital System Design with VHDL, Prentice Hall, London, UK, 2004,
ISBN 0-13-039985-X.

www.intechopen.com

Micro Electronic and Mechanical Systems

Edited by Kenichi Takahata

ISBN 978-953-307-027-8

Hard cover, 386 pages

Publisher InTech

Published online 01, December, 2009

Published in print edition December, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book discusses key aspects of MEMS technology areas, organized in twenty-seven chapters that present

the latest research developments in micro electronic and mechanical systems. The book addresses a wide

range of fundamental and practical issues related to MEMS, advanced metal-oxide-semiconductor (MOS) and

complementary MOS (CMOS) devices, SoC technology, integrated circuit testing and verification, and other

important topics in the field. Several chapters cover state-of-the-art microfabrication techniques and materials

as enabling technologies for the microsystems. Reliability issues concerning both electronic and mechanical

aspects of these devices and systems are also addressed in various chapters.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Miljana Milić and Vančo Litovski (2009). New Concepts of Asynchronous Circuits Worst-Case Delay and Yield

Estimation, Micro Electronic and Mechanical Systems, Kenichi Takahata (Ed.), ISBN: 978-953-307-027-8,

InTech, Available from: http://www.intechopen.com/books/micro-electronic-and-mechanical-systems/new-

concepts-of-asynchronous-circuits-worst-case-delay-and-yield-estimation

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

