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1. Introduction     

Polymer materials have been used for electronic, optical and bio micro/nano devices. 
Polymer device fabrication technologies based on replication methods including hot 
embossing (Becker & Heim, 2000; Park et al., 2003; Shinohara et al., 2007b), injection 
molding (Becker et al., 1986; Svedberg et al., 2003), ultraviolet (UV) imprinting (Haisma et 
al., 1996; Kawaguchi et al., 2007; Shinohara et al., 2008d) and casting (Duffy et al., 1998; 
Slentz et al., 2001) can reduce costs. Polymer bonding technologies have also been required 
for sealing or stacking the devices. Some examples of bonding methods have been reported, 
including thermal direct bonding (Spierings & Haisma, 1994; Chen et al., 2004; Shinohara et 
al., 2007b), solvent bonding (Wang et al., 2002; Lin et al., 2007), and bonding using other 
intermediate layer (Graß et al., 2001; Lei et al., 2004). Low-temperature bonding technologies 
are required with deformation of the previous surface structures as small as possible. 
On the other hand, surface modification for biocompatibility is one of the most important 
processes for biochips. Polymer surface modification methods are classified into two 
categories. One is modification of the original surface (e.g., plasma treatment (Lianos et al., 
1994; Kamińska et al., 2002; Chai et al., 2004; Lai et al., 2006), UV irradiation (Peeling & 
Clark, 1981; Murakami et al., 2003; Hozumi et al., 2004; Diaz-Quijada et al., 2007; Kim et al., 
2009). The other is coating with other materials (Ratner, 1995; Oehr, 2003; Liu et al., 2004; Bi 
et al., 2006). 
In this chapter, two low-temperature bonding technologies are described. Section 2 
introduces low-temperature direct bonding methods of poly (methyl methacrylate) (PMMA) 
or cyclo-olefin polymer (COP), and their applications of microchannel devices. Section 3 
describes surface hydrophilic treatment method using aromatic polyurea film, and bonding 
method using the polyurea film. 

2. Low-temperature direct bonding of PMMA or COP 

2.1 Surface pretreatment for low-temperature bonding 
In our previous study, we developed a fabrication method for micro-scale flow devices by 

combining hot embossing and direct bonding techniques using a PMMA material. Direct 

bonding is superior to polymerize bonding or adhesive bonding because of its low optical 
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loss in a bonded interface (Shinohara et al., 2007b). In this method, we fabricated flow 

channels around the glass transition temperature (Tg) of the material. Because of the applied 

pressure as well as heat during the direct bonding process, deformation of the channel was 

observed, although it was not a big problem in cell analysis. However, for single bio-

molecule level analysis, which uses high-performance optical detection systems, high optical 

transparency of the material and nanometer-scale accuracy of the fabrication technologies 

are required.  

In order to bond at lower than Tg, surface pretreatment was applied. Fig. 1 shows fabrication 

process of a polymer microchip using low-temperature direct bonding. First, silicon mold 

was fabricated by conventional photolithography and Deep-RIE (reactive ion etching) (Fig. 1 

(a)). Microchannel patterns were formed by hot embossing (Fig. 1 (b)) (Shinohara et al., 

2007b). After the microchannel plate and a lid were pretreated (Fig. 1 (c)), the microchannel 

was realized by the direct bonding (Fig. 1 (d)). 

 
 

 
 

Fig. 1. Fabrication process of polymer microchip using low-temperature direct bonding 
(Shinohara et al., 2007a) 

Examples of typical pretreatment methods are oxygen plasma, atmospheric-pressure 

oxygen plasma, UV/O3, and VUV (vacuum UV) /O3. Typical treatment conditions of the 

equipments were shown in Table 1. 

Oxygen plasma was generated in a plasma activated bonding system (EVG810LT from EV 

Group Co.). Oxygen plasma can be generated between parallel electrodes in the vacuum 

chamber. Since the radiofrequency (397 kHz) was lower than that of other conventional 

plasma treatment systems (13.56 MHz or higher), the damage on the surfaces was expected 

to be smaller. Atmospheric-pressure oxygen plasma was generated by plasma cleaning unit 

(Aiplasma from Panasonic Electric Works, Ltd.), using dielectric-barrier discharge (Sawada, 

2003). In this equipment, high-density active plasma can be expelled from a nozzle 

supplying mixed gas (98 % Ar and 2 % O2) under atmospheric pressure. After oxygen 

plasma irradiation, the molecular bonds (e.g. C-H) on the polymer surface are expected to be 

dissociated and incorporated oxygen radicals.  Polar oxidized components were increased 

because of the incorporation (Lianos et al., 1994; Chai et al., 2004). This surface state is 

considered to enhance the bonding reaction at the interface. 

(a) 

(b) 

(c) 

(d) 
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Condition 
Oxygen 
plasma 

Atmospheric 
plasma 

UV/O3 VUV/O3 

Gas O2 Ar 98%, O2 2% O2 O2 

Power (W) 200 80 - - 

UV 
wavelength 

(nm) 
- - 185, 254 172 

Chamber 
pressure  (p) 

(MPa) 
8.0×10-5 0.1 0.1 5.0×10-2 

Exposure time 
(t) 

30 sec 0.6 sec 20 min 30 min 

Table 1. Typical treatment conditions of oxygen plasma, atmospheric-pressure oxygen 
plasma, UV/O3, and VUV/O3 (Shinohara et al., 2007a) 
 

 

Fig. 2. Schematic diagram of VUV/O3 equipment (Shinohara et al., 2008b) 

The UV/O3 system (NL-UV253 from Nippon Laser & Electronics Lab.,) has three low-pressure 
UV lamps that radiate 185 nm and 254 nm lights in wavelength. In the presence of O2, the 185-
nm UV is absorbed by O2 to generate the atomic species in ground state O(3P). O(3P) can react 
with O2 to form O3. If this O3 absorbs the 254-nm UV, excited oxygen atoms (O(1D)) with 190 
kJ/mol excitation energy are generated (Wang & Ray, 2000). The VUV/O3 system (UER20-172 
from Ushio Inc.) has a dielectric barrier discharge excimer lamp filled with Xe gas and radiates 
light of a central wavelength of 172 nm (VUV). The VUV/O3 system is shown in Fig. 2. 
Oxygen gas was introduced into the chamber after evacuation. The VUV generates not only O3 
and O(1D) in the same manner as the 185-nm and 254-nm UV lights, but is also absorbed 
directly by O2 in the chamber to generate O(1D) (Kaspar et al., 2003). The 172-nm UV light 
irradiance on the sample surface can be controlled by the oxygen pressure and the distance 
between the lamp window and the sample (d) (Hozumi et al., 2004; Shinohara et al., 2008b). In 
UV (VUV)/O3 treatment, O(1D) plays important roles on surface activation (Hozumi et al., 
2004). Polar oxidized components were also increased as well as the oxygen plasma treatments 
(Peeling & Clark, 1981; Diaz-Quijada et al., 2007; Kim et al., 2009). Since absorption coefficient 
of O2 at the 172-nm UV light are approximately 20 times greater than that at the 185-nm 
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(Watanabe et al., 1953), the efficiency of O(1D) generated by VUV/O3 treatment is better than 
that by UV/O3. Thus, it is expected that the activation by the VUV/O3 is more effective than 
that by UV/O3. In addition, the UV light is expected to dissociate chemical bonds of polymer 
as C-C, C-O and C-H. Main or side chain cleavage of the polymer causes degradation of 
polymer so as to generate low-Tg layer on the surface (Truckenmüller et al., 2004). It is 
considered to be act as an adhesion layer for the direct bonding. 

2.2 Bonding strength 
Bonding strengths of PMMA plates (Acrylyte E IR from Mitsubishi Rayon Co., Ltd.) were 

measured by a tensile test method (Shinohara et al., 2007a). The results were shown in Fig. 3. 

In this figure, red broken lines indicate the values for direct bonding under temperature of 

95 οC, pressure of 1.25 MPa and annealing time of 25 min, without any surface treatments. 

The bonding strengths were same or stronger than that bonded around Tg. 

Bonding strengths of oxygen plasma-treated COP plates (Zeonex480 from Zeon Co.) 

measured by the tensile test were higher than 1 MPa. Bulk distraction was observed from 

the bonded sample after tensile test while no interface separation was observed. The 

bonding strengths of pretreated COP samples were also measured by razor blade method 

(Maszara et al., 1988). The bonding strength at room temperature was approximately 0.6 

J/m2. The strength was increased (~ 8 J/m2) after annealing at 70 οC (Mizuno et al., 2005a). 

 

Fig. 3. Dependence of bonding strength of two PMMA plates on the annealing temperature 
(Shinohara et al., 2007a)  

2.3 Shallow microchannel 

A PMMA microchip which have fine channel of 5 μm in depth and 150 μm in width was 

fabricated by low-temperature direct bonding (bonding temperature of 75 οC) as shown in 

Fig. 4. (Shinohara et al., 2007a). The shallow microchannel was successfully fabricated 

without deformation, boids and leakages. To controlled conditions of surface treatment and 

bonding, the shallow microchannel can be also realized using COP materials (Shinohara et 

al., 2009b). 

Fig. 5 shows a PMMA microchip which has two shallow dams of about 5 μm gaps 
(Shinohara et al., 2006).  The dam structures were kept after low-temperature bonding. The 
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flow behaviors of the dams were evaluated with fluorescent beads. Large microbeads 

(diameter: 5.7 μm) were completely trapped and filled between two dams, while small 

microbeads (diameter: 1.0 μm) were passed through the dams, as shown in Fig. 5 (c). 
 
 

 
 

Fig. 4. A shallow PMMA microchip: (a) whole and (b) magnified view; (c) cross-section of a 

shallow microchannel (width: 150 μm, depth: 5 μm) (Shinohara et al., 2007a) 

 

 
 

Fig. 5. A PMMA microchip which has two shallow dams of about 5 μm gaps: (a) design; (b) 
whole view and optical micrograph near a dam; (c) flow behaviour near a dam (Shinohara 
et al., 2006) 

port A

port B

port C

port D

port E

port F

19 μm

4.3 μm

100 μm

dams

2 cm
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(a) 

(c) 
Flow

Diameter: 
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1.0 μm 

Fluorescent beads 50 μm

100 μm

1 cm 

Dam structure

(b)

   

 

150 μm
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2.4 MCE-ESI-MS microchip 
Mass spectrometry (MS) is one of the useful detection methods for microchip 
electrophoresis (MCE). The advantages of combining MCE and MS (MCE-MS) include high 
sensitivity, no need for the derivatization of samples and valuable for the analysis of 
complex mixtures such as biomedical samples. In many cases, the electrospray ionization 
(ESI) method is used as an interface of MCE-MS (MCE-ESI-MS). Tapered capillary of a spray 
nozzle was generally connected directly to the channel outlet (Li et al., 2000; Zhang et al, 
2001, Tachibana et al., 2003; Tachibana et al., 2004). However, there are a few technical 
problems caused by the dead volume at a connecting joint between the spray nozzle and the 
microchip. Efficiency of the spray is strongly depends on the structure of the nozzle. 
 

 

Fig. 6. A MCE-ESI-MS microchip made of two COP plates: (a) design; (b) SEM micrograph 
of the electrospray tip; MS spectra of (c) arginine and (d) caffeine (Shinohara et al., 2008a) 

We developed a MCE-ESI-MS microchip made of two COP plates as shown in Fig. 6 
(Shinohara et al., 2008a). An ESI emitter tip was fabricated directly on the opening of a 
separation channel by machining and electron beam evaporation of Au. Since the direct 
bonding is performed at the temperature lower than Tg, deformation of the channel 
structure was negligible. There was no crack at the bonded interface even after structuring 
the tip because of its sufficient bonding strength. Since the structure of the nano-
electrospray tip enables neglected dead volume in the ESI interface, an efficient spray of a 
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sample solution and higher separation efficiency are expected. The success rate of Taylor 

cone generation was increased with decreasing the tip angle (α). Arginine and caffeine were 

successfully separated and detected as [M+H]+ in the MCE-ESI-MS analysis at α = 30 ο, the 
separation voltage for MCE of 1.3 kV, and the ESI voltage (potential difference between the 
nano-electrospray tip and the MS orifice) of 2.0 kV, as shown in Fig. 6 (c) and Fig. 6 (d). 
 

Fig. 7. Results of stability and reproducibility test: (a) reproducibility of the peak height 
detected as MS spectrum; (b) photomicrographs of the nano-electrospray tip after 1st, 5th, 
10th, and 14th run (Shinohara et al., 2008c) 

For stability and reproducibility test, MCE-ESI-MS analysis was carried out repeatedly, by 
using caffeine in 10 mM ammonium acetate as a sample solution (Shinohara et al., 2008c). A 
MCE-ESI-MS microchip was reused and the reproducibility of the peak heights detected as 
MS spectrum was observed. Fig. 7 (a) shows the peak heights at 1st, 3rd, 5th, 7th, 10th, 12th, 
and 14th run. Stable MS detection was achieved and reproducible peak heights were kept 
up to 13 times. The residual standard deviation (RSD) of the peak height was 9.4 %. At the 
14th run, the peak was not detected. Fig. 7 (b) shows photomicrographs of the nano-
electrospray tip after 1st, 5th, 10th, and 14th run. After 10th run, optical transparency of the 
tip was increased obviously. It is indicated that thickness of the Au film decreased. After 
14th run, the decrease area was expanded, and deformation of the tip structure was 
observed. The obvious decrement of the peak at 14th run was caused by the deformation or 
damage of the Au electrode. The damages of the bonding interface were not observed. The 
Au thickness looked thinner; however, it was still remained on the COP tip. These results 
indicate that bonding strength of the COP plates and the adhesion strength of the Au film 
are strong enough. The stability and reproducibility of the fabricated nanospray tip is 
sufficient in practical use. 

3. Low-temperature polymer bonding using polyurea film 

3.1 Hydrophilic treatment of polyurea film using VUV/O3 
In our previous work, we fabricated and evaluated a blood analysis chip made of PMMA 
(Mizuno et al., 2005b; Shinohara et al., 2005). This chip has microchannel array, which 

equivalent diameter is 6 μm. When human whole blood is flowed into the microchannels, 
platelet aggregation was observed after channel passage due to activation of platelet. This 

 1st run 5th run 

10th run 14th run 

100 μm 

Au electrode 

(a) (b)
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chip is used for the evaluations of the shear stress sensitivity of platelets, the adhesion of 
white blood cells and the hardness of red blood cells from blood transit time as well as the 
blood flow images (Kikuchi et al., 1992; Kikuchi et al., 1994). Hydrophilic treatment on the 
microchannels was required to flow the blood smoothly and not to adhesion of biomaterials. 
Direct hydrophilic treatment in section 2 was not sufficient because of low stability or low 
hydrophilicity on the treated surface (see Fig. 16). In this case, aromatic polyurea film 
coating was selected because of the advantages in visible transparency, non-toxicity, high 
purity and uniform film thickness (Shinohara et al., 2005). The aromatic polyurea film was 
prepared by vapor deposition polymerization of 4,4’-diaminodiphenyl methane (MDA) and 
4,4’-diphenylmethane diisocyanate (MDI) (Takahashi et al., 1989) as shown in Fig. 8. After 

coating, highly hydrophilic surface was realized by annealing (50 - 150 οC) and exposing for 
O3 at the same time under atmospheric pressure. This treated film had highly hydrophilic 

surface, water contact angle was smaller than 30 ο, and hydrophilic surface was kept for long 
time (longer than a month) (Shinohara et al., 2005). However, the annealing process for 
hydrophilic treatment causes bending of the PMMA chip. On the other hand, the film 
surface was recovered to hydrophobic after washing by water. For reproducible 
measurements, improvement of the surface stability is required. 
We improved the hydrophilic treatment of polyurea and removed the annealing process 
using VUV/O3. The VUV/O3 system used in section 2 was also used (see also Fig. 2). The 
polyurea surface is treated by the generated gases (O3 and O(1D)). Then, direct irradiation 
effect of the VUV light for surface modification is expected to be small in case of large d. The 
light intensity at the sample surface decreases because the VUV is absorbed by oxygen gas 
in the chamber. Therefore, O3 and O(1D) are only generated near the lamp window, and 
these gases are spreaded over the chamber by diffusion. Since this treatment is carried out at 
room temperature, the deformation of the sample structure is negligible. 
 

 

Fig. 8. Reaction scheme of aromatic polyurea 

To evaluate the surface treatment effect, transit time of water contact angle after VUV/O3 

was measured under several conditions, as shown in Fig. 9 (Shinohara et al., 2008b). The 

untreated polyurea film has low hydrophilic surface, contact angle of about 80 ο, while the 

treated films keep contact angles smaller than 45 ο for long time. Especially under the 

condition of chamber pressure (p) of 3.0 x 104 Pa, and exposure time (t) of 20 min, contact 

angle smaller than 20 ο was realized and kept about two months. Even after very hard 

condition of ultrasonic cleaning in de-ionized water for 3 min, contact angle of smaller than 

40 ο was realized with the VUV/O3-treated sample (Shinohara et al., 2008b). These results 

indicate that the VUV/O3-treated polyurea was improved surface stability even after 
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washing by water. In addition, the contact angle decreases with increasing the d, as shown 

in Fig. 10 (Shinohara et al., 2008b). Since the VUV light intensity decreases with distance 

from the light source, the direct irradiation effect of the VUV light (e.g., cross-linking (Sato et 

al., 1994), breakage of main polyurea structure) expected to be avoided. 

 

Fig. 9. Transit time of water contact angle on polyurea surface after VUV/O3 treatment  (d = 
142 mm) (Shinohara et al., 2008b)  

 

Fig. 10. Contact angle of de-ionized water versus distance between the lamp window and 
the sample (p = 3.0 x 104 Pa, t = 20 min) (Shinohara et al., 2008b) 

The polyurea film was applied for PMMA blood analysis chip. As in the case of a 
conventional silicon chip (Kikuchi et al., 1992; Kikuchi et al., 1994), polyurea-coated PMMA 
chip was contacted with flat glass plate mechanically. The performance of the surface 
treatment was evaluated by actual human whole blood flow. The adhesion of platelets and 
white blood cells was significant in the case of a thermal-oxydized silicon chip (Fig. 11 (a)), 
while the PMMA chip coated polyurea film can reduce the adhesion of platelets and white 
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blood cells (Fig. 11 (b)), even after ultrasonic cleaning in surfactant induced water (Fig. 11 
(c)) (Shinohara et al., 2008b). 

  

Fig. 11. Images of blood flow: (a) conventional chip made of Si for reference; (b) PMMA chip 
coated polyurea film; (c) reused PMMA chip after ultrasonic cleaning with surfactant-
induced water (Shinohara et al., 2008b) 

3.2 Thermal bonding using hydrophilic polyurea film 
The hydrophilic polyurea film was used as intermediate bonding layers (Shinohara et al., 
2009a). Fig. 12 shows a fabrication process of a microchip which has highly-hydrophilic 
microchannels. The polyurea was coated on the channel plate and the lid by vapor 
deposition polymerization (Fig. 12 (a)). Next, the polyurea-coated plates were treated with 
VUV/O3 (Fig. 12 (b)). After VUV/O3 treatment, the plates were brought into contact and 

then pressed (Fig. 12 (c)). The typical bonding temperature was 85 οC, and the pressure was 
3 MPa for 20 min in the case of PMMA plates (Comoglass from Kuraray Co., Ltd.). Fig. 13 
(a) and (b) shows a prototype PMMA microchip. Void-free structure was realized over the 
whole sample surface. Since the bonding temperature is lower than the Tg of the PMMA, 
negligible deformation of the channel structure is obtained. To observe its flow behavior, a 

5-μL methylene blue aqueous solution droplet was applied onto a port (as indicated black 
arrow in Fig. 13 (a)) on the fabricated microchip (Shinohara et al., 2009a). Its flow behavior 
at the cross-junction is shown in Fig. 13 (c). All the microchannels were filled by capillary 
force. There was no leakage or obstacles to smooth fluidic flow at the bonded interface. 
To evaluate the surface modification and annealing effect, contact angles of water (H2O), 
glycerin (C3H5( OH)3), formamide (HCONH2) and diiodomethane (CH2I2) on the polyurea 
surface were measured (Shinohara et al., 2009a). The results were shown in Fig. 14. After the 
VUV/O3 treatment, contact angles of water, glycerin, and formamide decreased 
dramatically, and the contact angles were kept even after annealing of 85 οC for 20 min. This 
result indicates that the highly hydrophilic surface of the microchannel was also realized 
after the above-mentioned bonding process.  

In addition, surface free energy (γs), its polar (γsp) and dispersive (γsd) components (γs = γsp + 

γsd) were calculated using these contact angle results, according to Owens-Wendt theory 
(Owens & Wendt, 1969). The results were shown in Fig. 15 (Shinohara et al., 2009a). After 

VUV/O3 treatment, the γsp was increased significantly, while the γsd was decreased. The 
result indicated that the additional new polar groups (e.g., OH, C=O, COOH) were created 

after the treatment. After annealing, the γsp was decreased while the γsd was increased. These 
results indicate two possibilities. One is that conformational transformations of the 

 

White blood 
Blood flow 

(a)  (b)  (c)

6 μm 
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generated polar groups occurred. The other is that unreacted polymer tails (NH2 or N=C=O) 
of polyurea were consumed by further polymerization during the annealing. In Fig. 8, the 
as-deposited polyurea film of only about five monomers (n = 5) is formed at room 
temperature (Wang et al., 1993). Further polymerization takes place (n > 5) when as-
deposited films are annealed (without any surface treatment) by consuming the unreacted  
 
 

 

Fig. 12. Fabrication of a microchip which has highly-hydrophilic microchannels: (a) polyurea 
coating; (b) VUV/O3 treatment; (c) thermal bonding (Shinohara et al., 2009a)  

 

 

Fig. 13. Prototype PMMA microchip using polyurea film: (a) design; (b) whole view; (c) 
observation of flow behavior at the cross-junction (Shinohara et al., 2009a) 

(a)

(b)

(c)

 Ports 

20 mm 

40 mm 

(a) 

(b) 
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50 μm 
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Fig. 14. Contact angles of water, glycerin, formamide, and diiodomethane on the polyurea 
surface before and after VUV/O3 treatment (p = 3.0 × 104 Pa, t = 20 min, d = 142 mm) 
(Shinohara et al., 2009a) 

 

Fig. 15. Surface free energies of polyurea before and after VUV/O3 treatment (Shinohara et 
al., 2009a) 

polymer tails to form amid bonds (Takahashi et al., 1991). These transformations or 
polymerization could also have occurred at the interface of the two polyurea films during 
the bonding process. 
To compare hydrophobic recovery with other low-temperature direct bonding, the water 
contact angle on the polyurea, the COP, and the PMMA surface before and after surface 

treatment, and after the treatment and annealing (at 85 οC for 20 min) were measured 
(Shinohara et al., 2009a). Oxygen plasma was selected for surface treatments of COP and 
PMMA. The results were shown in Fig. 16. In the case of the COP, a highly hydrophilic 

surface (~20 ο) was realized after oxygen plasma treatment. However, the hydrophilic 
surface was not maintained after the annealing. In the case of the PMMA, the treatment 
effect was weak. From these results, the bonding using the polyurea as the intermediate 
layer is the best method from the hydrophilicity viewpoint. 

www.intechopen.com



Low-temperature Polymer Bonding Using Surface Hydrophilic Treatment for Chemical/bio Microchips  

 

457 

 

 
 

Fig. 16. Water contact angle in three conditions (untreated, after treatment, after treatment 
and annealing) on VUV/O3-treated polyurea, oxygen plasma-treated COP (100 W, p = 4.0 × 
10-5 MPa, t = 30 sec), and oxygen plasma-treated PMMA (200 W, p = 0.8 × 10-5 MPa, t = 30 
sec) (Shinohara et al., 2009a) 

4. Conclusion 

In this chapter, two low-temperature bonding technologies, direct bonding of PMMA or 
COP, and bonding using surface hydrophilic polyurea film were described. The bonding 
was carried out at temperature lower than Tg of the polymer plates.  
The low-temperature direct bonding was realized by surface pretreatment such as oxygen 
plasma, atmospheric-pressure oxygen plasma, UV/O3, and VUV/O3. Reasonable bonding 
strength was realized with negligible deformation. Shallow microchannels of about 5 mm 
gaps were successfully fabricated. By using this bonding technology, a MCE-ESI-MS 
microchip was developed. Arginine and caffeine were successfully separated and detected 
as [M+H]+ in the MCE-ESI-MS analysis. 
 On the other hand, a novel hydrophilic treatment method in microchannel surface using 

aromatic polyurea was developed. The polyurea was changed highly hydrophilic (water 

contact angle < 20 ο) after VUV/O3 treatment, and the treated film kept highly hydrophilic 

surface for long time (~ 2 months). The polyurea film was applied for PMMA human blood 

analysis chip. The new chip can reduce the adhesion of platelets and white blood cells. The 

technology of the surface hydrophilic treatment of polyurea can be applied to low-

temperature bonding. The VUV/O3-treated polyurea film was used as intermediate bonding 

layers. The highly hydrophilic surface of the microchannel was retained after the thermal 

bonding process. There was no leakage or obstacles to smooth fluidic flow at the bonded 

interface. For actual micro-biochip fabrication with this method, the post-hydrophilic 

treatment after bonding process is expected unnecessary. 

We are currently investigating these bonding mechanisms and optimizing these 

pretreatment conditions. In addition, these bonding methods will be applied to other 

polymer microchips. 
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