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1. Introduction 

Modeling the propagation of acoustic or fully elastic (i.e. seismic) waves is an important tool 
for interpreting, understanding and predicting real-world measurements in various 
industrial disciplines. In this context, modeling can be anything from three-dimensional full 
waveform modeling using numerical techniques (e.g. finite difference method, finite 
element method, spectral method; Kelly & Marfurt, 1990; Martin & Komatitsch, 2009) to 
analytical treatment of wave phenomena (e.g. Liu et al., 2000; Aki & Richards, 2002; 
Korneev, 2008) and can be in both, time and frequency domain. In its simplest form, the 
propagation of waves through a heterogeneous medium is described with a linear elastic 
material behavior (Aki & Richards, 2002). Such models, including and resolving 
heterogeneities on various scales with different elastic material parameters, are already able 
to describe a number of wave propagation phenomena, e.g. reflection and transmission 
coefficients at interfaces, scattering at heterogeneities (Frehner et al., 2008) or propagation of 
surface waves. As the number of investigated heterogeneities increases, the complexity of 
the numerical model and the computational cost also increases. For example, Saenger et al. 
(2007) use an advanced parallel finite difference scheme to model wave propagation on the 
pore-scale resolving the entire pore structure of a rock or Lee et al. (2009) use a spectral 
element method comprising an unstructured numerical mesh to investigate the effect of 
topography on seismic wave amplitudes. These are only two examples of a numerical model 
with a basic linear elastic constitutive equation containing a large number of heterogeneities 
with very complex geometries. 
When the number of heterogeneities and therefore the geometrical complexity of a model 

becomes too large and/or the characteristic size of the heterogeneities is much smaller than 

the wavelength under consideration, effective medium theories are applied. Such models 

upscale physical processes on the microscale (i.e. much smaller than the wavelength) by 

introducing coarse-grained/homogenized macroscopic effective material parameters. For 

example, Korneev et al. (2004) added an additional term describing viscous damping to the 

elastic wave equation to take into account attenuation. However, the physical process acting 
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on the microscale causing the attenuation is not described. The widely accepted effective 

medium model for fully saturated porous media is the Biot model (Biot, 1962). More 

advanced models for partially saturated porous media can be separated into two groups: (1) 

models based on Biot's theory for fully saturated media, but applying spatially varying pore 

fluid properties representing a partial saturation on the mesoscale (i.e. larger than the pore 

size and smaller than the wavelength under consideration; White, 1975; Dutta & Ode, 1979; 

Quintal et al., 2009) and (2) macroscale effective medium models for three-phase media (i.e. 

solid rock, wetting and non-wetting fluid) considering a homogenized partial saturation on 

the pore-scale, including in particular capillary pressure effects (Santos et al., 1990; 

Smeulders & van Dongen, 1997; Wei & Muraleetharan, 2002). Common to all of these 

effective medium models for fully or partially saturated porous rocks is that in their 

derivation the individual phases are usually mixed and the material properties are averaged 

over a so-called representative elementary volume. By doing so, processes taking place at 

the interfaces between the individual phases (e.g. surface tension effects or scattering at the 

pore structure) are ignored. More advanced mixture theory-based models, which take 

specific surface areas between wetting and non-wetting phases into account, are still limited 

to quasi-static processes. However, such effects can be re-included by introducing additional 

effective material parameters. 

Within a medium containing any kind of heterogeneity or a number of heterogeneities, 

oscillations with a characteristic resonance frequency, depending on the mass and internal 

length of the heterogeneity, can occur. When excited, heterogeneities can self-oscillate with 

their natural frequency (Carstensen & Foldy, 1947; MacPherson, 1957; van Wijngaarden, 

1972; Anderson & Hampton, 1980). If the external excitation force is an acoustic or seismic 

wave, this process is called resonant scattering (Werby & Gaunaurd, 1990; Hassan & Nagy, 

1997) and has application in non-destructive testing of materials (e.g. Schultz et al., 2006). 

Korneev (2009) even demonstrated that the resonance frequency of an object in the 

subsurface with a large impedance contrast to its surrounding can be measured with an 

active seismic experiment at the Earth surface. The oscillations are more easily detectable in 

late arrivals when they are not masked by high-energy body waves. Other mechanisms can 

cause oscillations within a heterogeneous medium. For example, the dynamical behavior of 

non-wetting fluid blobs or fluid patches in idealized residually saturated pore spaces were 

studied (Dvorkin et al., 1990; Graham & Higdon, 2000a; Graham & Higdon, 2000b). Thereby, 

one of the main results is the oscillatory movement of the fluids when an external driving 

force is applied (Hilpert et al., 2000). The restoring force driving the oscillations is the 

surface tension force or capillary force. The fact that isolated oil blobs in residually saturated 

pore spaces can exhibit a resonance frequency, motivated the suggestion of a new enhanced 

oil recovery method (EOR) termed "wave stimulation of oil" or "vibratory mobilization" 

(Beresnev & Johnson, 1994; Iassonov & Beresnev, 2003; Beresnev et al., 2005; Li et al., 2005; 

Hilpert, 2007; Pride et al., 2008). Another example of oscillatory behavior within a medium 

is given by Urquizu and Correig (2004). They showed that under certain circumstances a 

seismic wave pulse propagating through a layered medium can be described 

mathematically with a differential equation for an oscillator. 

All of these oscillatory phenomena within a medium should have an effect on acoustic or 
seismic waves propagating through such a heterogeneous medium. Presumably, the wave 
will show a strongly frequency-dependent propagation behavior (i.e. velocity dispersion 
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and frequency-dependent attenuation). However, such oscillatory phenomena are not 
included in current effective medium theories, such as the Biot theory (Biot, 1962). 
Oscillations are usually described on the microscale (i.e. the scale of one single oscillator; 
Dvorkin et al., 1990; Graham & Higdon, 2000; Hilpert et al., 2000; Beresnev et al., 2005), not 
taking into account the macroscale, i.e. continuous scale. Frehner et al. (2009) presented a 
model to combine the dynamics of wave propagation and rock-internal oscillations caused 
by capillarity effects using an effective medium theory. However, the model was presented 
for internal undamped oscillations with only one particular resonance frequency. 
In this chapter, we extend the effective medium model of Frehner et al. (2009) by 
introducing a viscous damping term and generalize the model for an arbitrary number of 
resonance frequencies (described e.g. by a probability density function of possible resonance 
frequencies in the limit case). We describe the simplified case of an acoustic medium 
exhibiting internal oscillations, i.e. a linear elastic medium with an elastic shear modulus 
equal to zero. In such a material only one type of wave (i.e. a compressional wave or P-
wave) can propagate. The internal oscillations will be described by the equation of motion 
for a damped harmonic oscillator. Different to Frehner et al. (2009), we use as an example for 
such a medium water containing gas bubbles, where the dispersed gas bubbles can oscillate 
with their natural frequency. For that specific example, the elastic and viscous interaction 
forces between the phases can be derived analytically and a comparison with literature and 
experimentally obtained results can be performed. 

2. Mathematical model of acoustic medium exhibiting internal oscillations 

For simplicity reasons and because we want to understand first-order effects, we choose a 
basic model. By choosing an acoustic medium, we concentrate on only one type of wave (i.e. 
a compressional wave or P-wave, also called acoustic wave or sound wave). Because only 
one type of wave can propagate in an acoustic medium, we choose a one-dimensional 
model description (x is the spatial coordinate). Thus, we neglect amplitude decrease of the 
acoustic wave due to geometrical spreading and energy redirection in the different spatial 
directions. 
The chosen model leads to a straightforward analogy, i.e. water (the acoustic medium) 
containing gas bubbles (internal oscillations). This particular case was studied by a number 
of researchers (e.g. Minnaert, 1933; Carstensen & Foldy, 1947; Fox et al., 1955; MacPherson, 
1957; Silberman, 1957; van Wijngaarden, 1972; Commander & Prosperetti, 1989) and a large 
number of experimental data is available, as well as detailed theory. However, we choose a 
different approach for deriving our equations. While in the cited literature the dynamics of 
the bubble is considered in detail, we take the result of this work and simply assume that 
the bubble movement can be described by a damped harmonic oscillator. Fig. 1 shows the 
conceptual one-dimensional model of water (acoustic medium) containing gas bubbles 
(oscillators). 
The governing set of equations for the gas-water-mixture can be derived by averaging the 
properties of the gas bubbles in a certain representative elementary volume and applying 
concepts of the mixture theory (Truesdell, 1957; Bowen, 1980; Bowen, 1982). In contrast to 
classical mixture theory, we would like to denote that only the fluid (i.e. water) phase is 
continuous, while the gas phase consists of individual disconnected bubbles. Therefore, no 
acoustic wave can propagate through the gas phase and we do not introduce a Darcy-like 
term to describe the flow of the gas phase. 
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Fig. 1. Conceptual one-dimensional model of an acoustic medium (i.e. water) exhibiting 
internal oscillations (i.e. individual disconnected and compressible gas bubbles). 

Exemplarily, a model with two different internal resonance frequencies (ω1 and ω2) is 
displayed here. Only displacements and waves propagating in the horizontal (i.e. x-) 
direction are considered. 

2.1 Oscillations of gas bubbles 
First, we study the oscillatory behavior of one individual disconnected gas bubble 
(superscript g) in water (superscript f). Minnaert (1933) determined the angular 
eigenfrequency of a spherical gas bubble in water under isothermal conditions as 

 
γ
ρ

Ω = 0
0

31
j fR

j

p

r
, (1) 

depending on the radius rj of the bubble, the heat capacity ratio γ of the gas, the initial gas 

pressure in the bubble p0 and the density of bubble-free water ρfR. The index j denotes the 

particular bubble size under consideration. Superscript R denotes material parameters of a 

single-phase medium (i.e. bubble free water or pure gas). The initial gas pressure in the 

bubble p0 is assumed to be the same for all bubble sizes and can be calculated from the water 

depth H as 

 ρ= +5
0 10 9.81 fRp H . (2) 

The value 105 [Pa] is the atmospheric pressure at sea level, i.e. the pressure at the water 

surface. The value 9.81 [m/s2] is the gravitational acceleration. Because we do not follow the 

derivations of Minnaert (1933) and we couple the bubble oscillations to a wave propagation 

equation, we can not expect the resonance frequency of our coupled wave propagation-

oscillator model to be equal to Equation (1). However, we use the frequency of Minnaert 

(1933) (Equation (1)) as a reference frequency. Accordingly, the resonance frequency of our 

model is 

 ω = Ω0 0j jA . (3) 
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The scaling factor A will be determined, once the coupled system of equations is derived 
further down. According to the harmonic oscillator model, the restoring force for one 
oscillating gas bubble is 

 ω= − 2
0

ˆ ˆg g
j j jf m w , (4) 

where ˆ g
jm  is the mass of one individual gas bubble with radius rj and = −g f

jw u u  is the 

relative displacement of the center of mass of the gas bubble to the fluid (with u being 
displacement). The symbol ^ above parameters refers to the fact that Equation (4) is valid for 
one particular isolated gas bubble, i.e. at one particular position in the model, and is not a 
continuous formulation for the whole model yet. According to Batchelor (2000), the viscous 
interaction (i.e. damping) force of a single gas bubble surrounded by a viscous fluid is given 
by 

 π η= − $ˆ 4g fR
j jb r w , (5) 

where ηfR is the dynamic viscosity of bubble-free water and $w  is the material time 

derivative of the relative displacement w, i.e. the relative velocity of the center of mass of the 
gas bubble to the fluid1. Note that the interacting forces (Equations (4) and (5)) are written in 
terms of relative displacement and velocity. We would like to remark, that, in contrast to 
Biot-type models or other mixture theory-based models, two physically different 
momentum interaction terms are introduced. A purely elastic term of oscillatory nature that 
scales with the volume of the bubble and a viscous term that scales with the specific surface 
of the bubble. Thus we are able to take into account damping with respect to the specific 
surface area of the gas bubbles. 

The volume of one single gas bubble of radius rj is given by ˆ g

jV  while the number nj is 

introduced as the number of bubbles with the same radius rj per representative elementary 

volume (REV), i.e. nj carries the dimension [1/m3]. Finally, in order to describe the 

macroscopic behaviour of the gas-fluid-mixture in the REV, we introduce the volume 

fraction of the sum of gas bubbles with radius rj as φ g

j . Summing up all bubbles with 

different radii in the REV is done by summing up the volume fractions φ g

j  of bubbles with 

radius rj. The result is the overall volume fraction of the gas phase φg. The following 

relations apply: 

                                                 
1The non-equilibrium interaction between the fluid and the gas bubble was generalized in 
Batchelor (2000) for bubbles consisting of fluids with an intrinsic viscosity leading to 

η η
π η

η η

+
= −

+
$

3
2ˆ ˆ4

fR gR

g fR
j j fR gR

f r w  

with the limits for 

 a) gas bubbles: 
η

π η
→

= − $
0

ˆ ˆlim 4
gR

g fR

j jf r w  

 b) rigid spheres 
η

π η
→∞

= − $ˆ ˆlim 6
gR

g fR

j jf r w  
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 ( )φ φ φ
= =

= = =∑ ∑
1 1

ˆ ˆand
m m

g g g g g
j j j j j j

j j

n V n V . (6) 

The value m is the number of different gas bubble sizes in the system. For example, in a 

model containing a large number of equally sized gas bubbles, m is equal to 1, in contrast to 

n1, which is the absolute number of gas bubbles with that particular size. Also, partial 

densities ρ g

j  and ρg are introduced as 

 ( )ρ φ ρ ρ φ ρ φ ρ
=

= = = =∑
1

ˆ and
m

g g g gR g g gR g gR
j j j j j

j

n m . (7) 

The partial density ρ g
j  is defined as the mass of gas inside gas bubbles of one particular 

radius rj per REV and is therefore different to the true or so-called effective density of gas 

ρgR. The partial density ρg is defined as the total mass of gas per REV. 

2.2 Acoustic medium containing oscillating gas bubbles 

The summation of all momentum interaction terms ˆ g
jf  and ˆ g

jb  of the gas phase (Equations 

(4) and (5)) must be equal to the momentum interaction term of the water phase. Therefore, 

the following constraints must be fulfilled: 

 ( ) ( )
= =

+ + + =∑ ∑
1 1

ˆ ˆ 0
m m

g g f f
j j j j

j j

n f n b f b . (8) 

The water phase is assumed to behave like a purely acoustic medium. Thus, we neglect any 
viscous shear stresses. The balance of momentum in one dimension is given by: 

 
σρ ∂

= + +
∂

$$f f f fu f b
x

. (9) 

In Equation (9), ρf is the partial density of water, i.e. ρf=φf ρfR (with φf and ρfR being the 
volume fraction and the true density of water, respectively) and σ is the normal stress in the 
water phase in the only spatial direction x and is defined as positive for extensional stress. 
The constitutive equation for the stress in the (acoustic) water phase has the following form: 

 σ φ ∂
=

∂

f
f f u
K

x
. (10) 

In Equation (10), Kf is the bulk modulus of water. The balance of momentum for the water 
phase (Equation (9)) becomes (including Equations (4), (5), (8) and (10)) 

 ( )( ) ( )( )ρ φ ω π η
= =

∂
= + − + −

∂ ∑ ∑$$ $ $
2

2
02

1 1

ˆ 4
f m m

f f f f g g f fR g f
j j j j j j j

j j

u
u K n m u u n r u u

x
 (11) 

for a spatially constant bulk modulus of water Kf and volume fraction of water φf. The 
viscous friction coefficient is introduced as 

 
φ η

η π η= =
2

3
4

g fR
jfR

j j j

j

n r
r

, (12) 
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Equation (12) shows the distinct size effect of the gas-water mixture. Keeping the volume 

fraction of the gas phase φ g
j  constant and decreasing the radius of the gas bubbles the 

viscous behavior, i.e. the attenuation mechanism in the system, becomes more and more 

important (scales with 21 / jr ). This is obvious, as for smaller bubbles the ratio of surface to 

volume becomes bigger and bigger. Using Equations (7) and (12), Equation (11) can be 

further simplified: 

 ( )( ) ( )( )ρ φ ρ ω η
= =

∂
= + − + −

∂ ∑ ∑$$ $ $
2

2
02

1 1

f m m
f f f f g g f g f

j j j j j
j j

u
u K u u u u

x
. (13) 

2.3 Gas-water-mixture 
For the mixture of water and gas, the momentum interaction terms must vanish (Equation 
(8)). Also, we assume that the bulk modulus of the gas-water-mixture is equal to the Reuss 
average (Mavko et al., 2003) of the bulk moduli of the two constituents, i.e. Kg for gas and Kf 
for water: 

 
φ φ

= +
Reuss

1 g f

g fK K K
. (14) 

The Reuss average of the bulk moduli is plotted in Fig. 2 for the material parameters shown 

in Table 1 and for a range of gas volume fractions. Using Equation (14), the pressure of the 

gas-water-mixture can be expressed in terms of the deformation of the water phase while 

the deformation of the gas phase is taken into account through the Reuss average of the bulk 

moduli. Taking these considerations into account, the total momentum balance equation for 

the gas-water-mixture can be written as 

 ( )ρ ρ
=

∂
+ =

∂∑$$ $$
2

Reuss

2
1

fm
f f g g

j j
j

u
u u K

x
. (15) 

Subtracting Equation (13) from Equation (15) leads to the partial balance of momentum for 
the sum of the gas bubbles: 

 ( ) ( ) ( )( ) ( )( )ρ φ ρ ω η
= = =

∂
= − − − − −

∂∑ ∑ ∑$$ $ $
2

Reuss 2
02

1 1 1

fm m m
g g f f g g f g f
j j j j j j j

j j j

u
u K K u u u u

x
. (16) 

Equation (16) is split into m different equations, one for each bubble size in the system. The 

first term on the right-hand side is distributed among these m equations according to the 

relative volume fraction of gas inside a particular bubble size. The m equations are: 

 ( ) ( ) ( ) { }
φ

ρ φ ρ ω η
φ

∂
= − − − − − =

∂
$$ $ $

2
Reuss 2

02
for 1,...,

g f
jg g f f g g f g f

j j j j j j jg

u
u K K u u u u j m

x
. (17) 

2.2 Monochromatic acoustic wave 
Next, we analyze monochromatic acoustic waves propagating through a medium that is 

described by the partial balance Equations (17) and (13). We apply a standard harmonic 

ansatz of the form 
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 ( )( )β β ω= −expu U i kx t  (18) 

with β={g1,...,gm,f} representing the individual phases. In Equation (18) Uβ is the amplitude of 

the wave, i is the imaginary unit (i.e. i2=-1), ω is angular frequency, t is time and k is the 

complex wave number. For the model containing bubbles with m different radii rj with 

i={1,...,m} with the volume fractions φ g
j  we obtain 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

φω ρ ρ ω ωη φ
φ

φω ρ ρ ω ωη φ
φ

ω ρ φ ρ ω ωη ρ ω ωη
= =

− + − − − − − =

− + − − − − − =

⎛ ⎞
− + + − − − =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

B

2 2 Reuss 21
1 1 1 01 1 1 1

2 2 Reuss 2
0

2 2 2 2
0 0

1 1

0,

0,

0.

g
g g g g f g f f f f

g

g
g g g g f g f f f fm
m m m m m m m g

m m
f f f g f g g

j j j j j j j
j j

U U U i U U K K k U

U U U i U U K K k U

K k i U i U

 (19) 

Equation (19) can be written in matrix notation as (A-k2B)U=0, resulting in the generalized 
eigenvalue problem 

 ( )− =2det 0kA B . (20) 

The vector U is defined as ⎡ ⎤= ⎣ ⎦…1
g g f

mU U UU  and the matrices A and B are given as 

 

( )

( )
( )

ω ω ρ ωη ρ ω ωη

ω ω ρ ωη ρ ω ωη

ρ ω ωη ρ ω ωη ω ρ ρ ω ωη
=

⎡ ⎤− − − +
⎢ ⎥
⎢ ⎥
⎢ ⎥= − − − +⎢ ⎥
⎢ ⎥
⎢ ⎥− + − + − + −
⎢ ⎥⎣ ⎦

∑

…

B D B B

…

…

2 2 2
01 1 1 1 01 1

2 2 2
0 0

2 2 2 2
1 01 1 0 0

1

0

0

g g

g g
m m m m m m

m
g g f g

m m m j j j
j

i i

i i

i i i

A , (21) 

 

( )

( )

φ φ
φ

φ φ
φ

φ

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

…

B D B B

…

…

Reuss1

Reuss

0 0

0 0

0 0

g
f f

g

g
f fm

g

f f

K K

K K

K

B . (22) 

The solution of the generalized eigenvalue problem (Equation (20)) is the dispersion relation 
expressed by the frequency-dependent and complex wave number k, from which the phase 
velocity c and attenuation factor α of the acoustic wave can be calculated: 

 
( ) ( )ω α= =, Im

Re
c k

k
. (23) 

In Equation (23), Re(k) and Im(k) denote the real and imaginary part of the complex wave 
number k, respectively.  
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3. Dispersion and frequency-dependent attenuation 

The solution of the generalized eigenvalue problem (Equation (20)) is frequency-dependent 
and complex. Therefore, also the phase velocity c and the attenuation α is frequency-
dependent. However, low and high frequency limits for the phase velocity can be 
determined: 

 ( ) ( )
ω ωρ ρ→ →∞

= = = =
Reuss f

Wood

eff0
lim , lim fR

fR

K K
c c c c . (24) 

The low-frequency-limit for the phase velocity is the so-called Wood-limit (Mavko et al., 
2003). At frequencies much smaller than the resonance frequency of the gas bubbles, water 
and gas move in phase. Therefore, in this regime, effective material parameters have to be 
used, i.e. the Reuss average of the bulk moduli of the two constituents and the effective 
density of the gas-water-mixture, which is given as 

 ( )ρ ρ ρ ρ ρ φ ρ φ ρ φ ρ φ ρ
= =

= + = + = + = +∑ ∑eff

1 1

m m
f g f g f fR g gR f fR g gR

j j
j j

. (25) 

The effective density and the Wood-limit is plotted in Fig. 2 together with the Reuss average 
of the bulk moduli (Equation (14)) for the material parameters shown in Table 1 and for a 
range of gas volume fractions. The high-frequency-limit for the phase velocity (Equation 
(24)) is equal to the phase velocity of bubble-free water cfR. At frequencies much larger than 
the resonance frequency, inertia prohibits a movement of the gas bubbles. Therefore, in this 
regime, the true material parameters of the fluid have to be used. 
 

 

Fig. 2. Effective density ρeff, low-frequency-limit (i.e. Wood-limit) cWood and Reuss average of 
the bulk moduli KReuss for the material parameters shown in Table 1 and for a range of gas 
volume fractions. All values are dimensionless and normalization was done with the 
respective values for pure water, i.e. the high-frequency-limits. The gray box in the upper 
right corner is blown up and shown as the inlet in the lower left of the figure. 
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Parameter Symbol Value [Unit] 

Density ρfR 1000 [kg/m3]

Bulk modulus Kf 2.2x109 [Pa] 

Viscosity ηfR 1x10-3 [Pa s] W
at

er
 

Sound speed cfR 1483 [m/s] 

Density ρgR 1 [kg/m3] 

Bulk modulus Kg 101x103 [Pa] 

Heat capacity ratio γ 1.4 [-] G
as

 

Sound speed cgR 362 [m/s] 

Water depth H 0 [m] 

Table 1. Physical properties of the pure media used in this study, i.e. bubble-free water and 
pure gas, respectively, and the water depth that is common to all models in this study. 

We define the resonance frequency ω0j of our coupled wave propagation-oscillator model to 

be the frequency where the peak attenuation occurs. The resonance frequency is 

 ω = Ω = Ω0 0 0

fR

j j jWood

c
A

c
. (26) 

Equation (26) shows that the scaling factor A is not an arbitrary value, but is a combination 
of material parameters defined earlier, i.e. the ratio between high- and low-frequency-limit 
of the phase velocity. 

3.1 Gas bubbles of only one size 
First, we study a model containing gas bubbles of only one size. Consequently, only the first 
and the last equations of the set of Equations (19) are used and matrices A and B (Equations 
(21) and (22)) reduce to 2x2-matrices. Fig. 3 and Fig. 4 both show the phase velocity 
dispersion (a) and the frequency-dependent attenuation (b) of acoustic waves in such a 
model. The material parameters used for producing Fig. 3 and Fig. 4 are given in Table 1. In 

Fig. 3 the gas volume fraction is constant (φg=0.001) for all lines while the different lines 
represent different gas bubble sizes (r={7x10-5m, 1x10-4m, 2x10-4m, 5x10-4m, 1x10-3m}). These 

gas bubble sizes result in angular resonance frequencies Ω0={2.93x105Hz, 2.05x105Hz, 
1.02x105Hz, 4.10x104Hz, 2.05x104Hz}. In Fig. 4 the gas bubble size is constant (r=2x10-4m, 

ω0=1.02x105Hz) for all lines while the different lines represent different gas volume fractions 

(φg={1x10-4, 5x10-4, 1x10-3, 5x10-3, 1x10-2}). 
For a constant gas volume fraction the low- and high-frequency-limit for the phase velocity 
(Fig. 3a) is also constant. This is obvious because these limits (Equations (24)) only depend 
on the effective material properties of the gas-water-mixture (i.e. Reuss average of bulk 
moduli and effective density) and on the material properties of water, respectively, and not 
on the size of the gas bubbles. However, the size of the gas bubbles influences the phase 
velocity dispersion curves in the vicinity of the resonance frequency of the gas bubbles. For 
small gas bubbles, the attenuation becomes more important (Equation (12)) and the 
oscillations are damped more. Therefore, not such a strong excitation of the oscillations can 
take place and the transition from the low- to the high-frequency-limit of the phase velocity 
dispersion curve is smoother for small gas bubble sizes, i.e. not such strong minimum and 
maximum values. On the other hand, for larger bubble sizes, the damping is small and the 
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Fig. 3. Dispersion (a) and frequency-dependent attenuation (b) for water containing gas with 

a fixed volume fraction φg=0.001. Material parameters are given in Table 1. While the gas 
volume fraction is kept constant, for each curve the gas volume is contained in bubbles with 
equal radius (in meter) r={7x10-5, 1x10-4, 2x10-4, 5x10-4, 1x10-3}. The frequency is normalized 
with the resonance frequency and the phase velocity is normalized with the phase velocity 
in bubble-free water, i.e. with the high-frequency-limit. 

 

 

Fig. 4. Dispersion (a) and frequency-dependent attenuation (b) for water containing gas 
bubbles with a fixed radius r=2x10-4m. Material parameters are given in Table 1. While the 
gas bubble size is kept constant, the gas volume fraction is different for the different lines 

(φg={1x10-4, 5x10-4, 1x10-3, 5x10-3, 1x10-2}). The frequency is normalized with the resonance 
frequency and the phase velocity is normalized with the phase velocity in bubble-free water, 
i.e. with the high-frequency-limit. 

oscillations are strongly excited. For all bubble sizes, at frequencies slightly lower than the 
resonance frequency, the phase velocity strongly decreases before it rapidly increases to 
values much larger than the high-frequency-limit. For increasing frequencies, the phase 
velocity decreases to eventually reach the high-frequency-limit. Such a behavior of the phase 
velocity around the resonance frequency was also described by van Wijngaarden (1972), 
Anderson and Hampton (1980) or Commander and Prosperetti (1989). 
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The effect of the gas bubble size on attenuation is shown in Fig. 3b. Around the resonance 
frequency, the attenuation of an acoustic wave is largest because energy is transferred from 
the water to the gas bubbles to excite the oscillations. At frequencies much larger than the 
resonance frequency, inertia prohibits a movement of the gas bubbles. Obviously, the non-
moving gas bubbles damp a propagating acoustic wave. As described above, the attenuation 
depends on the gas bubble size (Equation (12)). At frequencies much smaller than the 
resonance frequency of the gas bubbles, water and gas move in phase. Therefore, there is no 
relative movement between gas and water and consequently no attenuation. 
The phase velocity dispersion curves for different gas volume fractions but for constant gas 

bubble size (Fig. 4a) are qualitatively comparable. The major difference between these 

curves is the low-frequency-limit. A smaller gas volume fraction leads to a larger value of 

the Reuss average of the bulk moduli (Equation (14)) and therefore to a higher value of the 

low-frequency-limit of the phase velocity (Equation (24)). At the same time, the influence on 

the Wood-limit of the change of the effective density (Equation (25)) with changing gas 

volume fraction is only minimal in the range considered in Fig. 4. This can also be observed 

in Fig. 2. The attenuation of an acoustic wave (Fig. 4b) is stronger for larger gas volume 

fractions. This is intuitive, because the larger the gas volume fraction is, the more gas 

bubbles are present in the water and the stronger water and gas interact. However, the high-

frequency-limit for the attenuation is only weakly influenced by the gas volume fraction 

with a slightly higher attenuation for larger gas volume fractions. From the equation for 

viscous friction term η  (Equation (12)) it is clear that the bubble radius (Fig. 3b) has a much 

stronger influence on the attenuation than the gas volume fraction (Fig. 4b), i.e. quadratic vs. 

linear relation, respectively. 

3.2 Gas bubbles with two different sizes 
The model equation (Equations (13) and (17)) are written for an arbitrary number of gas 

bubble sizes. Exemplarily, we consider two different bubble sizes in the water, leading to 

two different resonance frequencies. The material parameters for gas and water are given in 

Table 1 and the two bubble sizes and volume fractions are given in Table 2. The volume 

fraction of the total number of bubbles of each bubble size is equal, i.e. half of the gas is 

contained in one bubble size, the other half is contained in the other bubble size. Fig. 5 

shows the phase velocity dispersion (a) and frequency-dependent attenuation (b) for this 

model. The low- and high-frequency-limits for the phase velocity are the same as in Fig. 3, 

because the gas volume fraction is the same. However, the dispersion curve in the vicinity of 

the two resonance frequencies is quite different. The typical dispersion behavior for only 

one bubble size shown in Fig. 3 and Fig. 4 (i.e. decreasing velocity below resonance 

frequency, rapid increase to values larger than high-frequency-limit, decrease to high-

frequency-limit) takes place twice, once at each of the two resonance frequencies. Therefore, 

two, rather than one, sets of minimum and maximum occur in the phase velocity dispersion 

curve (Fig. 5a). For comparison, the dispersion and the frequency-dependent attenuation of 

two models containing only either of the two bubble sizes with their respective volume 

fraction are also plotted in Fig. 5. Note that the scaling of the resonance frequencies is 

different for these models because the total gas volume fraction is different. As for the phase 

velocity dispersion, the attenuation (Fig. 5b) shows two maxima, one at each of the two 

resonance frequencies. 
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Fig. 5. Dispersion (a) and frequency-dependent attenuation (b) for water containing gas 
bubbles with two different radii r1=1x10-3m and r2=2x10-4m. Material parameters are given 
in Table 1 and Table 2. Plotted in light gray for comparison are the dispersion and the 
frequency-dependent attenuation of two models containing only either of the two bubble 
sizes with their respective volume fraction. The frequency is normalized with the resonance 
frequency of the larger bubble and the phase velocity is normalized with the phase velocity 
in bubble-free water, i.e. with the high-frequency-limit. 
 

Parameter Value [Unit] 

Gas volume fraction φg=1x10-3 [-] 

 Gas bubble size 1 Gas bubble size 2 

Bubble radius r1=1x10-3 [m] r2=2x10-4 [m] 

Volume fraction of gas bubble sizes φ1
g =5x10-4 [-] φ2

g =5x10-4 [-] 

Angular resonance frequency ω01=2.05x104 [Hz] ω02=1.02x105 [Hz] 

Table 2. Model parameters for the model containing gas bubbles of two different sizes. 
Material parameters for gas and water are given in Table 1. 

3.3 Probability function for gas bubble sizes 
The model equation (Equations (13) and (17)) are written for an arbitrary number of gas 
bubble sizes. In principle, every gas bubble size distribution can be approximated by a 
combination of discrete size (i.e. radius) and volume fraction distributions, which can then 
be used in Equations (13) and (17). Exemplarily, we show results for bubble radii that lie in 
the range [0.1r0...10r0] and whose corresponding volume fractions are log-normal distributed 
around a central value r0. The following equation describes the distribution of the volume 
fraction for the different bubble sizes: 
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We set r0=2x10-4m and we pick 501 values for the bubble radius rj in the range [0.1r0...10r0] in 
a way that the logarithm of rj is equally spaced. The factor Φ is chosen in such a way that  
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Fig. 6. a) Gas volume fraction versus bubble radius. The bubble radius is normalized with 
r0=2x10-4m. Along these curves, 501 discrete values are picked at equally spaced values for 
the logarithm of the bubble radius, i.e. the curves are discrete probability functions, rather 

than continuous ones. The sum of all 501 values is equal to φg=0.001. Labels correspond to 
the values of parameter s in Equation (27). The curve with label "0.0" corresponds to a model 
with only one bubble size. b), c) and d) Dispersion and two different representations of the 
frequency-dependent attenuation for water containing gas with a fixed volume fraction 

φg=0.001 and with bubble size distributions shown in a). Labels are only given for the end 
member curves. All other curves correspond to the curves labeled in a). Material parameters 
are given in Table 1. The frequency is normalized with the resonance frequency and the 
phase velocity is normalized with the phase velocity in bubble-free water, i.e. with the high-
frequency-limit. 

Equations (6) are fulfilled for a gas volume fraction φg=0.001. Equation (27) describes the 

discrete approximation of a log-normal probability function. The log-normal function is cut 

off at the values 0.1r0 and 10r0 because bubble radii only lie between these two values. In 

Fig. 6a, Equation (27) is plotted for different values of the parameter s (i.e. s={0.0, 0.7, 1.0, 1.2, 

1.3, 1.5, 2.0, ∞}). Choosing s=∞ (infinity) results in a flat distribution where the volume 

fraction for each bubble size is equal. Choosing s=0 results in a Dirac-distribution where 
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only one bubble size is present, i.e. bubbles with radius r0. In Fig. 6 the phase velocity 

dispersion (b) and the frequency-dependent attenuation (c and d) are shown for the 

different distribution functions shown in Fig. 6a. Note that curves labeled "0.0" correspond 

to a model with only one bubble size and are the same as the third curves in Fig. 3 and Fig. 4. 

The high- and low-frequency-limits for the phase velocity is equal for all bubble size 

distributions because the gas volume fraction φg is equal. Between the two limits, the 

different bubble size distributions lead to significantly different dispersion curves. Only the 

first and second curve (i.e. s={0.0, 0.7}), for which only one gas bubble size occurs or the gas 

bubble size is very narrowly distributed around r0, respectively, show the characteristic 

features described above for Fig. 3a and Fig. 4a (i.e. maximum peak velocity and asymptotic 

approach of the high-frequency-limit). For wider gas bubble size distributions, the clear 

maximum peak disappears and the asymptotic approach of the high-frequency-limit is very 

flat or even from values smaller than the high-frequency-limit. For larger values of s (i.e. 

s={1.3, 1.5, 2.0, ∞}), the phase velocity exhibits a maximum value that is higher than the high-

frequency-limit and drops below the high-frequency-limit for increasing frequencies. 

The attenuation shows different characteristics in the high-frequency-range (Fig. 6c) and at 

frequencies around the central resonance frequency (Fig. 6d). The high-frequency-limit 

strongly resembles the behavior described for Fig. 3b, where models containing equally 

sized gas bubbles were analyzed for different bubble sizes. A wider gas bubble size 

distribution (larger value for parameter s) introduces more small gas bubbles compared to 

large ones. The small gas bubbles dominate the attenuation characteristics in the high-

frequency-limit. In the vicinity of the central resonance frequency the attenuation curves 

show a distinct peak. This peak changes its maximum value with changing bubble size 

distribution. It is roughly constant for large values of s (i.e. s={1.2, 1.3, 1.5, 2.0, ∞}), has a 

minimum for s=1.0 and becomes larger for small values of s (i.e. s={0.0, 0.7}). 

3.4 Comparison with existing models 
We compare our phase velocity dispersion and attenuation curves with existing and 

published curves. First, we consider two curves of Commander and Prosperetti (1989). 

Figures 1 and 8 of Commander and Prosperetti (1989) show the dispersion and phase 

velocity, respectively, of water containing gas bubbles with only one size (r=9.94x10-4m) and 

a gas volume fraction φg=3.77x10-4. Also, it is shown that the theory of Commander and 

Prosperetti (1989) matches the experimental data of Silberman (1957) for the same model 

conditions. Fig. 7 compares the two figures of Commander and Prosperetti (1989) with our 

model for the same model parameters. The phase velocity dispersion matches the model of 

Commander and Prosperetti (1989) very well. All, the low-frequency-limit, the high-

frequency-limits and the complicated dispersion behavior in the vicinity of the resonance 

frequency is almost identical. Also, the data of Silberman (1957) is equally well matched by 

our model in comparison with the model of Commander and Prosperetti (1989). Attenuation 

in Commander and Prosperetti (1989) is given in dB/cm, that is, a logarithmic unit with an 

arbitrary reference value. Therefore, we also plot the attenuation in logarithmic units and 

move the curve of Commander and Prosperetti (1989) vertically to adjust the two curves to 

the same reference value. Doing this does not change the vertical scale of either of the 

curves. It only changes the absolute values on the vertical axis. Our model matches the  
 

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

470 

 
 

 
 
 

Fig. 7. Phase velocity dispersion (a) and frequency-dependent attenuation (b) for a model 

with one gas bubble size r=9.94x10-4m and a gas volume fraction φg=3.77x10-4. Plotted in 
black are Figures 8 and 1 of Commander and Prosperetti (1989). Data points are also taken 
from Commander and Prosperetti (1989), who took the data from Silberman (1957). All 
values are plotted as absolute values. In b), attenuation is plotted as a logarithmic unit, 
because in Commander and Prosperetti (1989) the attenuation is given in dB/cm. 

model of Commander and Prosperetti (1989) very well in the frequency range at and above 

the resonance frequency. Here, also the attenuation data of Silberman (1957) is matched 

equally well in comparison with the model of Commander and Prosperetti (1989). However, 

in the frequency range below the resonance frequency the two models diverge from each 

other. The model of Commander and Prosperetti (1989) matches the data of Silberman 

(1957) significantly better compared to our model. 

The second model we chose is the model by MacPherson (1957). Because no phase velocity 

dispersion curve is plotted in MacPherson (1957), we take Figure 10 of Anderson and 

Hampton (1980) who plot the phase velocity dispersion of MacPherson (1957). The model 

describes acoustic waves in water containing gas bubbles of one size. Fig. 8 compares Figure 

10 of Anderson and Hampton (1980) with our model. In Anderson and Hampton (1980) it is 

unclear which bubble size is used for Figure 10. Therefore, we plot the two extreme values 

described by MacPherson (1957) (i.e. r=8x10-5m and r=2.5x10-4m) to have the possible range 

of bubble sizes. Also, in Figure 10 of Anderson and Hampton (1980) a gas volume fraction 

φg=1x10-3 is indicated. However, the Wood-limit (i.e. low-frequency-limit) is matched for a 

gas volume fraction φg=7x10-4. We assume that the value given by Anderson and Hampton 

(1980) is only an approximation and we chose φg=7x10-4 for Fig. 8. The general trend of the 

phase velocity dispersion curve of Anderson and Hampton (1980) is well matched by our 

model, especially in the frequency range at and below the resonance frequency, where our 

model almost perfectly matches the curve of Anderson and Hampton (1980). However, in 

the frequency range above the resonance frequency, the two models diverge from each 

other. 
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Fig. 8. Phase velocity dispersion for a model with one bubble size and a gas volume fraction 

φg=7x10-4. Plotted in red are two dispersion curves for two different bubble radii r=8x10-5m 
and r=2.5x10-4m. Plotted in black is Figure 10 of Anderson and Hampton (1980). The 
frequency is normalized with the resonance frequency and the phase velocity is normalized 
with the phase velocity in bubble-free water, i.e. with the high-frequency-limit. 

4. Discussion 

There are many features that can generate oscillations and resonances in a medium through 

which acoustic and seismic waves propagate. Examples are air bubbles in water, holes in 

elastic plates, oil blobs in porous rocks or fluid-filled fractures in rocks. All oscillation 

processes exhibit a resonance frequency and the propagation of waves having frequencies in 

the range of about one order of magnitude around the resonance frequency will be 

considerably affected by these oscillations. The internal oscillations cause a dispersion and a 

frequency-dependent attenuation of the waves and consequently cause a frequency-

dependent reflection and transmission behaviour of the medium exhibiting oscillations. 

Equations describing the coupling of wave propagation and oscillations are important, first, 

to better understand the general impact of oscillations on the wave propagation and, 

second, to apply these equations in inversion problems which aim to determine the size and 

distribution of heterogeneities causing oscillations inside a medium by analysing the waves 

that propagated through this medium. However, an exact mathematical treatment of the 

coupling between wave propagation and resonant oscillations is not trivial. For example, the 

propagation of acoustic waves in water with air bubbles may appear at first as a relatively 

simple process, but the process is actually quite complex and the exact mathematical 

treatment is complicated (e.g. Caflisch et al., 1985). An exact mathematical treatment of even 

more complicated processes, such as for example the wave propagation in partially 

saturated poroelastic solids with isolated fluid blobs, may be too complicated to be of 

practical use. Therefore, there is a need for a simple, more basic, mathematical description of 

wave propagation in media exhibiting oscillations. 

We present here one basic mathematical approach to couple macroscopic wave propagation 

with microscopic oscillations. We assume that the oscillations (whatever the exact physical 

mechanism) can be effectively described with the equation for a damped linear oscillator. 

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

472 

We then couple the oscillator equation to the wave equation using the mixture theory. The 

coupling of the microscopic oscillations with the macroscopic wave propagation is done 

through moment interaction terms. We consider two interaction terms where one term 

scales with the volume and represents inertial coupling and the other term scales with the 

surface and represents the viscous coupling. With this approach it is easy to "switch" the 

coupling terms on and off and investigate their impact on the dispersion and attenuation. 

For example, Frehner et al. (2009) studied the coupling through only inertial terms and 

observed in a narrow frequency range around the resonance frequency a significant 

dispersion with a discontinuity of the phase velocity at the resonance frequency. 

For acoustic waves propagating through water with air bubbles the dispersion and 

attenuation curves resulting from our approach agree well with the corresponding 

dispersion and attenuation curves resulting from more elaborated mathematical theories 

and also from laboratory experiments. This indicates that our approach captures the 

essential first-order effects of wave propagation in a medium with oscillations. Our 

approach also allows an easy extension to an arbitrary number of oscillators providing a 

particular distribution of resonance frequencies. Clearly, an exact mathematical treatment is 

always helpful and important to, for example, provide the range of applicability for the 

simplified equations. 

Our approach can be applied to more complicated processes and we expect it to also capture 

the first-order effects on dispersion and attenuation. The equations resulting from our 

approach are more transparent and easier to use for inversion problems. Inversions are of 

great industrial and scientific interest because they allow to assess the distribution and 

amount of heterogeneities inside a medium by analyzing waves that propagated through 

the medium. An example is the determination of the bubble distribution in sea water near 

the ocean surface (e.g. Commander and McDonald, 1991). 

5. Conclusions 

Oscillations with a certain resonance frequency within a medium is a common physical 

phenomenon that takes place in a large number of media, e.g. porous or fractured rocks, 

water containing gas bubbles or heterogeneous media in general. Internal oscillations lead 

to a strongly frequency-dependent propagation behavior of waves that propagate through 

such media, i.e. velocity dispersion and frequency-dependent attenuation. However, such 

oscillations are usually not included in effective medium theories for heterogeneous media. 

We presented a one-dimensional continuum model for an acoustic medium exhibiting 

internal damped oscillations. It is a two- (or more) phase model with one connected elastic 

(i.e. acoustic) phase and one (or more) disconnected oscillating phase. The obvious 

application of this model is water containing oscillating gas bubbles. This application 

provided the material and model parameters used in this study. However, the material and 

model parameters could be adapted to other applications of a medium exhibiting internal 

oscillations. The presented model of water containing gas bubbles includes two physically 

based momentum interaction terms between the two phases, a purely elastic term of 

oscillatory nature that scales with the volume of the bubbles and a viscous term that scales 

with the specific surface of the bubble. Thus we are able to take into account damping with 

respect to the specific surface area of the gas bubbles. The model is capable of taking into 
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account a large number of oscillators with different resonance frequencies. In the limit case, 

a continuous probability function for the resonance frequencies can be approximated with a 

discrete number of oscillators. Exemplarily, we showed volume fractions that are log-

normally distributed with respect to bubble size. The results show that a certain distribution 

of resonance frequencies around a central value changes the phase velocity dispersion and 

frequency-dependent attenuation significantly compared to the case where only one bubble 

size is present. The dispersion and attenuation resulting from our approach agree well with 

the dispersion and attenuation (1) derived with a more exact mathematical treatment and (2) 

measured in laboratory experiments. Hence, our basic approach captures the first-order 

effects of oscillations on the propagation of acoustic waves. 
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