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1. Introduction 

A study of propagating wave phenomenon in coupled systems is one of the familiar topics 

of research. There exist propagating wave phenomena in various systems such as reaction-

diffusion systems (Nishiura et al.; 2005; Comte et al.; 2001), coupled map lattice (Kaneko; 

1993) and coupled oscillator systems (Hikihara et al.; 2001; Yamauchi et al.; 1999), etc.. They 

are important not only in a pure nonlinear science viewpoint but also from the viewpoint of 

various applications such as engineering purpose (Sato et al.; 2003) and biological 

information processing (Keener; 1987). A basic question concerning these systems is the 

condition under which propagating wave can emerge. It is known as propagation failure 

phenomenon that propagating wave fails to propagate below a certain critical coupling 

strength (Comte et al.; 2001). 

In this chapter, a simple model of one-dimensinally coupled bistable oscillators is shown to 

exhibit wave propagation phenomena. The propagating wave consists of several adjacent 

oscillators oscillating with large amplitude, and the part of large amplitude oscillation in the 

array propagates with a constant speed. In particular, we pay attention to the formation 

mechanism of the propagating wave related to disappearance of a certain kind of standing 

wave. When a coupling strength is weak, a standing pulse wave exists. This solution 

disappears when the coupling strength exceeds a certain critical value, and around this 

point the propagating wave begins to exist. On the basis of the observation, one of the onset 

mechanisms of the propagating waves is investigated paying attention to global phase-space 

structure around the bifurcation point. 

At first, we will introduce the ring of coupled bistable oscillator system, and derive the 

fundamental equation. Then, a typical propagating wave phenomenon and its characteristic 

features are stated briefly. Next, we make a study on the onset mechanism of the 

propagating wave for 6 coupled oscillator case. As a result, we have found that a global 

bifurcation of maps based on the heteroclinic tangle converts the fixed point (= standing 

wave) into the invariant circle (= propagating pulse wave). 
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(a) A ring of N-coupled bistable oscillators 
 

 

(b) The fifth-power nonlinearity on the I-V characteristics of NC 

Fig. 1. A circuit model 

2. Fundamental equation and its dynamics 

Figure 1(a) shows a circuit model of the ring of N-coupled bistable oscillators. The current-

voltage characteristics of negative conductance (= NC) in Fig.1(a) has the fifth-power 

nonlinearity as shown in Fig.1(b):  g1, g3, g5 > 0, k = 1, 2, … ,N. 

Then, Kirchhoff’s current law gives the following equation: 

 

(1) 

Taking time derivative of (1), we obtain the following equation (V0 [resp. VN+1] is regarded 

as VN [resp. V1] ). 
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By normalizing the time and voltage variables: 

 

and introducing new parameters: 

 

the equation of this system can be written in the following normalized equation (· = d/dτ, ·· 
= d2/dτ 2). 

 (2) 

If we introduce new variables as yk ≡ x$ k, we obtain the following autonomous ordinary 

differential equation. 

 

(3) 

, where N is the number of oscillators. The xk denotes the normalized output voltage of the 

kth oscillator, yk denotes its derivative. The parameter ε (> 0) shows the degree of 

nonlinearity. The parameter α (0N α N 1) is a coupling factor; namely α = 1 means 

maximum coupling, and α = 0 means no coupling. The parameter β controls amplitude of 

oscillation. Each isolated oscillator has two steady-states, namely, no oscillation and periodic 

oscillation depending on the initial condition. 
The analysis of modes based on the averaging method or perturbation method for weakly 
nonlinear cases was extensively performed in the past (Endo & Ohta; 1980; Yoshinaga & 
Kawakami; 1993). However, the solution for non-weak nonlinear cases seems not to be 
analyzed; in fact, it is complicated including the propagating pulse wave solution. In this 
study, we analyze the onset mechanism of the propagating pulse wave solution for non-
weak nonlinear case via bifurcation theory. The propagating pulse wave solution consists of 
several adjacent oscillators oscillating with large amplitude, and the part of large amplitude 
oscillation in the ring array propagates with a constant speed as shown in Fig.21. 
This propagating pulse wave solution has the following characteristic features from the 
results in (Shimizu et al.; 2008). 

                                                 

1 Numerical integrations throughout this paper are carried out by 4th order Runge-Kutta 
method with a step size of 0.01 if not otherwise specified. 
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Fig. 2. A typical propagating pulse wave observed for the ring of 6 coupled oscillators (the 
absolute value of x-components are plotted for clarity). The initial condition is given as  

x1 = 2.0, y2 = 1.3 and all other variables are zero. (α = 0.1, β = 3.2 and ε = 0.36) 

• The direction of the propagating pulse wave depends on the initial condition. 

• Propagating speed becomes faster for larger α. 

• Robust against fluctuation and noise especially for comparatively large α. 
Such propagating pulse wave seems to be observed for an arbitrary number of coupled 
oscillators2 in comparatively large parameter regime. For instance, the existence region of 
several solutions including the propagating wave is shown in (Shimizu et al.; 2008) for the 
100 coupled oscillator case by computer simulation. Hereafter, we will show one of the 
onset mechanisms of the propagating pulse wave for the ring of 6-coupled oscillators. 

3. One of the onset mechanisms of propagating pulse wave 

In this system, there exists a certain kind of standing pulse wave solution for small coupling 

strength α. The standing pulse wave solution is a periodic oscillation, one of which is shown 
in Fig.3. At first, we investigate this type of standing pulse wave, and then the transition 
from the standing pulse wave to the propagating pulse wave. Moreover, we will explain 
that the results obtained for the 6 coupled oscillator case may be extended to larger number 
of coupled oscillator cases. 

                                                 

2 We confirmed the existence of the propagating pulse wave for the N = 5 to N = 100 cases 
via computer simulation. 
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Fig. 3. A standing pulse wave (= a periodic solution) occurring in the ring of 6-coupled 
oscillators. Initial condition: x1(0) = 2.0, y1(0) = 0.0 and xk(0) = yk(0) = 0.0, k = 2, 3, ... , 6. 

Parameters: α = 0.05, β = 3.2 and ε = 0.36. 

3.1 The standing pulse wave 

Figure 3 shows one of the periodic solutions (the standing pulse wave) obtained from the 

initial condition: x1(0) = 2.0, y1(0) = 0.0 and xk(0) = yk(0) = 0, k = 2, 3, … ,6 for α = 0.05, β = 3.2 

and ε = 0.36. We choose α = 0.05 in order to realize weak coupling so that there exists the 

standing pulse wave. Since this system has rotational symmetric property (due to ring 

coupling structure), other 5 periodic solutions obviously coexist for the same parameters. 

We define Poincare section as y1 = 03, and trace these periodic solutions with respect to α 

(because the characteristic features of the propagating pulse wave mainly depends on 

coupling strength). Since the periodic solution becomes a fixed point on the Poincare 

section, this point becomes a curve when α is varied. In this manner, we can trace 6 periodic 

solutions as depicted in Fig.4 (Kawakami; 1984). The solid curves are mapped points 

corresponding to the above mentioned stable periodic solutions, namely the nodes (Ni, i = 1, 

2, . . . , 6). The dotted curves represent their corresponding saddles ( i, i = 1, 2, . . . , 6)4. 

The node and the corresponding saddle coalesce at a certain value of α. This is called the 

Saddle-Node (SN) bifurcation point αSN. In this system, there are 6 pairs of (Ni, Si) curves 
 

                                                 

3 We take mapped points when the flow penetrates the hyper-plane from + to –. 
4 This saddle is index 2, at least, for α O 0.05. 
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Fig. 4. The node Ni with its corresponding saddle i for i = 1, 2, ... , 6 showing the SN 

bifurcation in terms of α for β = 3.2 and ε = 0.36. The curve (N2, 2) overlaps with the curve 
(N6, 6), and (N3, 3) with (N5, 5), because they are symmetrically-placed. Subtle structure 
around the tip region surrounded by a square box is shown in Fig.6(a). 

and they disappear simultaneously at the same SN bifurcation point. Namely, the aligned 

structure of the SN bifurcation points is formed at αSN  0.088 in this case. This is rough 
explanation of bifurcation diagram. In fact, the tip region of each curve presents more 
sophisticated bifurcations. This is explained later. 

3.2 Propagating pulse wave based on the global bifurcation of maps 

The SN bifurcation set of the periodic solution shown in Fig.3 and the existence regions of 

several solutions are depicted in Fig.5 in the α - β plane for ε = 0.36. Each solution is 

confirmed by direct computer simulation of (3). In the left hand side region of the SN 

bifurcation curve, there exist the 6 periodic solutions (abbr.“PS” in Fig.5) and they disappear 

simultaneously at this SN bifurcation point approximately5. After the SN bifurcation, several 

types of solutions can be observed depending on the value of β. For instance, in the “W” 

region, the whole oscillation such as all oscillators oscillate with large amplitude can be 

observed. In the “Z” region, no oscillation exists. In the meantime, two different kinds of 

propagating pulse waves emerge. One of them (“PW1”) is observed in the region filled with 

gray color. It should be noted that PW1 emerges right after the SN bifurcation for 3.14 N β N 
3.25. The other abbreviated as the “PW2” is shown with mesh pattern. The PW2 is different 

kind of propagating pulse wave from PW1 (A). In the following discussion, we focus on the 

dynamics of PW1 observed for 3.14 N β N 3.25 and explain the onset mechanism of PW1 

solution. 

3.2.1 Global bifurcation related to the onset of PW1 

For simplicity, we fix ε = 0.36 and β = 3.2. Figure 6 (a) presents the magnified bifurcation 
diagram in the square region of Fig.4. From this figure, it is noted that before the SN 
bifurcation a pitchfork bifurcation (PF) occurs. After the PF bifurcation, a stable node 
 

                                                 

5 More accurately, the periodic solution disappears at αPF in Fig.6(a). But, αPF and αSN are 

very close. So, we say the periodic solution disappears at αSN approximately. 
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Fig. 5. The SN bifurcation set of the periodic solution in Fig.3 (black dots) and the existence 

regions of several solutions in the α - β plane for ε = 0.36. The “PS”, “W” and “Z” are 
existence regions of the standing pulse wave, whole oscillation and no oscillation, 
respectively. In addition, there exist two kinds of propagating pulse waves. They are labeled 
as “PW1” and“ PW2”. For 3.12 < β < 3.14 (dotted curve), more complicated bifurcation 
phenomena including Neimark-Sacker bifurcation is detected, but this region is of no 
concern with our discussion from now on. In the boundary region, PW1 and PW2 coexist. 

 

 
 

               (a) Actual bifurcation diagram.                       (b) The 3D schematic diagram of (a) 

Fig. 6. Subtle bifurcation diagram around the tip region surrounded by a square in Fig.4 for 

ε = 0.36 and β = 3.2. The bifurcation points are as follows: αSN = 0.088501, αPF = 0.088328 and 

αc = 0.088302. The solid curve denotes stable and the dotted curve denotes unstable fixed 
point. (a) Actual bifurcation diagram. The notation mD indicates that number of unstable 
direction of the fixed point is “m”. (b) 3D schematic diagram around the tip region. The axis 

 denotes the stable direction of saddles and the axis  unstable direction of them. The axes 

 and  may not correspond to the actual state variables xj and xk directly. 
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                         (a) α < αc1 (α  αc1)                                                  (b) αc1 < α < αc2 

 

                                                                 (c) α > αc2(α  αc2) 

Fig. 7. A schematic diagram of the behavior of UM and SM around the bifurcation point. 
The stable direction of Si (SM) denotes 10 dimensional subspace and the unstable direction 
of Si denotes 1 dimensional curve. 

becomes a saddle of index 1 and the corresponding saddle is an index 2 saddle. On the other 

hand, at the PF point two saddles appear in the backward direction as shown in Fig.6(a); 

namely, this is the subcritical PF bifurcation. Figure 6 (b) presents the 3D schematic diagram 

for better understanding the behavior of stable and unstable manifold of saddles in Fig.7. 

Here the stable direction denotes 10 dimensional subspace and the unstable direction 

denotes 1 dimensional curve6. 

Due to Kuznetsov (Kuznetsov; 1995), there exist many heteroclinic points formed by UM of 

Si, iS′  (one dimensional in this case) and stable manifold (SM) of Si+1, i+1S′  (ten dimensional 

in this case) around the bifurcation point for αc1 < α < αc2. Figures 7 (a), (b) and (c) present 

the schematic diagrams representing the connection of Si,Ni, i = 1, 2, … ,6 for α < αc1, αc1 < α 

< αc2, and αc2 < α. The UM of Si waves severely as it approaches the SM of Si+1 for all cases. 

For α < αc1, as seen in Fig.7 (a), UM of Si finally converges to Ni+1. The UM and SM do not 

intersect. Therefore, a stable node corresponding to the periodic solution appears. For α 

much smaller than αc1, the UM emanating from Si goes to Ni+1 directly without approaching 

near Si+1. For αc2 < α, as seen in Fig.7 (c), UM of Si eventually converges to invariant curve (= 

IC). The IC is the propagating pulse wave just after birth going left or right as shown in Fig.2. 

The UM also has no intersection with the SM. For α much larger than αc2, the UM emanating 

from Si goes to the IC without undulating near Si+1. For αc1 < α < αc2, as seen in Fig.7 (b), UM 

of Si goes two directions. The UM of Si and SM of Si+1 intersect transversally. At α = αc1, αc2, 

the heteroclinic tangency occurs; namely, UM is tangent to SM. 

                                                 

6 For example, for ε = 0.36, β = 3.2, α = 0.0883, the eigenvalues of the saddles Si and iS′  are as 

follows: 1.010, 0.925, 0.547, 0.402 ± 0.073i, 0.398, 0.345 ± 0.107i, 0.319 ± 0.164i and 0.142. 
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To clarify the above, we perform computer simulation in Fig.8 (a), (b) and (c)7. The UM can 
be presented in two dimensional phase space, because it is one dimensional. However, the 
SM cannot be presented in two dimensional phase space, because it is ten dimensional. 
Fortunately, the dominant eigenvalue of SM is 0.925 only and other nine eigenvalues are 
much smaller than unity as previously mentioned in the footnote. Therefore, we draw the 
stable eigenvector associated with this eigenvalue by the thick line for reference. Figure 8 
(a), (b) and (c) demonstrate 3 cases. The waving thin curve presents the UM of S5. Since we 

cannot show whole ten dimensional stable manifold, we cannot obtain the critical values αc1, 

αc2 from the figures. Therefore, we estimate whether or not the given α is within αc1 < α < 

αc2, by knowing the destination of UM. Namely, if it converges to N6, the given α is smaller 

than αc1, and if it converges to IC, the given α is greater than αc2, and if it is separated in two 

directions, the given α is in between αc1 and αc2. In Fig.8 (a) the UM goes to N6. Therefore, in 

this case α < αc1. In Fig.8 (b) UM of S5 is separated in two directions along the UM of S6, 

therefore, α is set between αc1 < α < αc2. In Fig.8 (c) UM goes to IC, therefore, α is set for  

αc2 < α. 

In the same manner, the connection between iS′  and Ni, i = 1, 2, … ,6 can be explained in the 

following. For α < αc1 , the UM of iS′  goes to Ni–1. For αc1 < α < αc2, the UM of iS′  and SM of 

i -1S′  intersect transversally. For αc2 < α, the UM of iS′ eventually converges to the IC 

corresponding to the propagating pulse wave just after birth. Therefore, the propagating 

direction depends on the initial condition. 

Since αc1 and αc2 are very close, we recognize them as the same number: αc = αc1 = αc2 = 

0.088302 for convenience. In addition, αc (=0.088302) and αPF (=0.088328) are close to αSN (= 

0.088501), therefore we say that the propagating pulse wave occurs at the SN bifurcation 

point approximately. For other values of β in 3.14 N β N 3.25, we confirmed the same 

bifurcation structure ensuring generation of IC. For β O 3.26 and α > αPF ( αSN), one of the 

UM of each saddle goes to the stable node representing the whole oscillation (W in Fig.5). 

For β N 3.14 and α > αPF ( αSN), it goes to the stable node representing the zero solution (Z 

in Fig.5). 

Practically, for 3.14 N β N 3.25, if the initial condition is set on the periodic solution 

(standing wave solution) and increase α, the periodic solution persists up to α = αPF and for 

α > αPF, the periodic solution jumps to the propagating wave solution (IC). On the contrary, 

if the initial condition is set on IC for α > αPF and then decrease α, the IC disappears at α = αc 

to become the periodic solution (standing wave solution). Namely, a hysteresis 

phenomenon between the standing wave solution and the propagating wave solution can be 

seen in αc N α N αPF. 

4. Conclusions 

In this chapter, we revealed existence of the propagating wave in the ring of coupled 
bistable oscillator system. Then, we give one of the onset mechanisms of the propagating 
 

                                                 
7 The shape of UM is obtained, together with the compensation algorithm, by repeating the 
mapping of which initial value is chosen on the unstable eigenvector(Parker & Chua; 1989). 
The method to obtain initial point on the unstable eigenvector is referred to (57) in (Katsuta 
& Kawakami; 1993). Numerical integrations for the compensation algorithm are carried out 
with 4th order Runge-Kutta method with step size = 0.001. 
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                              (a) α = 0.088302850                                               (b) α = 0.088302864 

 

                                                                         (c) α = 0.088302872 

Fig. 8. Three situation of UM of S5 (thin curve) and a stable eigenvector of S6 (thick line) 
corresponding to the largest stable eigenvalue. 

pulse wave for the ring of 6 coupled bistable oscillators by exploring global phase-space 
structure around the bifurcation point. The transition from the standing pulse wave to the 
propagating pulse wave is due to the heteroclinic tangle shown in Fig.7. In our forthcoming 
paper, we will investigate these subjects more in detail. 
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A. The propagating pulse wave PW2 

The PW2 is a certain kind of propagating pulse wave. The mapped points of PW1 and PW2 

projected onto the (x1, x3, x5) phase space are shown in Fig.9(a) and (b), respectively. 

Comparing both cases, each flow on the phase space moves along a different orbit. In 

addition, for PW1 the mapped points stay for a long time on several points (which 

correspond to the locus of the nodes Ni, i = 1, 2, … , 6.). This is one of characteristic feature of 

PW1 originating in the heteroclinic tangle. On the other hand, for PW2 the mapped points 

no longer stay the locus for a long time. Therefore, we distinguish PW2 from PW1. The 

existence region of such solution is shown in Fig.5. It should be noted that the starting point 

of PW2 is no longer close to the existence region of PS. That is, between them the existence 

region of W is sandwiched. For example, for β = 3.26 and ε = 0.36, PS disappears via PF 

bifurcation at αPF  0.083. In contrast, PW2 begins to exist for α O 0.087. Namely, there exists 

a gap between them. Probably, it originates in the standing wave where two adjacent 

oscillators are oscillating and where other oscillators are not. This is confirmed by 

continuously changing the parameter β of Fig.9. Further research will be necessary to clarify 

the generation mechanism of PW2. 
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                       (a) Mapped points of PW1                                 (b) Mapped points of PW2 

Fig. 9. Mapped points of PW1 and PW2 projected onto the (x1, x3, x5) phase space. (a) PW1 (α 
= 0.089, β = 3.25 and ε = 0.36). The initial condition is given as x1 = 2.0, y2 = 1.3 and all other 

variables are zero. (b) PW2 (α = 0.089, β = 3.26 and ε = 0.36). The initial condition is given as 
x1 = 1.7, x2 = –2.2, x3 = 0.9, x4 = 0.2, x5 = 0.1, x6 = 0.5, y1 = 1.8, y2 = 0.4, y3 = –2.3, y4 = y5 = 0.3 and 
y6 = –0.3. 
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