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1. Introduction     

Riser systems are inextricable parts of integrated floating production and offloading systems 

as they are used to convey oil from the seafloor to the offshore unit. Risers are installed 

vertically or they are laid obtaining a catenary configuration. From the theoretical point of 

view they can be formulated as slender structures obeying to the principles of the Euler-

Bernoulli beams. Riser-type catenary slender structures and especially Steel Catenary Risers 

(SCRs) attract the attention of industry for many years as they are very promising for deep 

water applications. According to the Committee V.5 of the International Ship and Offshore 

Structures Congress (ISSC, 2003), “flexible risers have been qualified to 1500m and are 

expected to be installed in depths up to 3000m in the next few years”. In such huge depths 

where the suspended length of the catenary will unavoidably count several kilometers, the 

equivalent elastic stiffness of the structure will be quite low enabling large displacements. 

The later remark implies that even small excitations could cause significant excursions in 

both in-plane and out-of-plane directions. Therefore a 2D formulation, although adequate in 

predicting the associated dynamics in the reference plane of the static equilibrium, it would 

be certainly a short approximation.  

Furthermore, in deep water installations, for practical reasons mainly, the riser should be 

configured nearly as a vertical structure in order to avoid suspending more material. The 

nearly vertical configuration which ends in a sharp increase of the curvature close to the 

bottom, results in extreme bending moments at the touch down region. The static bending 

moment which is applied in the plane of reference of the catenary is further amplified due to 

the imposed excitation set by the motions of the floating structure. It has been generally 

acknowledged that the heave motion is the worst loading condition as it causes several 

effects, which depending on the properties of the excitation, can be applied individually or 

in combination between each other. Indicative examples are the seafloor interaction, 

buckling-like effects, “compression loading” and heave induced out-of-plane motions.  

For the formulation of the seafloor interaction, various approaches have been proposed and 
it appears that the associated effects continue to attract the attention of the research 
community (Leira et al., 2004; Aubeny et al., 2006; Pesce et al., 2006; Clukey et al., 2008). 
“Compression loading” has been studied mainly in 2D (Passano & Larsen, 2006 & 2007; 
Chatjigeorgiou et al., 2007; Chatjigeorgiou, 2008), while buckling-like effects and possible 
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destabilizations are mainly considered for completely vertical structures (Kuiper & 
Mertikine, 2005; Gadagi & Benaroya, 2006; Chandrasekaran et al., 2006; Kuiper et al., 2008). 
The content of the present work falls in the last category of the effects that were mentioned 
previously. The main concern of the study is to identify the details of the out-of-plane 
response which is induced due to motions imposed in the catenary’s plane of reference and 
in particular due to heave excitation. Relevant effects called as “Heave Induced Motions” 
have been investigated experimentally in the past by Joint Industry Projects (JIP). According 
to HILM (Heave Induced Lateral Motions of Steel Catenary Risers) JIP led by Institut 
français du pétrole (Ifp), the phenomenon was first recorded during the HCR (Highly 
Compliant Riser Large Scale Model Tests) JIP led by PMB Engineering, in which a steel 
catenary riser was excited by heave motion in a stillwater lake. The pipe was subjected to 
out-of-plane cyclic motions. The same behaviour was observed during the HILM JIP 
measurements (LeCunff et al., 2005).    
Apparently, the associated phenomena can be captured numerically only by treating the 
governing 3D dynamical system. To this end, the associated system is properly elaborated 
and solved numerically using an efficient finite differences numerical scheme. 

2. Definitions 

A fully immersed catenary slender structure is considered. The catenary is modeled as an 
Euler-Bernoulli slender beam, having the following geometrical and physical properties: 
suspended length L, outer diameter do, inner diameter di, submerged weight wo, mass m, 
hydrodynamic mass ma, cross sectional area A and moment of inertia I. The quantities do, di, 
A and I, correspond to the unstretched condition, while wo, m and ma are defined per unit 
unstretched length. The Young modulus of elasticity is denoted by E and accordingly EA 
and EI define the elastic and bending stiffness respectively. Finally, it is assumed that the 
catenary conforms to a linear stress-strain relation.  
Next the generalized motion and loading vectors (Fig. 1) are defined. These are  

 [ ]TwvutsV θφ=);(
j

 (1) 

 [ ]Tnbbn MMSSTtsF =);(
f

 (2) 

where u, v, w are the tangential (axial), normal and bi-normal velocities, respectively, φ  is 

the Eulerian angle which is formed between the tangent of the line and the horizontal in the 

reference plane of the catenary, θ is the Eulerian angle in the out-of-plane direction, T is the 

tension, Sn and Sb are the in-plane and the out-of-plane shear forces and finally Mb and Mn 

are the bending moments around the corresponding Lagrangian axes b
f

 and n
f

, namely the 

generalized loading that causes bending in the in-plane and the out-of-plane direction, 

respectively. The moments Mb and Mn are associated with the corresponding curvatures Ωb 

and Ωn according to Mj=EIΩj, for j=n,b.  

 In the general case where steady current is presented, the relative velocities should be 

considered. These are written as ttr Uuv −= , nnr Uvv −=  and bbr Uwv −= , where Ut, Un 

and Ub are the components of the steady current parallel to t
f

, n
f

 and b
f

, respectively. The 

elements of the vectors defined through Eqs. (1) and (2) are all functions of time t and the 

unstretched Lagrangian coordinate s. 
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3. Dynamic system 

The 3D dynamic equilibrium of the submerged catenary is governed by ten partial 
differential equations. These equations are provided in the following without further details 
on the derivation procedure. For more details the reader is referenced to the works of 
Howell (1992), Burgess (1993), Triantafyllou (1994) and Tjavaras et al. (1998).   
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In Eqs. (3)-(5) Rdt, Rdn  and Rdb denote the nonlinear drag forces which are expressed using 
the Morison’s formula. Thus,  

 ( ) 2/11
2

1
evvCdR trtrdtodt +−= πρ  (13) 

 ( ) 2/1
2/122 1

2

1
evvvCdR brnrnrdnodn ++−= ρ  (14) 
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 ( ) 2/1
2/122 1

2

1
evvvCdR brnrbrdbodb ++−= ρ  (15) 

where Cdt, Cdn and Cdb are the drag coefficients in tangential, normal and bi-normal 
directions respectively. Normally, for a cylindrical structure, the in-plane and the out-of-
plane drag coefficients are equal while the tangential coefficient is very small and the 
associated term can be ignored without loss of accuracy. Finally, e denotes the axial strain 
deformation, which for a linear stress-strain relation is written as e=T/EA.  

4. Numerical solution of the governing system using finite differences 

The numerical method employed herein, is the finite differences box approximation 
(Hoffman, 1993). Unlike the very popular finite element methods, the existing works which 
are related to the application of numerical approximations that rely on finite differences, 
concern mainly the dynamics of cables and mooring lines which have a negligible bending 
stiffness (Burgess, 1993; Tjavaras et al., 1998; Ablow & Schechter, 1983; Howell, 1991; 
Chatjigeorgiou & Mavrakos, 1999 & 2000; Gobat & Grosenbaugh, 2001 & 2006; Gobat et al., 
2002). The employment of the bending stiffness in mathematical formulations of cable 
dynamics is done for special applications such as low tension cables, towing cables, highly 
extensible cables and mooring lines in which the cycling loading leads to slacking 
conditions, i.e. cancellation of the total tension.  
With regard to the studies on pipes, for which the omission of the bending stiffness will 
unavoidably lead to loss of important information, the finite differences approximation has 
been used mainly for the solution of the static equilibrium problem (Zare & Datta, 1988; Jain 
1994) or as a numerical scheme for the integration in the time domain, alternative to 
Houbolt, Wilson-θ and Newmark-ǃ methods (Patel & Seyed, 1995). As far as the dynamic 
equilibrium problem is concerned, box approximation has been employed recently by 
Chatjigeorgiou (2008) for the development of a solution tool that treats the two dimensional 
nonlinear dynamics of marine catenary risers.   
For the governing system at hand (Eqs. (3)-(12)), the recommended procedure for employing 
a finite differences approximation requires that the set of equations should be first cast in a 
matrix-vector form. Thus, the concerned equations are written as 

 0)( ,, =+
∂
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YF
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M  (16) 

where [ ]TY bnnb SSTwvu ΩΩ= θφ . The mass and stiffness matrices, M 

and K, and the forcing vector F are defined in Appendix A.  
Next, Eq. (16) is discretized in both time and space using the finite differences box 
approximation. This is the approach taken by several authors mentioned in the references 
section of the present work. With this scheme, the discrete equations are written using what 
look like traditional backward differences, but because the discetization is applied on the 
half-grid points the method is second-order accurate. The result is a four point average, 
centered around the half-grid point. Thus, Eq. (16) becomes 
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According to the matrix-vector Eq. (17) the governing partial differential equations are 
defined in the center of [i,i+1] and [k-1,k], namely at [i+1/2, k-1/2]. The subscripts k define 
the spatial grid points (the nodes) and the superscripts i define the temporal grid points (the 
time steps). For n nodal points (k=1 corresponds to the touch down point at s=0 and k=n 
corresponds to the top terminal point where the excitation is applied) Eq. (17) defines a 
system of 10·(n-1) equations to be solved for the 10·n dependent variables at time step i+1. 
The ten equations needed to complete the problem are provided by boundary conditions. 
The algebraic equivalents of the governing Eqs. (3)-(12) are derived using the grid 
transformation proposed by Eq. (17). The associated algebraic equations are given in 
Appendix B of the present paper. The boundary conditions which are needed to complete 
the final 10·n algebraic system correspond to zero bending moments at both ends of the 
catenary, zero motions at the bottom fixed point and specified time depended excitations at 
the top in three directions. The final system is solved efficiently by the relaxation method. 

5. Discussion on the contribution of the nonlinearities 

The nonlinearities involved in the problem are either geometric or hydrodynamic 

nonlinearities. Here the current is ignored and accordingly, the hydrodynamic action is 

represented by the nonlinear drag forces induced due to the motions of the structure. It is 

noted that the presence of current could stimulate possible vortex-induced-vibration 

phenomena, the study of which exceeds the purposes of the present contribution. In 

addition the structure is slender and therefore the diffraction phenomena are negligible. 

This makes the drag forces the most determinative factor of hydrodynamic nature. Other 

hydrodynamic effects involved in the problem are the added inertia forces which are 

expressed through the added mass coefficients in the normal and the bi-normal directions.  

Apart from the drag forces the dynamic equilibrium of the catenary involves also geometric 
nonlinearities. Apparently, the most important are the internal loading-curvature terms. The 
term “internal loading” refers to the tension and the shear forces. The question which easily 
arises is how nonlinear contributions influence the motions of the structure, namely the 
axial, the normal and the bi-normal displacements. It is evident that any excitation will 
induce displacements in the same direction but the question herein concerns the details of 
the motions which are induced in the other directions. The later remark is intimately 
connected with the so called “compression loading”, i.e. the amplification of the bending 
moments at the touch down region due to the dynamic components. The importance of the 
subject regarding the in-plane bending moment has been extensively discussed by Passano 
and Larsen (2006) and Chatjigeorgiou et al. (2007). Here the discussion is extended to the 
out-of-plane bending moments as well.   
In order to distinguish between the linear and the nonlinear effects it is indispensable to go 
through the equivalent linearized dynamic problem. It is assumed that the generalized 
loading terms and the Eulerian angles consist of a static and a dynamic component. These 
will be denoted in the sequel by the indexes 0 and 1 respectively. In addition small motions 
are considered. Thus the velocities are given by u=∂p/∂t, v=∂q/∂t and w=∂r/∂t, where p, q 
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and r are the motions in the axial, normal and bi-normal directions. Thus, the vector of the 

unknowns of the linear problem [ ]Tbnnb SSTrqptsY ΩΩ= θφ);(
f

 becomes  

 );()();( 10 tsYsYtsY
ff

+=  (18) 

where  

 [ ]T00000000 000)( bnnb SSTsY ΩΩ= θφ  (19) 

and  

 [ ]T11111111 );( bnnb SSTrqptsY ΩΩ= θφ
f

 (20) 

The linearization procedure is outlined succinctly in the following. First, Eq. (18) is 

introduced into the nonlinear system of Eqs. (3)-(12). After short mathematical 

manipulations it can be seen that the resulting products will include the terms that define 

the static equilibrium problem as well as nonlinear components. Static equilibrium terms 

cancel each other while in the context of the linearized problem, the nonlinear terms are 

ignored. The compatibility relations given by Eqs. (6)-(8), are integrated with respect to time 

t. Finally, it is noted that the static terms Ωn0, θ0 and Sb0 are zero. This is due to the two-

dimensional static configuration of the catenary.  

By employing the above procedure, the system of Eqs. (3)-(12) is reduced to the equivalent 

linearized system.    
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In Eqs. (22) and (23) cn=4/(3Ǒ)ǒCdndo and cb=4/(3Ǒ)ǒCdbdo denote the linearized damping 
coefficients which are determined through the linearization process of the nonlinear drag 
forces Rdn and Rdb. Also, the drag force in tangential direction was considered negligible, 
whereas the elastic strain e was set equal to zero.  

Eqs. (21)-(30) consists of two major groups, namely one set that governs the coupled axial 

and normal motions (Eqs. (21), (22), (24), (25), (28) and (30)) and one set that governs the bi-

normal or out-of-plane motions (Eqs. (23), (26), (27) and (29)). Provided that the solution of 

the static equilibrium problem is known, the two systems can be treated separately, which 

implies that, at least in the context of the linear problem, the in-plane motions do not 

influence the out-of-plane motions and vise versa. Thus, the axial and normal motions 

induced out-of plane vibrations is only due to the nonlinear terms and especially due to the 

geometric nonlinearities. This can be traced back to the fact that the out-of-plane static 

components Ωn0, Sb0 and θ0, were assumed equal to zero. In fact, this is the actual case when 

the structure is perfect with no initial deformations, even marginal, and the excitations 

coincide absolutely with the unit vectors t
f

 and n
f

 for the in-plane motions and b
f

 for the 

out of plane motions.  
For the linear problem, which by default assumes that the motions are relatively small, the 
in-plane and out-of-plane motions and their consequences, as regards the moments, the 
shear forces and the tension, can be considered uncoupled without loss of accuracy. 
Nevertheless, this is not a valid approach for the nonlinear problem. For a perfect structure 
however and assuming only in-plane excitations it will be easy to confirm, through the 
solution of the dynamic problem, that no out-of-plane motions are induced. This is a 
shortcoming of the theoretical methods which is associated with the disability to represent 
the marginal structural imperfections of the static configuration. However it is no difficult to 
invent numerical tricks to override this practical problem. In the present contribution for 
example, the numerical results which refer to the heave excitation induced out-of-plane 
motions, were obtained by exciting the structure at the top with a combined motion that 
consists of a vertical and a bi-normal component. The later is applied for a limited amount 
of time, which is enough to produce non-zero out-of-plane angles, bending moments and 
shear forces. Thus, at the cut-off time step the structure has obtained a 3D shape that 
explicitly diverges from the perfect in-plane configuration and is accordingly used as the 
initial condition for the subsequent time steps of the numerical simulation. 

6. Numerical results and discussion 

The numerical results which are presented in the following refer to the SCR that was used as 
a model by Passano and Larsen (2006). The same model was employed also by 
Chatjigeorgiou (2008). The physical and geometrical properties of the structure are: outer 
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diameter 0.429m, wall thickness 0.0022m, Young modulus of elasticity 207GPa, mass per 
unit unstretched length 262.9kg/m, added mass per unit unstretched length 148.16kg/m, 
submerged weight per unit unstretched length 915.6N/m, suspended length 2024m, elastic 
stiffness 0.5823·1010N and  bending stiffness 0.1209·109Nm2. The drag coefficients in normal 
and bi-normal directions were assumed equal to unity while the tangential drag coefficient 
was set equal to zero. Finally, with regard to the installation characteristics, the catenary was 
assumed suspended in water depth 1800m by applying a pretension at the top equal to 
1860kN.  
This work focuses mainly on the out-of-plane dynamics of the catenary, induced due to both 
in-plane and out-of-plane motions. More interesting from the academic point of view is the 
former type of excitation as in this case the out-of-plane motions are driven by nonlinearities.  

6.1 Bi-normal (sway) excitation 

Normally, nonlinear phenomena are stimulated at high frequencies and large amplitudes or 
by combining both properties, at high excitation velocities. Therefore in order to expose and 
study the associated impacts, the structure should be subjected to relatively severe loading. 
The details of the sway excitation are examined having the structure excited with a 
harmonic motion at the top with amplitude ya=1.0m and circular frequency ω=2.0rad/s.  
The solution in the time domain and especially the one that accounts for the nonlinear terms 

calculates the time histories of all time varying components at any point along the structure, 

providing huge data records, which admittedly, are hard to be handled. In addition, in a 

nonlinear formulation the records of the output signals will contain the contribution of sub- 

and super-harmonics which are difficult to be identified by inspecting only the time 

histories. Therefore, in order to present the results in a friendly and understandable format, 

all records were processed using Fast Fourier Transformation (FFT) and adopted to 3D 

spectrums. The spectrums reveal the prevailing frequencies at any point along the catenary. 

For the test case mentioned before, the 3D spectrums for the dynamic tension T1, the normal 

velocity v, the in-plane dynamic bending moment Mb1, and the out-of-plane dynamic 

bending moment Mn1 are depicted respectively in Figs. 2-5. It is noted that the out-of-plane 

dynamic bending moment also represents the total out-of-plane bending moment as the 

corresponding static counterpart is zero.     

Fig. 5 shows that the out-of-plane bending moment responds at the excitation frequency. 
This occurs for all points along the catenary. The maximum value occurs just before the top 
terminal point where the excitation is applied. In addition, the variation of the out-of-plane 
bending moment as a function of s exhibits a dentate configuration with a notable increase 
at the touch down area. It is also important to note that no other harmonics are stimulated 
and the response is restricted to the frequency of excitation only. 
Figs. 2-4 demonstrate that the in-plane response due to the sway excitation is much more 
complicated as various harmonics are detected. The most significant contribution comes 
from the double of the excitation frequency (4.0rad/s) while it is visually evident that there 
are peaks at 1/2ω, 3/2ω, 2ω, 5/2ω and so on. The non-zero values of the spectral densities 
for ω→0 or T→∞, which exhibit a different pattern for the various dynamic components, 
imply that the sway excitation causes a quasi-static application of the corresponding 
component. In addition, the non-zero values for T→∞, manifest that the response is in 
general non periodic and it is composed by a fundamental frequency that tends to infinity 
and practically a boundless number of harmonics. 
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6.2 In-plane heave excitation induced out-of-plane response 

Here a single excitation case is examined that refers to excitation amplitude in heave 
za=1.0m with circular frequency ω=1.5rad/s. Again, a relatively high excitation velocity was 
assumed, in order to investigate the effect of nonlinearities. In the specific static 
configuration the heave motion acts nearly as an axial loading which, depending on the 
conditions, may result in “compression loading”.   
The details of the in-plane and the out-of-plane response due to the applied heave excitation 
are examined with the aid of Figs. 6-19. Figs. 6-8 are given as a part of the discussion, started 
in section 5, on the dependence of the out-of-plane motions, shear forces and bending 
moments by the initial static configuration. Figs. 6-7 demonstrate a dependence of the 
concerned variables on the amplitude of the sway excitation that is applied for practical 
reasons and for a short time, just to provide an initial out-of-plane deformation to the 
structure. Apparently, the records of the response, which in the specific case correspond to 
the location where the maximum static bending moment Mb0 occurs, are different for 
different amplitudes. Nevertheless, the output signals converge for large amplitudes. The 
attainment of convergence is better shown in shear force Sb1 (Fig. 8), as in this case the 
associated time history contains abnormal signals which however, do not dilute periodicity. 
Nevertheless, it should be noted that the impotence to formulate accurately the marginal 
static deformations in the out-of-plane direction, which it turn leads to the necessity to apply 
artificially non-zero values of Mn0(s) and θ0(s), constitutes in this connection, a numerical 
uncertainty.  
Next, we focus for a while in Figs. 6-8. Fig. 8 is a little bit confusing whereas a careful 
inspection in Fig. 7 indicates the existence of a base harmonic and an additional harmonic. 
The two harmonics are more evident in the time history of the out-of-plane velocity w (Fig. 
6) and it can be shown that they correspond to 0.75rad/s and 2.25rad/s. In other words 
none of the harmonics coincides with the excitation frequency. In particular, the concerned 
harmonics correspond to 1/2ω and 3/2ω where ω is the frequency of the excitation. 
Apparently the occurrence of these harmonics makes the motion of the structure quite 
complicated. The latter remark is graphically shown in Figs. 9-11 which demonstrate the 
path that is followed (in particular by node no 3 in a discretization grid of 100 nodes at 
s=41m from touch down point) as seen from behind (v=f(w)), from above (u=f(w)) and from 
the side (v=f(u)), respectively. It is noted that in Figs. 9-11 v and u respond following the 
excitation frequency ω while w responds having contributions from both 1/2ω and 3/2ω. 
Fig. 9 shows that the general impression that the orbit of the structure follows a reclined 
“eight” configuration is not absolutely true. In fact, the motion is more complicated, mainly 
due to the contribution of 3/2ω. The reclined “eight” path or using a more symbolic term 
the “butterfly” motion, is more appropriate to be used in order to describe the motion of the 
structure from above, i.e. the function u=f(w). Finally, the fundamental frequency of the 
response for v and u which are both in-plane components is equal to the excitation 
frequency. This is shown with a more descriptive fashion in Fig. 11 where the function 
v=f(u) is represented by two coinciding closed loops.  
Figs. 9-11 have been plotted using the numerical predictions of two periods of the steady 
state response. Another way to verify that the in-plane motions conform to the frequency of 
excitation is to observe that the two loops of Fig. 11 practically coincide. However, this is not 
the case when the out-of-plane motion is considered, which it is driven by a subharmonic 
and a superharmonic of the excitation frequency. In this case, each of the loops in Figs. 9 and 
10 (right or left) is covered during one period of the excitation. Nevertheless, the 
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fundamental frequency for the response of w, and in general for all out-of-plane 
components, is the half of the excitation frequency and accordingly the steady state motion 
at any point along the structure is completed after two excitation periods.   
The contribution of the various harmonics, which are stimulated due to the heave excitation, 
to both the in-plane and the out-of-plane dynamic components, is better shown in the 3D 
spectral densities depicted in Figs. 12-17. Figs. 12-14 show in-plane components, namely the 
dynamic tension T1 (Fig. 12), the normal velocity v (Fig. 13) and the in-plane dynamic 
bending moment Mb1 (Fig. 14). In the respective plots it is immediately apparent that the in-
plane components are primarily governed by the excitation frequency (ω=1.5rad/s in the 
present case study), while it is evident that the in-plane response is affected by additional 
harmonics that coincide with integer multipliers of the excitation frequency ω, i.e., 2ω, 3ω 
etc. The 2ω superharmonic is easily detectable in all three figures, whereas 3ω is seen 
(admittedly with relative difficulty), only in the dynamic tension spectral density (Fig. 12). It 
should be stated however that it exists, together with the higher integer multipliers, in all in-
plane dynamic components.   
Figs. 15-17 provide the 3D spectral densities of out-of-plane dynamic components, namely 
the bi-normal velocity w (Fig. 15), the out-of-plane dynamic bending moment Mn1 (Fig. 16) 
and the out-of-plane dynamic shear force Sb1 (Fig. 17). For enriching the discussion that 
preceded with regard the dominant harmonics of the out-of-plane response due to the heave 
excitation, it is again underlined that the motion herein is governed by frequencies that 
correspond to 1/2ω, 3/2ω, 5/2ω etc. The occurrence of all three of them can be detected only 
in Fig. 15 (again, the latter is seen with relative difficulty), while for Mn1 and Sb1 the response 
appears to be governed by 1/2ω. Moreover, we could positively claim that there is a slight 
contribution from 3/2ω.  
The question which easily arises is what exactly these findings mean. To provide an answer 
we could generalize the visual observations on the 3D spectral densities of the out-of-plane 
components and speculate that the contributing harmonics correspond to (n/2)·ω for 
n=1,2,…. In addition, in order to be consistent with the above discussion we could claim that 
the even terms of the sequence are negligible. As far as the in-plane response is concerned, 
the logical sequence is to assume that the constituent harmonics could be approximated by 
the same simple formula, but in this case, the components which could be omitted are the 
odd terms of the sequence.  
Correlating the above findings with the Mathieu equation, should not be considered as a 
significant discovery as many authors did the same in the past. Nevertheless most of the 
works in this subject discuss vertical slender structures (risers or tethers) (Gadagi & 
Benaroya, 2006; Chandrasekaran et al., 2006; Kuiper et al., 2008; Park & Jung, 2002) for 
marine applications where the heaving motions produce buckling and the associated 
dynamic behaviour is directly connected to Mathieu equation. To extend the discussion in 
the context of catenary structures, effort has been made to associate the numerical 
predictions depicted graphically in 3D spectral densities to the solution(s) of Mathieu 
equation. The issue for which we are mainly interested is that the global response consists of 
harmonics (n/2)·ω for n=1,2,…, or equivalently n·(2ω) for n=1,2,…, provided that the 
excitation frequency is 2ω. The Mathieu equation which is satisfied by periodic solutions is 
given for reference in the following: 

 ( ) 0)(2cos2
)(

2

2

=−+ ττ
τ

τ
yqa

d

yd
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where τ=ωt and q is referred as the Mathieu parameter. The solutions of Mathieu Eq. (31) 
associated with the characteristic values a, are given by (Abramowitz & Stegun, 1970; 
McLachlan, 1947; Meixner & Schäfke, 1954) 
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where cem and sem are the even and odd periodic Mathieu functions and A and B are the 
associated constants depending on the Mathieu parameter q. It is immediately apparent that 
a stable solution of Mathieu Eq. (31) will include contributions originating from an infinite 
number of harmonics. In any case the first harmonic will be equal to ω/2 provided that the 
excitation frequency is ω. It is reminded that according to the numerical results that describe 
the in-plane and the out-of-plane dynamic behaviour of the catenary structure due to heave 
excitation, the response was assumed to include the same type and number of harmonics 
regardless whether they are significant or not. The answer to the question why the in-plane 
motions are governed by the harmonics ω, 2ω, 3ω,…, and the out-of-plane motions by the 
harmonics ω/2, 3ω/2, 5ω/2,…is apparently a difficult task that requires deep and 
comprehensive investigation and it could be the subject for a future work. 

7. Conclusion 

The 3D dynamic behaviour of catenary slender structures for marine applications was 
considered. The investigation was based on the results obtained by solving the complete 
nonlinear governing system that consists of ten partial differential equations. The solution 
method employed was the finite differences box approximation. Particular attention was 
given to the out-of-plane variables which are induced due to heave excitation.  
The main finding in this context was the contribution of several harmonics that influence the 
global response of the structure.  In fact it was shown that under in-plane heave excitation at 
the top terminal point the in-plane variables, motions and generalized loading components, 
are governed by the harmonics ω, 2ω, 3ω,…, whereas the out-of-plane variables by the 
harmonics ω/2, 3ω/2, 5ω/2,… 
For the heave induced out-of-plane motions, the fundamental frequency is exactly the half 
of the excitation frequency. This leads to cyclic motions which are completed during a time 
interval that is equal to the double of the excitation period. It was shown graphically that the 

www.intechopen.com



 Nonlinear Dynamics 

 

184 

orbit of the structure resembles a “butterfly” configuration. This interesting behaviour was 
correlated to the even and odd periodic solutions of the canonical form of Mathieu equation.  
Finally, the contribution of the nonlinearities was studied by deriving the equivalent 
linearized system and it was commented that the out-of-plane motions induced due to in-
plane excitation are driven by the geometric nonlinear terms.   
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Appendix A. Mass matrix M, stiffness matrix K and forcing vector F of Eq. 
(16) 
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Appendix B. Algebraic expansions of the nonlinear system of dynamic 
equilibrium Eqs. (3)-(12) using the finite differences box scheme 
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Fig. 1. Stretched catenary segment and balance of internal loading. 
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Fig. 2. Spectral densities of the dynamic tension T1 along the catenary under sway excitation 
at the top, with amplitude ya=1.0m and circular frequency ω=2.0rad/s.  

 

 
 

Fig. 3. Spectral densities of the normal velocity v along the catenary under sway excitation at 
the top, with amplitude ya=1.0m and circular frequency ω=2.0rad/s.  

www.intechopen.com



The 3D Nonlinear Dynamics of Catenary Slender Structures for Marine Applications  

 

191 

 

Fig. 4. Spectral densities of the in-plane dynamic bending moment Mb1 along the catenary 
under sway excitation at the top, with amplitude ya=1.0m and circular frequency 
ω=2.0rad/s.  

 

Fig. 5. Spectral densities of the out-of-plane dynamic bending moment Mn1 along the 
catenary under sway excitation at the top, with amplitude ya=1.0m and circular frequency 
ω=2.0rad/s.  
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Fig. 6. Effect of the initial, short-time, sway displacement on the out-of-plane velocity w due 
to heave excitation with amplitude za=1.0m and circular frequency ω=1.5rad/s. The time 
history depicts the variation of w at the location of the max static in-plane bending moment 
Mb0, namely at s≈41m from touch down (at node k=3 in a discretization grid of 100 nodes)  
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Fig. 7. Effect of the initial, short-time, sway displacement on the out-of-plane dynamic 
bending moment Mn1 due to heave excitation with amplitude za=1.0m and circular 
frequency ω=1.5rad/s. The time history depicts the variation of Mn1 at the location of the 
max static in-plane bending moment Mb0, namely at s≈41m from touch down (at node k=3 in 
a discretization grid of 100 nodes)  
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Fig. 8. Effect of the initial, short-time, sway displacement on the out-of-plane dynamic shear 
force Sb1 due to heave excitation with amplitude za=1.0m and circular frequency ω=1.5rad/s. 
The time history depicts the variation of Sb1 at the location of the max static in-plane bending 
moment Mb0, namely at s≈41m from touch down (at node k=3 in a discretization grid of 100 
nodes)  

 

Fig. 9. Orbit of node no 3 (in a discretization grid of 100 nodes at s=41m from touch down) 
as seen from behind (v=f(w)), under heave excitation at the top with amplitude za=1.0m and 
circular frequency ω=1.5rad/s.  
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Fig. 10. Orbit of node no 3 (in a discretization grid of 100 nodes at s=41m from touch down) 
as seen from above (u=f(w)), under heave excitation at the top with amplitude za=1.0m and 
circular frequency ω=1.5rad/s.  

 
Fig. 11. Orbit of node no 3 (in a discretization grid of 100 nodes at s=41m from touch down) 
as seen from the side (v=f(u)), under heave excitation at the top with amplitude za=1.0m and 
circular frequency ω=1.5rad/s.  
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Fig. 12. Spectral densities of the dynamic tension T1 along the catenary under heave 
excitation at the top, with amplitude za=1.0m and circular frequency ω=1.5rad/s.  
 

 

Fig. 13. Spectral densities of the normal velocity v along the catenary under heave excitation 
at the top, with amplitude za=1.0m and circular frequency ω=1.5rad/s.  
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Fig. 14. Spectral densities of the in-plane dynamic bending moment Mb1 along the catenary 
under heave excitation at the top, with amplitude za=1.0m and circular frequency 
ω=1.5rad/s.  
 

 

Fig. 15. Spectral densities of the bi-normal velocity w along the catenary under heave 
excitation at the top, with amplitude za=1.0m and circular frequency ω=1.5rad/s.  
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Fig. 16. Spectral densities of the out-of-plane dynamic bending moment Mn1 along the 
catenary under heave excitation at the top, with amplitude za=1.0m and circular frequency 
ω=1.5rad/s.  
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Fig. 17. Spectral densities of the out-of-plane dynamic shear force Sb1 along the catenary 
under heave excitation at the top, with amplitude za=1.0m and circular frequency 
ω=1.5rad/s. 
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