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Dynamics and Control of Nonlinear Variable 
Order Oscillators 

Gerardo Diaz and Carlos F.M. Coimbra  
University of California, Merced 

U.S.A. 

1. Introduction    

The denomination Fractional Order Calculus has been widely used to describe the 
mathematical analysis of differentiation and integration to an arbitrary non-integer order, 
including irrational and complex orders. First proposed around three hundred years ago, it 
has attracted much interest during the past three decades (Oldham & Spanier (1974), Miller 
& Ross (1993), Podlubni (1999)). The increased interest in fractional systems in the past few 
decades is due mainly to a large body of physical evidence describing fractional order 
behavior in diverse areas such as fluid mechanics, mechanical systems, rheology, 
electromagnetism, quantitative finances, electrochemistry, and biology. Fractional order 
modeling provides exceptional capabilities for analysing memory-intense and delay systems 
and it has been associated with the exact description of complex transport phenomena such 
as fractional history effects in the unsteady viscous motion of small particles in suspension 
(Coimbra et al. 2004, L’Esperance et al. 2005). Although fractional order dynamical and 
control systems were studied only marginally until a few decades ago, the recent 
development of effective mathematical methods of integration of non-integer order 
differential equations (Charef et al. (1992);  Coimbra & Kobayashi (2002), Diethelm et al. 
(2002); Momany (2006), Diethelm et al. (2005)) has resulted in a number of control schemes 
and algorithms, many of which have shown better performance and disturbance rejection 
compared to other traditional integer-order controllers (Podlubni (1999); Hartly & Lorenzo 
(2002), Ladaci & Charef (2006), among others).  
Variable order (VO) systems constitute a generalization of fractional order representations 
to functional order. In VO systems the order of the derivative changes with respect to either 
the dependent or the independent variables (or both), or parametrically with respect to an 
external functional behavior (Samko & Ross, 1993). Compared to fractional order 
applications, VO systems have not received much attention, although the potential to 
characterize complex behavior by the functional order of differentiation or integration is 
clear. Variable order formulations have been utilized, among other applications, to describe 
the mechanics of an oscillating mass subjected to a variable viscoelasticity damper and a 
linear spring (Coimbra, 2003), to analyze elastoplastic indentation problems (Ingman & 
Suzdalnitsky (2004)), to interpolate the behavior of systems with multiple fractional terms 
(Soon et al., 2005), and to develop a statistical mechanics model that yields a macroscopic 
constitutive relation for a viscoelastic composite material undergoing compression at 
varying strain rates (Ramirez & Coimbra, 2007). Concerning the dynamics and control of VO 
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systems, the authors of this chapter have previously analyzed the dynamics and linear 
control of a variable viscoelasticity oscillator and have presented a generalization of the van 
der Pol equation using the VO differential equation formulation (Diaz & Coimbra, 2009). 
In the present work, we utilize the Coimbra Variable Order Differential Operator  (VODOs) 
to analyze the dynamics of the Duffing equation with a VO damping term. Coimbra’s 
VODO returns the correct value of the p-th derivative for p < 2, as can be generalized to any 
order, positive or negative.The behavior of the variable order differintegrals are shown in 
variable phase space for different parameters that constitute a pictorial representation of the 
dynamics of the variable order system, and help understand the transitional regimes 
between the extreme values of the derivatives. Also, a tracking controller is developed and 
applied to the oscillator for different expressions of the variable order q(x(t)).  Finally, a 
variable order controller is used to eliminate chaotic oscillations of Lorenz-type systems. 

2. Fractional and variable order operators 

Over the past few centuries, different definitions of a fractional operator have been 
proposed.  For instance the Riemann-Liouville integral is defined as  

 

  

D0, t
−α x(t) =

1

Γ(α)
(t −τ )α  −  1

0

t

∫ x(τ )dτ  (1) 

where α ∈ R+ is the order of integration of the function x(t) when the lower limit of 
integration (initial condition) is chosen to be identically zero. The Riemann-Liouville 

derivative of order α is given as  

 

  

D0,t
α x(t) =

1

Γ(m −α)

d m

dt m
(t −τ ) m−α−1

0

t

∫ x(τ )dτ ,  (2) 

and the Grundwald-Letnikov differential operation is defined as 

 ( )0,
0,

0

( ) lim ( 1)   ( )
n

pk
t k

h nh t
k

D x t h x t khα α−

→ =
=

= − −∑ .  (3) 

Finally, the Caputo derivative of fractional order α of x(t) is defined as 

 

  

D0,t
α x(t) =

1

Γ(m −α)
(t −τ ) m−α−1

0

t

∫ x (m) (τ )dτ ,  (4) 

for which m-1 < α <m ∈ Z+. More details about these operators can be found in Li & Deng 
(2007), Diethelm (2002), and Hartley & Lorenzo (2002).   
For variable order systems, Coimbra (2003) defined the canonical differential operator as: 

 

    

Dq (x (t))x(t) =
1

Γ(1−q(x(t)))
(t −σ )−q (x (t)) D1

0+

t

∫ x(σ )dσ +
(x(0+ ) −x(0− ))t−q (x (t))

Γ(1−q(x(t)))
  (5) 

where q(x(t)) < 1. The constraint on the upper limit of differentiation can be easily removed, 
and is adopted here only for convenience. One of the important characteristics of Coimbra’s 
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operator is that it is dynamically consistent with causal behavior in the initial conditions, i.e. 
the operator returns the appropriate Heaviside contribution to the integral value of 
Dq(x(t))x(t) when x(t) is not continuous between t=0- and t=0+ (Coimbra, 2003; Ramirez & 
Coimbra, 2007; Diaz & Coimbra (2009)). Also of relevance is that all integer and fractional 
order differentials are returned correctly by the operator, including the upper limit. In this 
work we used the extended version of this operator that covers the range of q(x(t))<2. The 
generalized order differential operator can thus be calculated by the following numerical 
algorithm:  

 

  

Dqxn =
1

Γ(4 −q)
ai ,nD2

i=0

n

∑ xi +
x(0+ )(1−q)(tn)−q +D1x(0+)tn

1−q

Γ(2−q)
,  (6) 

with quadrature weights given by 

                                  
  
ai,n = (3−q)n2−q −n3−q + (n−1) 3−q     , if i=0 

  
ai,n = (n− i −1)n3−q − 2(n− i) 3−q + (n− i +1) 3−q  , if 0<i<n. 

                                  
  
ai,n = 1         , if i=n. 

As stated earlier, one of the critical properties of this operator for generalized order 
modeling is that it returns the p-th derivative of x(t) when q(x(t)) = p. This can be graphically 
demonstrated by considering an arbitrary function with known derivatives such as 

   y = t 2 sin(t)   (7) 

 

Fig. 1. Comparison of values of function y=t2sin(t) and its derivatives with the results 
obtained with operator described by Eq. (6) for several values of the order q. 
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Figure 1 shows the values of function y (Eq. 7) and its derivatives dy/dt, and d2y/dt2 
calculated analytically.  The figure also shows that the operator described by Eq. (6) returns 

values that match the functions y for q=0, dy/dt for q=1, and d2y/dt2 for q≈2, respectively. The 
values of q=0.5 and q=1.5 are also shown to indicate the matching of the rational order 
derivatives with the values calculated using the VO operator. 

3. Dynamics of the Duffing equation with variable order damping 

Together with the van de Pol equation, the Duffing equation represents the behavior of one 
of the most studied oscillators in the field of nonlinear dynamics (Guckenheimer & Holmes 
(1983), Drazin (1994)). First introduced in 1918 by G. Duffing, different variations of the 
equation have been used to analyze its dynamics for the automomous and forced cases.    
Moon and Holmes (1979, 1980) considered a negative linear stiffness term to analyse the 
forced vibrations of a cantilever beam near two magnets. Vincent & Kenfack (2008) recently 
studied the bifurcation structure and synchronization of a double-well Duffing oscillator.  
They were able to show regions of chaos and quasiperiodicity and they found threshold 
parameters for which synchronization occured. With respect to fractional order systems, 
Sheu et al. (2007) analyzed the Duffing equation with negative linear stiffness and a 
fractional damping term. They reported a period doubling route to chaos in their study. 

3.1 Forced oscillations 

We generalize the concept of fractional damping to include a variable order term as:  

   D
2x +δDqx −x +x 3 = γ sin(ωt) .  (8) 

The main difference with respect to the work by Sheu et al. (2007) is that they studied the 
dynamics of Eq. (8) for a range of values of the fractional order q where this parameter was 
kept constant for every case analyzed. Here, the oscillator is generalized to include a 
damping term where the order of the derivative reacts to the effect of the forcing function 

over time, thus q = q(t). In our analysis, we choose the value of parameters δ and ω to be 0.1 
and 2, respectively.  

Case γ = 1.5: 

The first case considered in this work relates to the behavior of the oscillator given by Eq. (8) 

for γ = 1.5 for two different conditions, i.e. q = 1 and q = (99/100) + sin(ω t).  We note that the 
operator described by Eq. 6 is valid for q(t) < 2, thus the expression used for the change in q 
with respect to time ensures that this condition is met. 
Figure 2 shows the dynamics of the oscillator given by Eq. (8) for q = 1 as the order of the 

derivative in the damping term. The simulations cover the time range t ∈ [0, 700] where only 
the results for t > 200 are plotted to exclude the initial transients.  Chaotic behavior is observed 
and a strange attractor is depicted in Fig. 2(a).  The Poincaré map is shown in Fig. 2(b).   
The effect of the variable order derivative on the damping term of Eq. (8) significantly 
changes the dynamics of the oscillator. This can be observed in Figs. 3(a) and 3(b) where it is 
seen that after removing the intial transients, the dynamics of the oscillators are confined to 
a narrower region in the phase space. 
The dynamics of the VO oscillators can also be analyzed utilizing a modified version of the 
phase diagram where the variable order derivative, Dqx(t), is plotted on the ordinate axis 
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and the position, x(t), is plotted on the abcisa axis.  Figure 4(a) shows the variable order 
phase space (a plot of the value of the VO derivative, Dqx(t),  as a function position), 
whereas Fig. 4(b) shows the behavior of Dqx(t) as a function of the order of the derivative, 
q(t).  It is seen in Fig. 4(b) that q(t) < 2, thus meeting the upper limit of differentiation 
mandated by the numerical algorithm used here (Eq. 6). 
 

 

Fig. 2. Phase diagram and Poincare map for γ = 1.5 and q =1.  

 
Fig. 3. Phase diagram and Poincare map for γ = 1.5 and q =(99/100)+ sin(ω t). 
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Figure 5(a) shows the change of x(t) and Dqx(t) as a function of time. Figures 6(a) and 6(b)  
show that q(t) also has an oscillatory behavior with Dqx(t) having a minimum value when 
x(t) and q(t) approach their maximum value. This is also depicted in the VO phase diagrams 
shown in Figs. 4(a) and 4(b). 

 

Fig. 4. Modified phase diagram and Dqx(t) vs. q(t) plots for γ =1.5. 

 

Fig. 5. Dynamics of VO Duffing equation with respect to time for γ =1.5. (a) - - - x(t), ____ = 
Dqx(t);  (b) - - - q(t), ____ = Dqx(t); 
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Fig. 6. Phase diagram and Poincare map for γ=0.5 and q=1. 

Case γ = 0.5: 

We now analyze the case where parameter γ = 0.5. After the initial transient, the standard 
configuration (q = 1) shows an oscillatory behavior as depicted in Fig. 6(a) with a single 
point appearing in the Poincare map, Fig. 6(b). 

 
Fig. 7. Phase diagram and Poincare map for γ = 0.5 and q = (99/100)+ sin(ω t) for t > 200. 
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Figures 7(a) and 7(b) show the results of the simulations for γ = 0.5 and a variable order of 

the derivative given by q(t) = (99/100) + sin(ω t). It is seen that the phase diagram and 
Poincare maps differ significantly from the case q = 1. However,  plotting x(t) as a function 
of time, as depicted in Fig. 8, shows the transient effects seem to last longer than for the case 
of q = 1. After t ~ 400, the system settles to an oscillatory behavior with a smaller amplitude.   

 
Fig. 8. Phase diagram and Poincare map for γ = 0.5 and q = (99/100) + sin(ω t) for t > 200. 

 
Fig. 9. Phase diagram and Poincare map for γ = 0.5 and q = (99/100)+ sin(ω t) for t > 400. 
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Plots of the phase diagram and the Poincare map for t > 400 are shown in Figs. 9(a) and 9(b), 

respectively. Similar dynamics compared to q = 1 are displayed by the system.   

3.2 Control of the VO Duffing equation 

The dynamics of the variable order Duffing equations were analyzed in the previous section 

for the cases δ = 0.1, ω = 2, with γ = 1.5 and γ = 0.5, respectively. In this section, we study 

controls aspects of this equation subject to a VO damping term. An exact feedback 

linearization is performed to obtain a tracking controller that drives the VO Duffing 

oscillator to follow a periodic reference function, r (Khalil, 1996).  The forcing function in Eq. 

(8) can be replaced by a control action as shown by Eq. 9. 

   D
2x = x−x 3 −δDqx + u . (9) 

Exact feedback linearization is obtained by choosing the control action  

   u = x 3 +δDqx +v .  (10) 

Thus, Eq. 9 is converted to a linear equation of the form 

   D
2x = x +v .  (11) 

This second order differential equation is transformed to a system of first order differential 

equations 

 
1 1

2 2

0 1 0
,

1 0 1

[1 0] .

x x
Ax Bv v

x x

y Cx x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= =

$ f
$

f f
 (12) 

 

A control action of form    u = −K
f 
x +Gr = −k 1x1 −k2x2 +Gr is chosen where k1 and k2 are 

constants that are used to select the location of the closed-loop eigenvalues, G is the 

feedforward gain, and r is the reference. For the controllable system given by Eq. (12) we 

arbitrarily select closed-loop egivenvalues λ1,2=-5 to obtain k1 = 24 and k2 = 10. The 

feedforward gain is obained with Eq. (13) (Williams & Lawrence, 2007). 

   G = −(C(A−BK)−1B)−1 .  (13) 

 

The tracking scheme is tested with the variable order derivative in the VO damping term 

having the expression q = (99/100) + sin(ω t), where γ = 1.5 and ω = 2.  Figures 10(a) to 10(d) 

show the behavior of the tracking system for r(t) = 2 cos(ω/10) + sin(3ω/10). The ouput of 
the system, y(t), follows the reference, r(t), consistently, as seen in Fig. 10(a). Figure 10(b) 
shows the control action, u(t), and the sinusoidal behavior of the order of the VO derivative, 
q(t), is shown in Fig. 10(c) where the value of the variable order derivative, Dqy(t), is plotted 
in Fig. 10(d).  
Exact feedback linearization can be used for different functions of q(t). Figure 11(a) to 11(d) 

show the tracking of reference r for q(t) = r(t)/3. Scaling of q(t) with respect to r is performed 

so that the value of q(t) remains smaller than 2.  
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Fig. 10. Tracking control for the VO duffing equation for q(t)= (99/100)+ sin(ωt). (a) __ = r(t), 
. . .=y(t); (b) u(t), (c) q(t), and (d) Dqy(t). 

 
We note that if the value of the order of the VO derivative, q(t), is known to remain within 
the requirement of the operator (i.e. q(t)< 2) then an implicit form of the variation of q (i.e. 
q=q(x)) can also be utilized (Diaz & Coimbra, 2009).  It is also mentioned that if the closed-
loop eigenvalues are chosen to have positive real parts then the system becomes unstable. 

4. VO control of the Lorenz system 

So far, we have analyzed the dynamics and control of VO systems that have the term Dqx(t) 
as part of the expression describing their dynamics. We now apply the variable order 
approach as the control action to stabilize a chaotic dynamical system. First proposed as a 
way to discribe the dynamics of weather systems, the Lorenz system of equations (Lorenz, 
1963) has been intensively studied as a dynamical system that displays chaotic behavior 
where a strange attractor is encountered under certain values of its parameters. Control 
techniques have been proposed in the past (Vincent & Yu, 1991) but to the best knowledge 
of the authors, there is no study in the literature that has utilized a variable order controller 
to stabilize the chaotic dynamics of the Lorenz system. 
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Fig. 11. Tracking control for the VO duffing equation for q(t)=(1/3) [2cos(ω/10)+sin(3ω/10)]. 
(a) __ = r(t), . . .= y(t); (b) u(t), (c) q(t), and (d) Dqy(t). 
 

The Lorenz system is described by the folowing equations 

 

1
1 2

2
1 2 2 3

3
1 2 3

,

,

.

dx
x x

dt
dx

rx x x x
dt

dx
x x bx u

dt

σ σ= − +

= − −

= − +

  (14) 

For r > 1 there are two non-trivial equilibrium points, i.e.   x 1 = x 2 = ±  (b  (r −1)) 1/2 ,  x 3 = r −1.  

Linearizing the system with respect to the first non-trivial equilibrium point, we obtain 

 

  

dz1

dt
= −σz1 +σz2 ,

dz2

dt
= z1 −z2 − b(r −1)z3 ,

dz3

dt
= b(r −1)z1 + b(r −1)z2 −bz3 + u*,

  (15) 
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which can be written as 
dz

dt
= Az +Bu * , where  

 

  

z1 = x1 − b(r −1) ,

z2 = x2 − b(r −1) ,

z3 = x3 − (r −1).

  (16) 

Tavazoei et al. (2009) developed a control strategy using a fractional order controller with 
three parameters that is used to suppress chaos. They showed that a chaotic system is 
stabilized using the single control input u(t)=Jqy(t), where Jq is a fractional integral operator 

and y(t) = -(μT1+νT3)(x(t)-x*), and where T1 and T3 are the first and third row of a 
transformation matrix such that 

 1

0 1 0 0

0 0 1 ,         0  .

1

A TAT B TB

a b c

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

  (17) 

where the parameters a,b,c are the coefficients of the characteristic polynomial of the 
Jacobian matrix A 

 3 2 0.s cs bs a+ + + =   (18) 

Tavazoei et al. (2009) also showed that for the integral fractional operator with -1 < q < 0 the 
controller stabilizes the system when 

 
(1 /2) ( 1 /2)

0 ;    .
cos( / 2) cos( / 2)

q qcb ab

q q
μ ν

π π

− − −

< < >
− −

  (19) 

We use the VO operator described by Eq. (5) with a negative value of q (i.e. integral variable 

order operator) to suppress chaos of the Lorenz system. Choosing σ = 10, b = 8/3, r = 28 and 

q =-0.2, we obtain 0 < μ < 2310.9 and ν > 23.7. Arbitrary values of μ = 23.1 and ν = 26.1 are 
chosen that satisfy the constraints given by Eq. (19). Figure 12(a) depicts the chaotic 
behaviour displayed by the Lorenz system for t < 25.  At t = 25, the controller is turned on 
and the system is stabilized around the selected equilibrium point. Figure 12(b) shows the 
values of the control action, u(t). In this case q has been considered constant for the VO 
operator.   
The variable order capability of the controller can be verified by running a similar case 

where the parameters μ and ν are kept constant and the order of the VO derivative is 
changed. The controller works until the constraints given by Eq. (19) are no longer met.  

Fixed values for μ and ν are used.  However, for t > 25 the order of the VO derivative q(t) is 
monotonically decreased starting from q = -0.2. Figure 13(a) shows the behaviour of the 
system subject to the control action u(t) shown in Fig. 13(b). It is observed that once the 
controller is turned on (t > 25) stabilization of the chaotic system is obtained for variable q 

until parameters μ and ν fall outside of the constraints.  Figure 13(c) shows the variation of q 
over time. The controller reaches a point where it no longer stabilizes the chaotic behaviour 

of the system. This situation is resolved by re-calculating the values of μ and ν for the VO 
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Fig. 12. Chaos suppression in the Lorenz system with σ = 10, b = 8/3, r = 28, q =-0.2, and 

fixed values of μ and ν in VO operator in Eq. (5). (a) x, y, z vs t (b) u vs t. 

 
Fig. 13. Performance of controllers for fixed values of μ and ν and decreasing value of q(t). 
(a) x, y, z vs t (b) u vs t, (c) q vs t. 
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value of q to remain within the required constraints. Figure 14(a) shows that the controller 
stabilizes the chaotic system under the variation of q with respect to time shown in Fig. 14(c) 

that generates the control action displayed in Fig. 14(b). The variation in the values of μ and 

ν is observed in Fig. 14(d) that shows that as q decreases the values of μ and ν also increase 
rapidly. 

 

Fig. 14. Performance of controllers for variable values of μ and ν and decreasing value of 

q(t). (a) x, y, z vs t (b) u vs t, (c) q vs t, (d) μ, ν vs t. 

Grigorenko and Grigorenko (2003) have shown that the generalized fractional order Lorenz 
system also presents chaotic behaviour. Clearly, a VO controller technique as presented here 
can also be utilized to suppress chaos in such a system. 

5. Conclusion 

Variable order systems, i.e. systems where the order of the derivative changes with respect 
to either the dependent or the independent variables have not received as much attention as 
fractional order systems, despite of the ability of variable order formulations to model 
continuous spectral behavior in complex dynamics. We illustrate some of the characteristics 
of variable order systems and controllers through the numerical simulation of nonlinear 
dynamic oscillators and systems of equations. In this work, we analyze the dynamics of a 
modified Duffing equation, which includes a variable order derivative as the damping term, 
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and illustrate its behavior as compared to the classical Duffing equation. Exact feedback 
linearization is used to derive a linear controller of the Duffing equation with variable order 
damping. Finally, a variable order controller is used to suppress chaos on the Lorenz system 
of equations. To the best knowledge of the authors, this is the first time a variable order 
controller is described. 
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