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1. Introduction    

System on Chips (SoCs) have become an all pervasive component in many of the 
equipments - both the common placed and the sophisticated,  that are relied upon by human 
beings in today‘s modern societies; ranging from mobile phones, personal computers, 
microwave ovens, high definition televisions, base stations for cellular mobile 
communication and automobiles. Their penetration into every day aspects of human life, 
and the range of applications and products in which SoCs are being deployed is increasing 
at a rapid pace. To keep up with this rapid pace it is imperative to design SoCs with reduced 
turn-around time and cost. Towards this, SoCs are being increasingly designed by 
integrating existing in house IPs, or third party IPs provided by external vendors. The 
integration process in realizing an SoC implementation consists of several different kinds of 
integration which can be classified as (1) static integration, which is essentially of a non-
functional nature consisting of simple electrical connections (or hookup) of the inputs and 
outputs of different component IPs, (2) dynamic, and (3) functional integration; where, 
besides the pure electrical connectivity, a temporal and a functional dimension, respectively,  
needs to be taken into account [1]. Typical sizes of state of art SoCs range from fifty million 
to a few hundred million logic gates. Designing these SoCs involves an integration process 
consisting of  tens of thousands of pure static connections that needs to be established 
between the input and output ports of the constituent IPs, and when carried out manually 
can result in introduction of  inadvertent errors  [1], involving wrong connections, or even, 
no conncections. The degree of the effects manifested by these errors, depends on when they 
are detected in the design verification cycle. The latter these are observed in the design 
cycle, the more difficult and expensive are these to detect, and consequently, to correct, in 
the implementation. While several approaches have been adopted to tackle the issue of 
integration verification of SoCs, in this chapter, we focus on the use of formal verification 
techniques to solve them.  
While formal verification has been used in, rather, niche areas of functional validations of 
IPs and modules, it has found application in the domain of SoC functional validation only 
recently[13]. With increasing maturity of commercial offerings of formal verification tools by 
EDA vendors this area of application is expected to grow at a fair pace. The issue of which 
category of formal verification approaches needs to deployed, for different aspects of SoC 
functional validation, is however, largely left  unanswered. In this chapter we give a 
glimpse, in Section 2, of the different formal verification techniques that are available, either 
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as academic tools, or as commercial offerings, and see their applicability to different aspects 
of SoC verification. We discuss the underlying concepts, the strengths and weaknesses of 
each approach, the justification for taking these approaches,  so that the interested reader 
can make a judicious choice in their intended application domains. We also point to 
important references in each of the approaches, so that the interested reader can refer to 
them for more details.  
In Section 3, we will briefly allude to existing methodologies using the formal verification 
approaches that have been reported in the literature to set the stage for presenting 
approaches that are not covered by them.  More specifically, we will highlight an important 
aspect of SoC integration verification, vis-a-vis DFT logic, to show the manner in which re-
usability is leveraged through automated generation of re-usable parameterized properties 
and constraints for DFT logic and the hookup or integration logic. And towards “ends 
justifying means“ we will present data and results from their deployment on a real SoC 
design and show the benefits that can be derived from these approaches. In Sections 4, we 
will present one interesting scenario from the domain of DFT IP verification. 
In Section 5 we will summarize the main contribution of our approaches, which are (1) 
effective use of formal techniques based on symbolic model checking in the top level 
verification of SoC integration, (2) effective use of abstraction and modeling of SoC sub-
systems in enabling assertion based formal verification, (3) automated generation of 
assertions and constraints to detect integration errors, (4) automated generation of scripts to 
capture the SoC design information and invoke a formal verification tool on which to prove 
the validity or correctness of these assertions. We will end this section and the chapter by 
drawing conclusions from the presented approaches, data and results, respectively. 
 

 

Fig. 1. Formal Models and System Behaviour 

 

Fig. 2. Generic Structure of the Formal Verification Process 

2. Formal approaches 

In this section,  a brief introduction to formal verification for hardware  and a brief review of 
the different formal verification approach is given. For a detailed presentation and review of 
hardware formal verification techniques and their application to the problem of verifying 
IPs the readers are refered to the survey paper given in reference [3, Greenstreet]. The block 
diagram of the generic structure of the formal verification process, in Figures 1 and 2, 
succinctly explains the key components involved in formal verification. At the most abstract 
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level [Figure 1] formal verification essentially consists of having (1) a general mathematical 
model (M) , capturing abstractly the system being verified,  (2) the system behavior, 
described abstractly, again, through a set of mathematically well characterized formulae 
(Ф), and finally (3) proving that the set of formulae (Ф) holds true on the mathematical 
model (M), represented symbolically by M |= Ф. This is further elaborated in Figure 2, 
where M is either a computational model or a formal logic model,  Ф is a set of formulae 
from a formal logic system, and the proof techniques used for establishing the truth value of 
M |= Ф are either deductive  or  based on model checking. In deductive proof systems, M is 
decribed by a set of axioms (also known as invariants of the system), and the proof method 
essentially consists of establishing that the truth of Ф, in the underlying formal logic,  by 
using only the given set of invariants (or axioms) of the system. The proof is largely driven 
by inputs provided by the user, and therefore not fully automated, though steps in the proof 
may lend themselves to full automation. On the contrary, in the model checking approach, 
the proof is fully automated for some of the underlying formal logic, as it is based on 
constructing the reachable set of states of the system. 

2.1 Symbolic model checking 
A hardware module is formally verified by stating a property on the design and then 
checking that the design satisfies the property. The most commonly specified property is an 
invariant, which expresses a condition on the hardware module that should never happen in 
a reachable state (or conversely, a condition that should always be true in a reachable state). 
Formally, an invariant is a boolean formula over the signals of the module. The module M 
satisfies the invariant I if every reachable state of M satisfies I . Thus, invariant verification 
on a module is performed by computing the set of its reachable states. However, this 
computation is difficult because the set of reachable states can be exponential in the number 
of signals in the module. This exponential growth in the number of states is known as the 

state explosion problem.  
Model checking is one of the most popular approaches to formal verification. In model 
checking, a mathematical representation of a design in the form of a finite state machine 
(FSM) is first constructed.  Any specified behaviour (or a specification) of the design is then 
formally stated in terms of a property, or a assertion, in unambiguous terms, both 
syntactically and semantically,  in a formal temporal logic.  The mathematical model, i.e. the 
FSM, is then analysed using different state traversal techniques starting from the set of 
initial states, to check whether it satisfies the formal temporal property,  on all, or atleast, 
one computational path of the state transition graph that is implicitly generated by the 
above state traversal. This state traversal is known as reachability analysis. In case the 
temporal property is violated or falsified, a trace  with respect to the primary inputs and 
state variables of the FSM, starting from its set of  initial states, is generated up to the  Kth 
set of states, where the property fails on one of its states. This is known as an error trace. This 
search is realized because every set of states that is reachable on each clock cycle starting 
from the set of initial states is stored internally by the model checker. The collection of such 
sets of reachable states is finite for a finite state machine. When each of the reachable state 
set is implicitly represented as a binary decision diagram (BDD), the model checking technique 
is known as symbolic model checking(SMC). BDDs enable a compact representation of the 
set of states. In many situations, the negation of a desired property needs to be verified, so 
that the error trace generated automatically by the symbolic model checker when the stated 
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property is falsified, or the desired property satisfied because of the negation,  will result in 
a sequence of input and state variable  data values in the abstract FSM model. Thus, we 
implicitly use symbolic model checking as a sophisticated search engine. For a number of 
hardware designs, while it may be possible to construct the the BDD representation of a 
very large set of reachable states, it may be impossible and infeasible to explicitly enumerate 
such a set of states. Despite this, in most cases invariant verification based on SMC 
techniques  is limited to a few hundred signals and states.   
In symbolic model checking, properties are specified using different temporal logic, e.g. 
Linear Temporal Logic (LTL), or Computation Tree Logic (CTL) [3]. Some of the temporal 
properties specified in LTL, or CTL, can be equivalently  specified in the form of a finite 
state machine (FSM) using the same set of internal signals that were used to define them in 
LTL, or CTL.  We, next,  give a brief overview of CTL and LTL.  

2.2 CTL model checking 
The main purpose of a model checker is to verify that a model satisfies a user specified set of 
desired properties. Specifications to be checked can be expressed in two different temporal 
logics: the Computation Tree Logic (CTL), and the Linear Temporal Logic (LTL). 
CTL is a branching-time logic. Its formulas allow for specifying properties that take into 
account the non-deterministic, branching evolution of a FSM. The evolution of a FSM from a 
given state can be described as an infinite tree, where the nodes are the states of the FSM 
and the branching is due to the non-determinism in the transition relation. The paths in the 
tree that start in a given state are the possible alternative evolutions of the FSM from that 
state. In CTL one can express properties that should hold for all the computational paths that 
start in a state, as well as, those that should hold only for some of the computational paths. 
As an example, consider the  following CTL formula -  AF p. It expresses the condition that, 
for all the paths (A) starting from a state, eventually in the future (F) condition p must hold. 
Thus, in every possible single path of the computation tree over which the abstract model of 
the design, or system, evolves temporally, it will eventually reach a state in which the 
condition p is logically satisfied; i.e. in the considered temporal logic the formula will be 
asserted as a TRUE, in this state. Differently from this, the CTL formula EF p, has the 
semantics, that requires the existence (E) of any one, or some path that eventually, in the 
future, satisfies p. Similarly, formula AG p semantically implies that condition p is satisfied 
always ( or globally), i.e. it is true in every state in every path that exists in the computation 
tree; while formula EG p requires that there is some path along which condition p is true in 
all states in that path. Other CTL operators are as follows, 

• A[p U q] and E[p U q], requiring condition p to be true until a state is  reached that 
satisfies condition q; 

• AXp and EXp, respectively, require that condition p is true in all, or in some of the next 
states reachable from the current state. 

2.3 LTL model checking 
In this, specifications or properties are expressed in linear temporal logic (LTL). LTL 
characterizes each linear path induced by the FSM (linear time approach). LTL has a 
different expressive power as compared to CTL.  Typical LTL operators are : 

• Fp ("in the future p"), stating that a certain condition p holds in one of the future time 
instants. 
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• G p (" globally p"), stating that a certain condition p holds in all future time instants. 

• p U q ("p until q"), stating that condition p holds until a state is reached where  
condition q holds. 

• X p ("next p"), stating that condition p is true in the next state. 
Compared to CTL, LTL temporal operators do not have CTL path quantifiers A or E. LTL 
formulas are evaluated on linear paths, and a formula is considered true in a given state, if it 
is true for all paths starting in that state. Its performance is similar to CTL model check as 
described above. It has been  shown that the complexity of a LTL symbolic model checking 
algorithm is higher than that of a CTL symbolic model checking algorithm.  

2.4 Bounded model checking 
In Bounded Model Checking (BMC) the model checker instead of evaluating CTL or LTL 
properties on paths over infinite time, does so over a finite time defined by a parameter k 
which represents k units of time. It tries to find a counterexample of increasing length, and 
immediately stops when it succeeds, declaring that the formula is false. The maximum 
number of iterations can be controlled by the parameter k.  If the maximum number of 
iterations is reached and no counter-example is found, then the model checker exits, and the 
truth of the formula is not decided, i.e. it cannot  be concluded that the formula is true, but 
only that any counter-example should be longer than the maximum length.  The model 
checking engine in most implementations of BMC is based on a satisfiability (SAT) solvers 
instead of BDDs.  The complexity of SAT solvers depend on the number of satisfiability 
constraints that need to be formulated, which in turn is directly dependent on the parameter 
k. For reasonable values of k, BMC based on SAT is computationally more efficient than  
SMC based on BDDs [4].  

2.5 Checking invariants 
BMC can be used, not only for checking LTL specification, but also for checking invariants. 
An invariant is a propositional property which must always hold. BMC tries to prove the 
truth of invariants via a process of inductive reasoning, by checking if (i) the property holds 
in every initial state, and (ii) if it holds in every state that is reachable from a state where the 
propositional property holds. 

2.6 Newer approaches 
Here, we highlight the need to look for other formal verification approaches. We present brief 
descriptions of some of the promising approaches that are from areas of ongoing research and 
development in formal verification, in both academic and industrial research circles. 
Formal verification has been applied to many classes of designs [13]. We will discuss this 
aspect in some details in a later sub-section. The key drawback of the automated symbolic 
model checking based formal verification approaches has been the bane of state explosion 
faced by even moderately sized modules. Any module,  in which the number of state 
elements or flip-flops exceeds 1000, is liable to face the issue of state explosion during the 
formal proof of the properties. Microprocessors with modest capabilities, such as the 
following -  non-pipelined instruction stage, single stage instruction pipeline,  four stage 
instruction pipeline, and a four stage instruction pipeline supporting jump and branch 
instructions - are known to result in state explosion. Typically, for the different SMC 
approaches the increasing order of performance are as follows,  
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• CTL, or LTL model checking, 

• Invariance checking using CTL,  

• Invariance checking with the CTL, or LTL temporal properties represented as FSMs, 

• Bounded model checking,  and  

• Bounded model checking with CTL, or LTL temporal properties represented as FSMs. 
One approach to addressing the state explosion problem in such designs is to use 
compositional formal verification techniques, at the module level of the design heirarchy. 
Compositional verification is enabled by the assume and guarantee approach [3]. This is 
shown in Figure 3 below. 
 

 

Fig. 3. Assume and Gaurantee approach to Compositional Verification 

 

Fig. 4. Design Abstractions to Reduce Complexity of Formal Verification 
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Another approach is that of abstraction (see Figure 4 and Figure 5), where the design is 
abstracted (or simplified), to remove portions of design not needed to prove a property. This 
can result in a substantial reduction in the number of flip-flops, thereby enabling automated 
proof convergences of the formal properties. 
However, for complex industrial RISC and DSP processors, or SoCs based on them, even 
these approaches are not be feasible. We will need newer formal verification approaches 
which are not limited by the state explosion problem.  
Recent research carried out by different academic and industrial research groups address 

these capacity issues in formal verification. Though, no stable implementations of formal 

verification tools exist for such approaches, they serve as good pointers to pursue in the 

future to address difficult verification problems.  We give below, very brief descriptions of 

some of the approaches. 
 

 

Fig. 5. Memory Abstraction to Reduce Complexity of Formal Verification  (Each memory bit 
adds to a state bit in the verification process) 

2.7 Generalized symbolic trajectory evaluations  
Symbolic trajectory evaluation (STE) provides a means to formally verify properties of a  
sequential system by a modified form of symbolic simulation. In this the desired system 
properties or specifications are expressed in a notation combining Boolean expressions and 
the temporal next-time operator. If the state space of a system is a lattice, the behavior of the 
sytem can be expressed as a trajectory, a sequence of points in the lattice determined by the 
initial state and the system functionality. Formulas in a simple temporal logic express 
properties of the system. Given a formula, one can derive bounds that trajectories with the 
desired property must obey. In its simplest form , each property is expressed as an assertion 
[A => C], where the antecedent A is a trajectory formula which  expresses some assumed 
conditions on the system state over a bounded time period, and the consequent C another 
trajectory formula which expresses conditions that should result. That is, it determines 
whether or not every state sequence satisfying A must also satisfy C. It does this by 
generating a symbolic simulation sequence corresponding to A, and testing whether the 
resulting symbolic state sequence satisfies C. A generalization allows simple invariants to be 
established and proved automatically.  
The Boolean expressions provide a convenient means of describing many different 
operating conditions in a compact form. By allowing only the most elementary of temporal 
operators, the class of properties that can be expressed is relatively restricted, as compared 
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to other temporal logics. However, it has been found in [5] that many aspects of 
synchronous digital systems at various levels of abstraction can be readily expressed.  It is 
adequate for expressing many subtleties of system operations such as instruction pipelining 
in modern processors.   
The verifier operates on system models in which the state space is ordered by "information 

content". By suitable restrictions to the specification notation, it can be  guaranteed [5] that 
for every trajectory formula, there is a unique weakest trajectory for A and testing adherence 
to C. Also, establishing invariants corresponds to simple fixed point calculations.  STE 
implementation of [5] requires a comparatively small amount of simulation and symbolic 
manipulation to verify an assertion. In [5] it is shown that the length of the simulation 
sequence depends only on the depth of nesting of the temporal next time operators in the 
assertion and the speed of convergence of the fixed point calculations.   
Formal verification techniques such as, symbolic model checking and theorem proving have 
met with limited success because of intrinsic problems related to  state explosion and the 
need for manual intervention, respectively. Even though STE is less sensitive to state 
explosion problem and proven to be a viable methodology for large scale data path 
verification, it suffers from the problem of inexpressibility. Properties which are spread over 
infinite time intervals cannot be expressed in STE, let alone be verified [5,6]. GSTE 
constitutes a very significant extension to STE [8-10]. It has been used successfully by INTEL 
on its new generation microprocessor designs. GSTE addresses the drawbacks of STE and 
has the power to verify complex assertion graphs with which any ω-regular property can be 
equivalently represented, while at the same time it preserves the benefits of STE, like the 
insensitivity to state explosion, thereby capturing the expressiveness of classical model 
checking ([3-4] and [6]).  
Verification of a complex pipelined data path designs and memories using GSTE model 
checking techniques have been reported in the literature. Complex properties which are 
spread over infinite time intervals are specified and verified. The verification time is 
improved by carefully reducing the number of precise nodes used to perform reachability 
analysis, while providing complete state information to the symbolic simulator. These 
results prove the viability of the GSTE methodology as a formal verification technique for 
control dominated designs such as large scale pipelined data paths. GSTE, therefore, seems 
a good candidate formal verification  approach to use, as it appears to scale well with the 
actual implementation model of a processor. 

2.8 Theorem provers 
These are based on formal systems such as logic. For hardware verification, both the 
specification and implementation can be described in a formal logic, and the task of 
verifying the system is to prove that the implementation entails the specification. The core of 
a theorem prover is a set of axioms and inference rules. Using only these, the user can prove 
a theorem, with the system mechanically checking each step in a proof. One of the best 
known theorem provers is the HOL system [3], with which theories of different sorts can be 
built up in a rigorous way using a small number of primitive axioms and inference rules.  
One major advantage is that the proof can be checked mechanically. Another advantage is 
that it can be used to argue at different levels of abstraction. As theorem proving is 
structural rather than behavioral, one can exploit the structure of the system to manage 
complexity.  A major disadvantage of theorem provers is that it can be extremely tedious to 
verify certain low level properties of systems.  
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In [6] the combining of theorem proving and trajectory evaluation is explored, with a 
motivation to gain the benefits of both the approaches. In their theorem proving approach 
the mathematical objects manipulated by the theorem prover are the trajectory assertions. 
VOSS is an implementation of these ideas in which STE is used to perform partial 
verification based on the decomposition of the original specification. Combinational theory 
is then used to combine these results through the use of the theorem prover framework.  

2.9 Logic of Positive Equality with Uninterpreted Functions (PEUF) 
This provides a means of abstracting the manipulation of data by a processor when 
verifying the correctness of its control logic. By reducing formulas in this logic to 
propositional formulas, one can apply Boolean methods such as BDDs and Boolean 
satisfiability checkers to perform the verification. In [7], two approaches have been shown to 
translate formulas in PEUF into propositional logic. The first interprets the formula over a 
domain of fixed length bit vectors and uses vectors of propositional variables to encode 
domain variables. The second generates formulas encoding the conditions under which 
pairs of terms have equal valuations, introducing propositional variables to encode the 
equality relations between pair of terms. In [7] techniques are presented to drastically 
reduce the number of propositional variables that need to be introduced and to reduce the 
overall formula sizes. This allows verification of microprocessors with load, store and 
branch instructions at both the RTL or the gate level model. This again makes the approach 
based on PEUF, a good candidate for solving many formal verification problems. 

3. Existing formal based approaches 

In this section, we first justify the need to resort to formal verification, then we will briefly 
allude to existing methodologies based on the formal verification approach that have been 
reported in the literature to set the stage for presenting newer approaches in latter sections.  
As an example case study, we will present the methods and challenges in verifying the 

integration of Design For Testability (DFT) logic - both BIST and non-BIST, in complex SoCs 

using formal techniques. We will first present a generic architecture of the DFT logic that is 

typically present in state of art SoC designs. For this DFT logic, we will, next, list the 

validation task that needs to be accomplished, to ensure its proper integration into the 

functional logic portion being implemented in a SoC design. We will then identify the 

commonality  that exists amongst the listed tasks from the perspective of verification. We 

will then show how such common verification tasks are amenable to automation. As some 

of these verification flow automations have already been reported in available literature, we 

will briefly describe them in the context of our adoption of these flows, and refer the 

interested reader to relevant reference papers for more details. As these flows are being 

applied in the regression mode, to the various revisions of the currently ongoing 

implementation design of an in-house SoC, we report recent data from our formal 

verification efforts, to show-case the value propositions brought in by these approaches.   

To simplify the above discussion, we will assume that different DFT IPs present in the 
generic DFT architecture are pre-verified. However, in reality, this is not always the case. In 
many situations, it may be necessary to verify even the different DFT IPs, specially, if these 
are parameterized, configurable and auto-generated, to ensure that the version intended for 
integration into the SoC, is indeed being generated correctly. Towards this, we will briefly 
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discuss, how congifurable DFT IPs can be formally verified with a configurable set of 
generic properties, so that alongwith any desired IP configuration, the corresponding set of 
properties are auto-generated to verify the IP. This will demonstrate how re-usability is 
being leveraged through automated generation of re-usable parameterized properties and 
environmental constraints for DFT logic and the integration logic. 

3.1 Justification for using formal approaches to integration verification 
An exceedingly important design phase, which gets carried out in the background, and far 
from the lime-light of the functional features of any SoC, is the integration of DFT logic and 
the verification of this integration to other sub-systems and IPs in a SoC. While this does not 
feature as a prominent front end task in the design of any SoC, it does constitute a 
significant portion of the overall design and verification effort. Any savings in this design 
integration phase, and its subsequent verification, helps in reducing the overall SoC design 
cost. Some of the key components in DFT logic that need to be integrated into a SoC are 
those for 1) testing embedded memories and core logic, 2) control logic to enable different 
test modes to be set up during post-fabrication Silicon testing, 3) multiplexing and control 
logic to enable different test modes to selectively run tests, directly from SoC top level ports 
on different portions of functional logic by bypassing intervening logic blocks, 4) 
configuring scan chains to rout test vectors to different portions of functional logic.   
A key to realizing the above mentioned cost reduction for the above tasks can be through 
their automation. A prominent factor that can help in facilitating automation is the fact that 
most DFT IPs possess behaviors and structures that are of an extremely canonical and 
regular nature, and that these are independent of the functional nature of the SoC. Besides 
this, the interconnection of the IPs to the rest of the logic in the SoC is also of a very generic 
nature. This has resulted in the consolidation of SoC level DFT logic architecture towards a 
highly standardized, and a highly configurable form (known as the DFT sub-system), 
enabling it to be auto-generated through software tools. Individual components within this 
sub-system are auto-generated using point commercial tools addressing the highly 
specialized requirements corresponding to each DFT task. Two such examples are, memory 
and logic BIST controllers. We briefly discuss below the DFT tasks of testing embedded 
memories and core logic in a SoC, in the context of these controllers.    
Present generation SoC designs are built hierarchically with a large number of embedded 

memories of different kinds and sizes and different embedded cores (e.g. processors, 

peripherals, etc.). The embedded cores may themselves have different types of internal 

memories, functional logic blocks and different types of I/O ports.  Built-in self-test (BIST) 

techniques are employed to reduce expensive ATE time for the post manufacturing silicon 

testing of these blocks; besides, they enable low pin count testing, and testing of embedded 

core of SoCs fabricated on low cost packages with fewer pin count. Application of test 

vectors to memories and core logic can span several million clock cycles depending on the 

size of the embedded memories, the core logic, and the testing algorithm employed to 

generate these vectors, resulting in exceedingly long verification times for the BIST 

controllers through simulation. A memory BIST tool needs a description of the   embedded 

memories and memory test pattern generation algorithms to generate and integrate the 

different memory BIST controller logic needed for different types of memories. In a similar 

manner, the logic BIST tool requires a description of the gate level net-list representation of a 

design, to analyze and to extract the core logic portion, before generating the logic BIST 
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controller needed to configure them for testing and for generation of the test vectors specific 

to this configuration. The configuration hook-up logic and the logic BIST controller are then 

integrated into the netlist automatically by the tool. To meet performance, timing and power 

constraints specific to a SoC, and to support scan, self test and clocking, it is often the case 

that, such, auto-generated BIST logic have to be modified, thereby, necessitating their 

verification, to ensure that the modifications do not break the intended behavior or 

functionality.  

Verification of proper integration of memory BIST logic into a design, and any modifications 
to it, to meet performance and timing constraints in the original design, has been 
traditionally done based on simulation techniques. This is often incomplete and time 
consuming, as the correctness of the integration is verified indirectly by running the entire 
test suite developed for memory BIST logic. Even a single change in the control or hookup 
logic and its integration into the rest of the design may necessitate re-running the entire set 
of simulation vectors. Besides being time and compute intensive, the time needed to analyze 
errors detected in these simulation runs and to correlate them to design integration 
problems can be correspondingly large. These simulation test benches are often created 
manually, and may be design specific, making them un-useable across different controller-
memory, or controller-embedded logic configurations. Verification of memory BIST logic 
using formal techniques is appealing, as the behavior of the controller block is sequential, 
while the behavior of the hookup block is combinational. Writing re-usable formal 
properties for such blocks are easy, precise and less time consuming. It is possible to obtain 
comprehensive verification coverage across different environmental constraints, resulting in 
high quality and confidence in the verification process using formal techniques. Formal 
verification of BIST controllers, however, can be difficult, if we include models of embedded 
memories, as in simulation. This is due to the large number of register elements used to 
model memory, which leads to the problem of state explosion and can be overcome by 
effective modeling and abstraction techniques. 
We next justify the need to verify even the auto-generated DFT logic sub-system and its 
integration into the SoC. DFT logic sub-systems have to be verified as different modular 
configurations arising out of generic customizable, configurable and parametrisable 
components may be needed for different SoCs. This implicitly enforces verification 
requirements on the integration of such configurable DFT logic modules into an SoC whose 
RTL itself could be auto-generated with a tool (for example, 1-Team-Genesis [11]) and with 
its own set of configurable functional IPs. While there is variability in the configurations, 
each configuration nevertheless, retains the above characteristics, thereby, rendering the 
verification of DFT logic and its integration into a SoC a very good candidate for formal 
approaches. To leverage the capabilities of FV in the context of auto-generated configurable 
modules, it is essential that the formal properties themselves be configurable and auto-
generated, along with the formal verification environment.  This enables high re-usability of 
properties developed during the tactical formal verification of each module present in the 
DFT logic subsystem in different SoCs. While the generation of DFT logic and its integration 
in a SoC is automated, our approach results in the automation of the verification task as 
well. This enables the complete automation of DFT logic in terms of verification and 
integration in a SoC at the RTL implementation level, resulting in a considerable reduction 
in the overall SoC design cost and design turnaround time. We briefly describe below the 
process by which we systematically achieved this automation. 
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Fig. 6. Generic SoC DFT Logic Architecture 

Verification IPs (VIPs) in the form of formal properties, verification environment  and 
verification tool setup were developed tactically for the maximal configuration possible in  
each block within the standardized configurable DFT sub-system described above, using 
techniques given in [1,2]. These VIPs were then validated on several in-house driver SoC 
designs. Once these VIPs reached a level of maturity by way of functional specification 
coverage, their parameterization in the context of individual blocks were taken up, to enable 
different sets of VIPs to be auto-generated for a given set of parameters specific to a 
particular desired configuration of the DFT sub-system. VIPs necessary to check the correct 
generation of the sub-system includes the VIPs to check the correct integration of individual 
blocks within the sub-system. Different verification sub-tasks related to the validation of 
behavior of DFT logic and its interaction with functional logic under different test modes 
were identified, and corresponding VIPs along with their auto-generation scripts were 
developed tactically. These were then validated on several driver designs.  The tactical 
development of these VIPs on driver SoC designs were then moved into a common 
infrastructure through which desired configurations of the DFT sub-system logic and VIPs 
specific to different SoC designs are generated, enabling high re-use and faster turn-around 
times.      
We next give details of how some of the formal verification flows related to the different 
DFT verification tasks have been achieved. Towards we first briefly describe a generic DFT 
logic architecture typically found in any state of art SoC. 
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Fig. 7. Microcoded Programmable Memory BIST Controller Architecture. 

 

Fig. 8. Flow of Memory Data between PBIST Controller and Embedded Memories 

3.2 Generic SoC DFT logic architecture 
Figure 6 shows the DFT logic architecture typically found in any state of art SoC design. 
This SoC has a heirarchical DFT logic architecture characterised by a complex top level DFT 
sub-system, and depending on the complexity of the constituent IPs, several simpler IP level 
DFT sub-systems could be present. The Functional_IO_Mux block at the top level of the SoC 
routes external inputs to the SoC to either the functional core logic or to the DFT sub-sytems 
depending on the SoC operational modes, viz., functional or test modes. Under the test  
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Fig. 9. Generic Top Level Heirarchical Memory Data Path Architecture in a SoC 

mode, the external inputs are routed by the Test_Pin_Mux block, under different test modes 

to different modules within the top level DFT sub-system or the IP level DFT sub-system. 

The Test_Pin_Mux block achieves the routing to IP level DFT sub-system blocks through a 

IEEE1500 module in the Test_Mode_Ctrl block, which not only enables setting up of the 

various SoC level test modes, but also IP level test modes. The latter is achieved through a 

serial programmation of the Serial_TAM block under the control of the IEEE1500 module. 

The programmation of the IEEE1500 module is carried out by the ATE through top level 

SoC JTAG ports. The  Test_Mode_Ctrl block exercises control over choice of, either serial test 

data, or parallel test data through the Functional_IO_Mux block, through the DFT_IO_Ctrl 

block based on the requirements imposed by the different SoC and IP test modes. The 

different IP level test modes are set by the programmation of the Serial_TAM block  in the 

top level DFT sub-system under the control of the IEEE1500 module. Based on the value 

written into its control register the ports of the different IP level TAM blocks get connected 

to its corresponding ports. Serial data from the top level SoC ports can then be routed 

directly to the individual IP level  Test_Mode_Ctrl blocks to set the desired test modes within 

the IPs.  

The PBIST_Ctrl block  in the top level DFT sub-system is the programmable BIST controller. 
Several PBIST controller blocks can also be present in the IP level DFT sub-systems as 
shown in Figure 6. Memory test data from these controllers and the top level PBIST 
controller, are routed sequentially to top level SoC test ports by the PBIST_Combiner block. 
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The PLL_Combiner block controls the generation of the various functional and test clocks 
with different frequencies needed by different IPs and test controllers under the different 
functional and test modes of operation. These clocks are generated from the top level system 
clock of the SoC. For the sake of brevity we will not discuss the remaining blocks present in 
the top level DFT sub-system.  
The correctness of the  SoC DFT logic architecture described above is established through 
different sets of verification checks carried out at different levels in its module hierarchy. We 
list below some of  them.        

• SoC Level Checks 
- Hook-up checks 
- IO Related Checks 
- Memory Data Path  
- P1500 Slave Verification 
- Test Mode Entry 

• Module Level Checks 
- Burn in monitor module  
- Clock observation module 
- Test secure controller 
- Test clock management module 

There are different categories of connectivity checks (Hook-up Checks) that need to be carried 

out at the top level. As listed below there are a large number of connectivity checks that 

need to be performed at the SoC top level under various categories.  

• Hook-up checks  
- Test pin mux verification 
- Clock propagation checks 
- ATPG reset propagation checks 
- ATPG control signal checks for soft macros 
- Memory power management ports hook up 
- Power switch ports hook up 
- WPI/WPO connectivity from DFT-SS to  complex IO’s, analog macros, digital hard IPs  
- DFT-SS DFT read/write signals to control modules 
- Compression wrapper connectivity 
- Connectivity checks between DFTSS to IPs 
- Burnin monitor input/output connectivity 
- Clock observation/lock observation signal connectivity 
- PLLCM/ADPLL connectivity 
- Connectivity checks for PBIST, DPLL, SCM interface  
- IForce/VSense connectivity checks 
- Memory port connectivity checks 
- Margin mode pin checks 
- Memory power management ports hook up 
- Power switch ports hook up 

• Direct Connectivity 
- TPM, DPLL, SCM, PBIST, ATPG Reset, PRCM Clock,  

• Muxed Connectivity 
- Burnin monitor muxing logic 
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• Safe Value 
- IE, PU/PD, GZ checks 

• Connectivity with inverted value 
- Slew Override checks 

• Test Mode Entry 
- THBMode, TestMode  

• Clock division based on a division factor 
- Clock Observation Module 

• TAM Connectivity 

• Memory Data Path connectivity 

• Register loading through JTAG 
Most of the above checks are simple point to point, static connectivity checks which have 
been discussed in details in references [1,2]. We will discuss below, briefly, one check which 
is more complex as compared to the other checks. More details on this check can be found in 
the references [1, 2]. This is the memory data path (MDP) check, in which, the correctness of 
the pipelined datapath connectivity between a PBIST controller and its corresponding set of 
embedded memories is established. This correctness has to be established individually 
between every possible pair of controller-memory combination. The setting up of each 
unique pair is achieved by a hierarchical mux logic structure known as the Memory Data 
Path (MDP). Each pair can have different numbers of pipelined registers along both the 
forward memory data path (from controller to the embedded memory) and the return path 
(from embedded memory to the controller), to account for the different path delays due to 
different geographical seperations of the embedded memories vis-à-vis the controller 
(Figure 7 and Figure 8).  
 

 

Fig. 10. Automation Flow For Memory Data Verification Using Formal Properties 
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The MDP check consists of the following – correct establishment of a pair, correct temporal 
to and fro transportation of the address, memory and control data between the 
corresponding memory ports and controller ports. Establishing the correctness of a pair 
under a unique control value issued by the PBIST controller is done by ensuring that only 
the desired pair is chosen, and that for this pair no other pair is chosen. As will be seen 
below typical SoCs can have tens of embedded memories of differing types. Besides, each IP 
can have its own local PBIST controller. Figure 9 shows the hierarchical MDP structure in a 
typical SoC, with the grouping of the local MDPs being based on the different power 
domains that each IP belongs to in the SoC. Based on the argument presented earlier in the 
section, formal verification of the MDP structure for an ongoing SoC implementation is 
being carried out using an automated formal verification flow, shown in Figure 10. Details 
of this flow can be found in [1, 2]. We discuss the data obtained from our formal verification 
efforts for this check. 
Of the 14 functional sub-subsystems being integrated into the SoC, 9 are soft IPs, whereas, 5 
are hard, pre-verified, third party IPs, requiring only simple connectivity checks. Full set of 
MDP connectivity checks are carried out on the soft-IPs. The number of memories and their 
corresponding ports on which connectivity checks are performed are listed in Table 1 below. 
 

IPs Number of Memories Ports checked (IP/Mem End) 

Sub-System1 3 td, ta, taw, tar, q,  twen, tm, twrenz 

Sub-System2 1 td, taw, tar, q,  twen, tm, twrenz 

Sub-System3 28 
td, ta, taw, tar, q,  twen, 
tm, twtz, twz, twrenz 

Sub-System4 3 td, taw, tar, q,  twen, tm, twrenz 

Sub-System5 23 td, taw, tar, q,  twen, tm, twrenz 

Sub-System6 2 td, taw, tar, q,  twen, tm, twrenz 

Sub-System7 10 td, taw, tar, q,  twen, tm, twrenz 

Sub-System8 3 
td, ta, taw, tar, q,  twen, tm, 

twrenz,  twtz, twz, tez0 

Sub-System9 1 a, ta, q, ez  tez, tm 

Sub-System10 Hard IP – connectivity checks 
csr, rgs, rds, rdata*,  wdata*, addr*, 

wtz*, ms*, tm, wz*, twrenz 

Sub-System11 Hard IP – connectivity checks 
csr, rgs, rds, rdata*,  wdata*, addr*, 

wtz*, ms*, tm, wz*, twrenz 

Sub-System12 Hard IP – connectivity checks wpi_memory_bist* 

Sub-System13 Hard IP – connectivity checks wpi_memory_bist* 

Sub-System14 Hard IP – connectivity checks wpi_memory_bist* 

Total 74 + connectivity checks NA 

Table 1. Sub-systems, Their Memories and Signals for Formal Verification in Example SoC 

The total number of formal properties for each IP is given in Table 2. This table also shows 
the progression of the checks on different RTL versions released by the design team at 
different points in the temporal evolution of the SoC implementation. Several useful bugs 
were caught by the formal verification runs in each release. As can be clearly seen, over each 
iteration there is a reduction in the number of bugs caught by formal verification.  
Towards the formal verification runs, the set up time needed for the first RTL release using 
our automated flow was approximately 36 hours for all the 14 sub-systems. Most of this 
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time was devoted towards establishing the correct environmetal constraints to be applied at 
the SoC top level for formal verification runs, and the right heirarchical paths of each 
functional IP in the SoC, and each module in the heirarchical DFT logic architecture, to 
enable black-boxing of un-necessary modules. This results in efficient and faster 
convergence of the properties during formal runs. This is a one time effort. Set up times in 
subsequent regression runs are drastically reduced to around an hour. A PERL based script 
is under development to completely automate the above. 
 

 1st iteration 2nd iteration 3rd iteration 4th iteration 

IPs Prps Pass Fail Prps Pass Fail Prps Pass Fail Prps Pass Fail 
SubSys1 148 144 4 148 148 0 148 148 0 149 148 1 
SubSys2 68 67 1 68 68 0 68 68 0 69 68 1 
SubSys3 1344 1312 32 1344 1344 0 1344 1344 0 1372 1372 0 
SubSys4 158 155 3 158 158 0 158 158 0 158 158 0 

SubSys5 1363 1324 37 1363 1363 0 1363 1363 0 1386 1386 0 
SubSys6 48 46 2 48 48 0 48 48 0 54 54 0 
SubSys7 670 660 10 670 670 0 670 670 0 690 690 0 
SubSys8 172 168 4 172 168 0 172 172 0 175 175 0 
SubSys9 38 5 33 38 38 0 38 38 0 38 38 0 

SubSys10 29 21 8 29 29 0 33 33 0 35 35 0 

SubSys11 29 4 25 29 29 0 33 33 0 35 35 0 
SubSys12 NA NA NA 3 3 0 3 3 0 3 3 0 
SubSys13 NA NA NA 3 3 0 3 3 0 3 3 0 
SubSys14 NA NA NA 3 3 0 3 3 0 3 3 0 

Total 4067 3906 161 4076 4076 0 4076 4076 0 4150 4148 2 

Table 2. Data For FV Regression Runs on SoC Sub-system Memories For Different RTL 
releases 

The MDP checks on the different sus-sytems/IPs varies from 5 minutes to 10 minutes, with 
an overall verification time of 90 minutes over different regression runs for different RTL 
releases. Thus, for each RTL release a regression run of the MDP checks can be completed 
within 150 minutes (2.5 hours). Simulation based regressions runs need atleast a day to 
report similar results. This has been consistently observed with respect to other formal 
verification flows developed to carry out the different SoC level integration checks listed 
earlier.  In Table 3 we report some data based on these checks performed on the latest RTL 
implementation release of the SoC discussed above. 
In the next section we take up the task of verifying formally some interesting aspects of one 
of the DFT IP discussed above.  

4. Formal verification of protocols for transfer of programs and data in 
programmable DFT controllers 

An oft repeated claim in the context of formal verification in the verification community,  
both academic, as well as, industry has been that model checking based  formal approaches 
do not work well for designs that have behaviors  involving aperiodic events with long 
latencies, such as found in  Ethernet MAC interfaces and Elastic Buffers.  In this section we 
discuss a strategy devised to formally verify one such design which involves huge 
sequential depths. 
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SL. No.  Properties Passes Fails 

1 
Test Pin Muxing Connectivity 

+ Safe Value Checks 
984 
272 

984 
272 

0 
0 

2 SCM Interface Connectivity 518 518 0 

3 Burn in Monitor 134 134 0 

4 Clock Observation Module Hookup 48 48  

5 Clock divider 1536 1536 0 

6 IO Checks –THBMode 475 475 0 

7 IO Checks – HiZ instruction 475 475 0 

8 IO checks – IDDQ 777 777 0 

9 DPLL Interface Connectivity 90 90 0 

10 
Compression Wrapper 

Connectivity 
153 143 10 

11 
Boundary Scan Register 

Connectivity + Override Checks 
1610 1592 18 

12 
EFuse Connectivity 

+ LDO/BG DFT Checks 
7 
45 

5 
45 

2 
0 

13 Test Secure Controller Hookup 15 15 0 

14 Clock Connectivity Checks 112 112 0 

15 
Burn-In Monitor Connectivity 

+ Module 
95 

161 
95 
161 

0 
0 

16 
IEEE1500 TAM Connectivity 

Checks 
550 550 0 

17 Memory Margin Mode Checks 21 21 0 

18 ATPG Reset Checks 126 73 53 

19 Test Mode ATPG Checks 96 96 0 

20 
DFT Mux Mode 

+ DFT Read/Write Checks 
40 
16 

40 
16 

0 
0 

Table 3. Formal Verification Run Statistics on Different SoC DFT Logic Integration Checks 

In many critical SoCs (with stringent and low DPPM values) post silicon fabrication 
verification of embedded memories using programmable built in self test (BIST) controllers 
involves downloading of memory testing algorithms (for different memory types) in the 
form of microcoded instructions from an external ROM into the internal memory of the BIST 
controller. Besides the algorithms, critical information related to them, such as, the 
embedded memory types and their grouping are also downloaded to enable the controller 
to execute the memory-testing algorithm on each memory in a group. There is a 
predetermined grouping of the algorithms and their memory related information, both, 
within the external ROM and within the internal memory of the controller which enforces a 
strict protocol with branching semantics to be followed during downloads. Due to limited 
capacity of the internal memory, the downloading is interleaved with the execution of the 
memory-testing algorithm by the controller, until each algorithm is downloaded and 
executed on each memory of their target memory groups. It is, therefore, imperative that the 
interface implementing the downloading protocol with branching semantics be verified 
comprehensively for the correct execution of the memory testing algorithms on memories in 
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the targeted groups. In this section, we show how one can effectively use symbolic model 
checking based formal approach to verify a complex protocol involving long sequence of 
events until completion of testing of each embedded memory in the SoC.  

4.1 The microcoded programmable memory BIST controller architecture 
The design under verification here is a ROM Interface which is a block in a programmable 
memory BIST controller IP (Programmable BIST, or PBIST), as shown earlier in Figure 7. 
This  figure shows the architecture  of the PBIST controller. The path through which the data 
from the external ROM flows into the controller and the embedded memories are 
highlighted in green. The different memory testing algorithms (ALGO), the information on 
the memory type (RAM data – RAMD) and the background patterns (BGPs) specific to the 
algorithm, are all downloaded from the external ROM. The external ROM communicates 
with the microcoded PBIST memory controller through the ROM Interface, whereby, the 
relevant data to be downloaded is transferred sequentially to data type specific registers in a 
program register file within the controller. The memories to be tested are grouped into RAM 
Groups (RAMG) (Figure 10). PBIST can be instructed to selectively test specific RAMG’s (the 

targeted RAMG) using either a single ALGO, or a set of ALGOs applicable to the different 
memories in the RAMG. The maximum number of RAM groups and the maximum number 
of different memory testing algorithms supported in the latest version of the PBIST 
controller is 64 (with a maximum of upto 51 memories in each memory group) and 32 (with 
a maximum of upto 14 back ground patterns for each algorithm), respectively. 
 

 

Fig. 10. Memory Test Algorithms and Their Mapping To Memory Groups. 

4.2 Source of enormous sequential depth in the PBIST controller’s ROM interface 
behaviour 
For the maximum number of algorithms, the maximum number of RAM groups and the 
maximum number of background patterns that can be supported by a single PBIST 
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controller, we can easily calculate the maximum number of clock cycles it takes for the 
controller to assert its MDONE (or PASS) signal in case no memory errors are detected by 
any of the algorithms executed in each memory in each RAM group. To simplify this 
calculation we will assume the following relevant set of data values :    

• There are 32 ALGO, 14 BGP in each ALGO, 64 RAMG and 51 RAMs in each RAMG.  

• Each ALGO targets all the RAMG.  

• The ROM has a data read latency of 1 clock (we ignore all clocks during which the 
controller does not attempt to fetch any data from the ROM; for example,  during a 
switch over from the ALGO section to RAMD section, during the execution of a 
memory testing algorithm on a specific memory in a specific RAM group ).  

For the above set of assumed values, the number of clock cycles required to just fetch all the 
relevant data from the ROM into the PBIST controller based on the transaction protocol 
shown in Figure 11 alone can be easily seen to be,  

 [34+{2+(64*51*10)}*14]*32 = 14.2 million cycles! 

 

 

Fig. 11.  Transaction Protocol followed by the ROM Interface logic and its functional 
classification. (Each functional category is numbered in red, while the test case covering it is 
numbered in green.) 

As can be easily noted,  this is a rather conservative figure, as  we ignore all clock cycles 

consumed during suspension of data downloads. Besides, if the latency is higher, than the 

optimistic value of 1, the sequential depth would be even larger. Symbolic Model Checking 

tools, such as IFV, are incapable of handling functional behaviors with such enormous 

sequential depths. This was borne out by the fact that even simple properties written to 

validate the ROM interface behavior exhibited state explosion. 
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4.3 Verification strategy 
To verify design behavior involving exteremly large sequential depths we cannot take 
recourse to structural abstraction techniques based on module heirarchies to reduce the 
complexity of the verification effort.  A close look at the root cause of the issue reveals the 
following - during  the download process of a data element from the external ROM, one part 
of a switching logic block is repeatedly exercised every time the control jumps from 
downloading data from the memory testing algorithm section to the memory data section. 
Therefore, for a maximum of N memory testing algorithms that are supported by the 
protocol, this logic will be exercised N times. This also implies that a property written to 
verify the sequence of events associated with this switching, would be triggered N times in 
the antecent of the property and, therefore, the final pass status, depending on the 
satisfaction of the consequent of the property will be declared, after an extremely large 
sequential depth with respect to the set of initial states is traversed. A simple startegy of 
reducing N, to say 5, not only exercises the switching logic to check for any corner case 
arising from the switch in data transcation from the algorithm portion to the memory data 
portion, and vice-versa; but also results in a smaller sequential depth. This simple idea is 
similarly used to reduce the number of background test patterns assigned to each ALGO, 
the number of memory groups, and, finally, the number of memories in each group. 
Towards this, we chose values of 5 for the number of algorithms, 5 for the background 
patterns, 5 for memory groups and 5 memories in each group, respectively. 
We simplified the verification task, further, by splitting the environment to enable 
verification of two different cases: 
i. 1 algorithm, 1 BGP, 1 RAMG and 5 RAMs in each RAMG.  
ii. 5 algorithms, 5 BGP, 5 RAMG and 1 RAM in each RAMG.  
The two cases have been carefully chosen to further reduce the sequential depths traversed 
by IFV to prove the corresponding properties, as well as, exercise complementary portions 
of the corresponding logic in the RTL. For example, in test case 1,  logic enabling transition 
to a new memory testing algorithm will not be exercised, as only one algortihm is assumed 
to be present; while in test case 2,  logic enabling transition to a new memory in a memory 
group will not be exercised, as only one memory is assumed to be present in each memory 
group. The gaurantee on the exhaustiveness of the verification process with respect to the 
entire functional behavior of the ROM interface logic is based on the following 
considerations. A complete analysis of the RTL functionality results in its being classifiable 
into the following seven categories:  
1. Branching into the RAMD section once an algorithm and the first BGP have been 

fetched from the external ROM and transferred to the PBIST controller. 
2. Branching from the RAMD section into a wait mode and remaining in that mode until 

an external signal flags the completion of a memory testing algorithm test on the 
corresponding RAM. 

3. Once a RAM has been tested, the information for the next RAM within the same RAMG 
needs to be fetched provided the currently chosen RAM is not the last RAM within the 
present RAMG. 

4. Once a chosen testing algorithm has been executed completedly on all the RAMs in a 
RAM group, control should revert back to the BGP section to enable fetching the next 
BGP, corresponding to the memory test algorithm to be run on the next memory group. 

5. After a RAM has been tested, the information for the first RAM of the next RAMG needs 
to be fetched, provided the current RAM is the last RAM within the current RAMG 
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6. After all the memory testing algorithms with all their respective BGPs have run on all 
their targeted RAMs, the control should revert back to the idle state of the underlying 
control FSM of the ROM interface logic. 

7. Once a RAM has been tested the control should revert back to the ALGO section to 
enable fetching the next ALGO, in case all the RAMs targeted by the current algorithm 
have been tested. 

The above categories of logic are marked on a process flow diagram to ensure that none of 

the interface functionality is missed by the above classification. This flow diagram is shown 

below in Figure 11. In this figure, the verification test case which covers one of the above 

sub-functionality is marked in green and red, respectively.  The overall coverage for each 

test case is captured in Table 4 below. 

 

Verification Test Cases Targeted Functionalities 

Test Case 1 1,2,4, 6 & 7 

Test Case 2 1,2,3, 5 & 6 

Table 4. Functional category coverage by the different test cases. 

4.4 Results from formal verification runs  
The results from different formal verification runs based on the approach discussed above 

are shown in Table 5. A significant improvement is observed in the run-times of the 

different properties - many of the properties, which suffered state-space explosions earlier, 

converged; while, many converged properties from earlier runs report significant reduction 

in their run-times. We report results from IFV runs on two properties in Table 6. 
 

 

Table 5. Formal verification results from proposed approach. 
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Property Name Targeted Functionality Result before Result After 

ramgroup_start 
To check the FSM state transition and 
other events that are expected during 
the control transfer to a new RAMG

Passed in 
12.7 hrs 

Passed in 
3.95 hrs 

ram_addr_write_str 

The last word in the RAMD for each 
RAM is STR. It is a mnemonic for the 

start instruction issued to the 
controller to start the memory testing. 
This property checks the transfer of 
this instruction to the corresponding 

register of the controller and the 
associated events. 

Exploded in
12.7 hrs 

Passed in 
8.96 hrs 

Table 6. Comaprison of Formal Verification Results from different approaches. 

4.5 Another useful methodology based on functional compositional verification  
While the above proposed approach significantly improved the convergence of the property 

set needed to verify the ROM interface functional behavior with reduced runtimes, a few 

properties continued to suffer state-space explosions, as seen from the results presented in 

Table 5.  Fortunately, the convergence issue related to such properties was much simpler to 

analyse and resolve. The simple startegy of splitting the original property into several 

smaller sub-properties resolved convergence issues. As an example, consider the property 

which verifies the sequential transfer of the first 36 words in a ALGO section, to their 

respective registers in the program register file of the controller. This property took 17 hours 

in IFV to converge. It was then split into 36 different properties, with each one dedicated to 

verifying just one word in the sequence of 36 words. This entire set of 36 properties took less 

than 8 hours to converge. 

Functional behaviors involving extremely large sequential depths can pose a formidable 

challenge to existing automated formal verification approaches. However, analysis of such 

behavior usually lend themselves to prudent partitions; while these, in most cases suffer 

from specificity, usually result in convergence of formal verification runs on the partitioned 

behaviours. 

5. Summary and conclusion 

To summarize, the key motivation of our approach has been to automate integration 
verifications of IPs and DFT logic towards, 1) cycle time reduction by a factor of two in the 
DFT logic verification task by minimizing usage of simulation based chip level verification 
requirements, 2) improvement in Silicon quality by elimination of all DFT logic and its SoC 
integration related bugs and 3) deployment of DFT logic generation, its integration in SoC 
and its verification through a common infrastructure to facilitate re-use of these tasks across 
different SoC designs. One of the key contributions in the automation of the DFT logic 
verification task has been the deployment of formal verification techniques, as justified 
above. 
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Based on our experience in deploying the proposed approach, good insight has been 

developed into the DFT verification problem for comparison of simulation based and formal 

approaches. Experimental data using a commercial formal verification tool IFV [12] show 

that the proposed approach is an order of magnitude faster than approaches based on 

simulation. Though we report our results based on IFV, our approach is independent of any 

FV tool and can work with any FV tool which supports the Property Specification Language 

(PSL), or the System Verilog Assertion (SVA) language. 
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