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Nonlinear Waves in Transmission Lines 
Periodically Loaded with Tunneling Diodes 

Koichi Narahara 
Yamagata University 

Japan 

1. Introduction    

We review the properties of nonlinear waves on the electrical transmission lines periodically 
loaded with tunneling diodes (TDs) termed—TD lines.In general, the transmission equation 
of a linear dispersive line allows both sinusoidal and exponential solutions. However, 
exponential solutions are usually discarded because they diverge at infinity, and therefore, 
do not satisfy any physically meaningful boundary conditions. In a TD line, once the input 
pulse crosses the peak voltage of the loaded TDs, the exponential wave develops atsmaller 
voltagesthan the peak, and the ordinary sinusoidal wave is coupled to it atgreater voltages. 
The sinusoidal part can continuously unite with the leading exponential wave, so that the 
exponential wave can be formed along the dispersive line without violating physical 
boundary conditions. By developing exponential waves, a TD line exhibits technologically 
useful properties that result in the generation and management of short pulses.When an 
impulse is input to a TD line, the resulting exponential wave is much steeper than the input; 
therefore, the input pulse experiences significant shortening. 
Moreover, when a rising step pulse, whose bottom and top voltage levels lie in the voltage 
ranges below and above the peak voltage is input, the pulse edge oscillates on the line. 
This chapter discusses nonlinear wave propagation on TD lines in detail. We first define TD 
lines and describes their circuit configuration and principle of operation. We employ an 
idealized model of a TD line, which makes a comprehensive description of the operating 
principles possible. It also gives us design criteria for a short-pulse generator or oscillator 
using TD lines. We then examine the validity of the analytically obtained design criteria 
through numerical integration of the transmission equations of a TD line. We 
alsocharacterize the line using full-wave calculations for monolithically integrated lines. 
Next, severalexperimental results are described, which are obtained by the time-domain 
measurements using TD lines breadboarded with Esaki diodes. Finally, we describe the 
potential of TD lines for the management of short pulses. 

2. Fundamentals of TD lines 

Figure 1(a) shows a circuit diagram of a TD line, where L, R, C, and G represent the series 

inductor, series resistor, shunt capacitor, and shunt TD of the unit cell, respectively. The 

typical current-voltage relationshipof a TD is shown by the dotted curve in Fig. 1(b). For 

simplicity, we idealize it as the solid curve in Fig. 1(b) (Richer, 1966). The voltage levels 

Source: Wave Propagation in Materials for Modern Applications, Book edited by: Andrey Petrin,  
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where TDs exhibit a negative differential resistance (NDR) degenerate to a thresholdVpk and 

the finite conductance above Vpk is neglected. We can then write the current through TDs 

asG= G0θ (Vpk–V), where θ (V) shows the Heaviside function. Hereafter, we consider the 

situations where an impulse or a step pulse is input to the line, such that they cross Vpk.  

Figure 2 shows the signal applications. For convenience, we call the voltage range greater 

(less) than Vpk regions I(II). The present simplified TD model shows that the pulse is 

influenced by finite shunt conductance in region II and is completely loss free in region I. 
 

 

Fig. 1. Circuit configuration of TD lines. (a) The unit cell of TD lines and (b) current-voltage 
relationship of TDs. 

 

Fig. 2. Signal applications. 

When denoting the voltage and current at the nth node as Vn and In, respectively, the 
transmission equation of the line is given by 
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where d is the length of the unit cell. Moreover, l= L/d, c= C/d, r = R/d, and g= G0/d are the 
series inductance per unit length, shunt capacitance per unit length, and shunt conductance 
per unit length, respectively.The line is linear and dispersive when considering only regions 
I and II. Thus, it is meaningful to analyze the dispersion curves in each region. The phase 
velocities normalized by 1/(lc)0.5 of the modes having wave number k are explicitly given by 
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where vI,sin, vI,exp, and vII,exp show the normalized phase velocities of the sinusoidal mode in 
region I, the exponential mode in region I, and the exponential mode in region II, 

respectively. Moreover, α and β are normalized series resistance and shunt conductance 
given by 

 
c

r d
l

α = , (6) 

 
l

g d
c

β = . (7) 

We employ the sign convention: ω t–nkdfor positive propagation. Thus, in region I, kmust be 

negative, while in region II, it must be positive for exponential modes.  

Figure 3 shows the dispersion curves for α =0.18 and β =2.0. The horizontal axis shows the 

wave number with a unit of the inverse of d, and the vertical axis shows the normalized 

phase velocities. For steady or quasisteady pulse propagation, the velocity of the pulse edge 

in region I must be the same as that in region II. When the pulse propagates forward, the 

exponential mode in region II can only couple with the sinusoidal mode in region I because 

no exponential counterpart is present. At point P, the velocity and steepness are coincident, 

so that the forward pulse occupies the region around this point in Fig. 3. Note that the 

wavenumber at P is relatively large, so that for the forward-propagating pulse, short-

wavelength oscillatory waves should be observed in region I, which is supported by an 

exponential wave developed in region II. According to this mechanism, when an impulse is 

applied to the TD line, it finally reaches the cross-point of vI,sin and vII,exp. Initially, a wave 
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Fig. 3. Dispersion of TD line. The solid and dotted curves represent the normalized 
velocities in regions I and II, respectively. 

component of an input pulse having a specific wave number must have different velocities 

between region I and region II. Thus, for coincidence of the velocities in both the regions I 

and II, the wave component experiences a wavelength shortening. As a result, the width of 

the incident pulse is greatly reduced (Narahara et al., 2005). Because the wave number at the 

cross point of the curvesvI,sin and vII,expbecomeslarger for greater β, the greater the 

conductance, the more the pulse is shortened. 

Similar pulse shortening is possible in Schottky-contacted TD lines. It is well known that a 

Schottky-contacted line exhibits several useful properties for high-speed electronics (Scott, 

1970). When a pulse is input such that the nonlinearity of the Schottky varactors 

compensates for dispersion, the line generates multiple solitonic pulses, whose widths are 

generally smaller than that of the input. By extracting the largest pulse, a Schottky-contacted 

line operates as a good short pulse generator (Kintis et al., 2008). Moreover, when a step 

pulse is input such that both the nonlinearity and dispersion sharpen the edge, the edge 

finally results in a shock, by which a sub-picosecond temporal transient is observed 

(Rodwell et al., 1994). It is found that the larger soliton travels more than the smaller one in 

Schottky-contacted TD lines; therefore, we obtain highly shortened pulse by detecting only 

the largest soliton (Narahara et al., 2006). 

On the other hand, when a step pulse is applied to the line, the pulse edge oscillates, as 
shown in Fig. 4. The spatial position on the line is shown horizontally, and the voltage is 
shown vertically. Figure 4(a) shows the behavior of the forward pulse. Because the forward 
pulse, combining a sinusoidal mode in region I and an exponential mode in region II, does 
not have permanent profile, it is not stable—it becomes attenuated and finally disappears, 
leaving only the exponential pulse edge is in region II, as shown in Fig. 4(b). This edge 
develops exponential modes in region I to form a stable pulse, and then starts traveling 
backward, as shown in Fig. 4(c).  When the backward stable pulse reaches the input, it is 
reflected as in Fig. 4(d), and again begins to travel forward as an unstable sinusoidal-
exponential wave (Narahara, 2006). This process continues permanently with proper 
boundary condition. 
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Fig. 4. Step pulse in TD line. 

3. Numerical characterization of TD lines 

3.1 Transmission line analysis 
To validate the above given qualitative discussion and to observe the pulse shortening, we 
numerically solved Eqs.(1) and (2). Figure 5 shows the typical behavior of a pulse 

propagating along a TD line. We set c, l, Vpk, β, and d to 6.0 pF/mm, 3.0 nH/mm, 0.2 V, 0.75, 

and 50 μm, respectively. For the present parameters, the phase velocity at a long wavelength 
is 0.025 c0 (c0: the velocity of light in vacuum) and the cutoff frequency is 47.5 GHz.  
 

 

Fig. 5. Impulse in TD line. 

Input, an impulse of a Gaussian form with an amplitude of 1.5 V and a full-width at half-
maximum (FWHM) of 100.0 ps is supplied. The waveforms at 1.0, 2.3, 3.6 and 4.8 ns after the 
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Gaussian impulse starts to be input are shown in Fig. 5. Oscillation, which is caused by the 
development of the sinusoidal wave in region I, is observed at every temporal point. 
Moreover, the wave number of the oscillation decreases as time progresses. Finally, the 
sinusoidal wave in region I becomes monocycled at 4.8 ns, so that the waveform becomes a 
single short pulse, whose FWHM is estimated to be 12.5 ps. 

Figure 6 shows the behavior of a propagating step pulse. We set c, l, Vpk, α, β, and d to 6.0 

pF/mm, 3.0 nH/mm, 0.2 V, 0.02, 2.0, and 50 μm, respectively. The waveforms on a switch 
line after an elapse of every hundred picoseconds are shown sequentially from top to 
bottom in Fig. 6. For forward pulses, which moves toward the output as specified by SF in 
Fig.6, the pulse exhibits eminent oscillatory behavior in region I, which proves the 
development of the sinusoidal wave in region I. Moreover, the pulse is gradually attenuated 
and disappears at around point P in Fig.6. Then, the pulse starts to propagate backward, as 
shown by SB in Fig.6. For the pulses in SB, no oscillatory behavior is observed, unlike the 
 

 

Fig. 6. Numerically obtained step pulse response of TD line. 

 

 

Fig. 7. Dependence of edge’s oscillating period on normalized resistance α. 
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pulses in SF. This observation results from the fact that exponential waves develop in both 
regions I and II and establish a stable propagation. The backward pulse reaches the input 
edge at Q in Fig.6 and then is reflected to start forward propagation again in quasisteady 
manner.  The oscillating pulse edge is numerically confirmed. To see this more clearly, the 
seven-nanosecond slice at node Ncut in Fig.6 is shown in Fig. 7. Figures 7(a) and (b) show the 

temporal variations of the pulse voltage at Ncut=55 on a TD line with α=0.02 and at Ncut =35 

with α=0.04, respectively. Both exhibit  periodic pulse trains, indicating that the pulse edge 
oscillates. Present calculations simulate the case where the voltage source is directly coupled 
with a TD line, so that the input port of the line functions as a fixed-value boundary for the 
traveling pulses. Thus, in the calculations, the backward pulse is totally reflected at the 
input port, so that the back-and-forth edge motion continues permanently. Practically, the 
design of the interconnection between the pulse source and a switch line is very important 
to guarantee permanent oscillation. It is interesting to note that the repetition rate increases 

when α increases. Figure 7(c) shows this dependence. The repetition rate is vertically plotted 

for six different values of α. The repetition rate increases proportionally with increasing α. 

This is because the increase in α contributes to the decrease in the round-trip distance. 

Increases in β and Vpk have the same effect. Moreover, when the amplitude of the input 
pulse increases, the round-trip time becomes longer, reducing the oscillation frequency. By 
this simple arrangement, the device can act as a voltage-controlled oscillator. By proper 
design of loss elements such as electrode loss, switch conductance, and signal application, 
we can obtain an oscillator having the required oscillation frequency (Narahara, 2006). 

3.2 Full-wave analysis 
Above all, resonant tunneling diodes (RTDs) exhibit the most excellent performance in 
submillimeter and terahertz bands (Brown et al., 1991, Ohashi et al., 2005). To design 
monolithically integrated RTD lines, a full-wave solver of Maxwell’s equations must be 
required.Afinite-difference time-domain (FDTD) method (Taflove, 1995) best suits to the 
present purpose. In an FDTD, a circuit element such as a capacitor, an inductor, and 
anonlinear device, are usually implemented as field-dependent conductance and capacitance 
in a single Yee cell (Yee, 1966). For example, when the conduction current density flowing in 

the device is denoted by LJ
f

, the temporal evolution of the electromagnetic fields is 

calculated on the basis of an extended Ampere's law as 

 ,L

E
H J

t

∂
ε

∂
= ∇ × −

f f ff
 (8) 

where E
f

, H
f

, and ε are the electric field, magnetic field, and dielectric constant, 
respectively. By the single-cell implementation of the lumped device, Eq. (8) is converted as 
follows: 

 ( )1 1/2 1/2
,

n n n n
z z L z

z

t t
E E H I

y xε
− − −Δ Δ

= + ∇ × −
Δ Δ

ff
, (9) 

where xΔ , yΔ , and tΔ  show the cell size in the x, y, and t directions, respectively. The 

superscripts show the temporal positions, by which we represent the alternative evaluations 

of electrical and magnetic fields in FDTD, and LI
f

 shows the device current, which is 

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

444 

assumed to flow in the z direction, and is equal to LJ x yΔ Δ . Moreover, when LI
f

 depends on 

the terminal voltage, LI
f

 becomes a function of
zE zΔ  at the corresponding cell. Note that the 

argument of LI
f

 is evaluated at time n for numerical stability (Luebbers et al., 1993); 

therefore, we need root-finding routines such as the Newton–Raphson method, to obtain the 

temporal advanced electrical fields. The situations are more complicated when the device 

size is significant compared with that of the circuit. When a device occupies N adjacent cells, 

the difference equations to be solved become 

 ( ) ( )1 1/2 1/2
,[ ] [ ] [ ] [1], [2], , [ ] ,n n n n n n n

z z L z z z z
z

t t
E i E i H i I E E E N

y xε
− − −Δ Δ

= + ∇ × −
Δ Δ

ff
A  (10) 

where X[i] (X=Ez, H) represents the field at the ith cell occupied by the device. For the 
present case, we have to find roots of a multiple-variable function. This root-finding 
procedure is very time consuming, whereas the analysis of a TD line needs many 
distributed TD models; therefore, some simplification is unavoidable. To eliminate the 
performance-limiting root-finding procedures, we approximate the voltage dependence of 
the device current by a piecewise-linear (PWL) function (Narahara et al., 2008a). The key is 

the fact that [ ]n
zE i  is solved by hand in Eq. (10), when 1/2n

LI −
f

 is a linear function of the 

arguments.When we put Ij=IL(Vj) for Mdifferent voltages Vj, as shown in Fig.8, IL is 
approximated by the following PWL function: 

 
1

1
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j j
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V V
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for Vj<V<Vj+1. Substituting IL from Eq. (10), we obtain 

 1[ ] [ ],n
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[ ]kljA  (k,l=1,2,...,N) and [ ]kjS (k=1,2,...,N) show the (k,l)th entry of [ ]jA , and the kth 

component of [ ]jS , respectively.  After obtaining [ ]n
zE i  using Eq.(12), we have to check if 

the terminal voltage V is really in the range Vj<V<Vj+1 with 
1

[ ]
N n

zi
V z E i

=
= Δ ∑ . If not, the 

procedure is repeated with otherj values, until Vis within (Vj,Vj+1). 
In the following, we show the results of a sample three-dimensional FDTD calculations that 
demonstrateoscillating pulse edge along aTD line. The calculation setup is illustrated in 

Fig.9. Based on a coplanar waveguide, TDs are placed every 30 μm beneath the signal line. 

The total cell size is 100×100×100 and the spatial increments , ,x y zΔ Δ Δ  are all set to 10 μm. 

Each TD is represented by a singleEz node. We simplify the TD current as a PWL function 
with M=27 to model an InP-based RTD (Sugiyama, 1995). V1 (V27) is taken to be sufficiently 
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small (large) for the inclusion of any voltages needed for the calculations. The peak and 
valley voltages are set to 0.4 and 0.45 V, respectively. The input is a step pulse with 
amplitude 1.5 V and a 5 ps rise time. The pulse edge achieves steady oscillation with a 
period of about 3.8 ps. Figure 10 shows this steady oscillation of the edge. The spatial 
variations of line voltage are plotted and recorded at 0.38 ps intervals. The FDTD calculation 
successfully demonstrates the potential of monolithically integrated TD lines for generating 
submillimeter waves. 

4. Experimental characterization of TD lines 

4.1 Impulse response 
The measured circuit is built on a standard breadboard (Narahara et al., 2008b). The shunt 
electronic switches are NEC 1S1763 Esaki diodes. The peak current and voltage, which 
corresponds to Vpk in the ideal switch model, are typically 6.0 mA and 60 mV, respectively, 
and the typical parasitic capacitance is 30.0 pF. Series inductances and shunt capacitances 

are implemented using 1.0 μH inductors (TDK SP0508) and capacitors (TDK FK24C0G1). To  
 

 

Fig. 8. Piece-wise-linear model of current-voltage relationship of TDs. 
 

 

Fig. 9. Line structure used for FDTD test calculation. The signal line is 1.0 mm long, and 30.0 

μm wide. The spacing between the signal line and adjacent ground (GND) is set to 30.0 μm. 
A step pulse is input at the end of the signal line. 
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Fig. 10. Results of FDTD calculation. 

see the β dependence of the degree of the pulse compression, we prepared two different 
capacitors, one with a capacitance of 10 nF, and another with 4.7 nF. The test switch line is 
fed by a pulse signal generated by an Agilent 81150A function generator. The input pulse is 

a Gaussian pulse with a full-width-at-half-maximum (FWHM) of 1.0 μs. The generator 

output impedance is set to 5 Ω, and the other end of the test line is short-circuited. The 
signals along the test switch line are detected and monitored in the time domain  using an 
Agilent DSO90254A oscilloscope.  
Figure 11(a) shows the voltage waveforms monitored at cells n=1, 10, 20, 30, 40,  and  44. The 

shunt capacitance is set to 10 nF, such that β =1.0.  We can see that the pulse is split in two at 

n>20. The symbols Pi (i=1, 2, 3, and 4) in Fig.11(a) show the positions of the second pulses 

developed at n>20. The lifetime of the first pulse is greater than that of the second; therefore, 

a single short pulse remains at n=44. To determine the degree of compression, we compared 

the waveform at n=1 (thin solid curve) with that measured at n=44 (thick solid curve) in 

Fig.11(b). The left vertical axis measures the voltage at n=1, while the right-vertical axis 

measures the voltage at n=44. Although the amplitude is attenuated, the 1.0-μs wide pulse is 

compressed to give a width of 0.2 μs after propagation. The attenuated amplitude can result 

from the parasitic resistances of the inductors and capacitors. It is established that the finite 

resistive elements do not prevent the switch line from achieving pulse compression.  

The results shown in Fig. 12(a) were obtained by the same measurements to obtain those 

shown in Fig. 11, but with a shunt capacitance of 4.7 nF (β = 1.45). Figure 12(a) shows more 
compression than seen in Fig. 11(a). This result is consistent with the prediction that a pulse 

is compressed more for greater β. To quantify the degree of compression, thefundamental 

Forward

Backward
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frequency of the resulting single pulse is evaluated. For β=1.0, the fundamental frequency is 

calculated to be 2.9 MHz, while for β= 1.45, it is 4.2 MHz. This means that the pulse width 
becomes 70 % smaller for 4.7 nF capacitors than for 10.0 nF over time.Figure 12(b) compares 
the compressed pulses for both cases. The amplitudes are normalized to make them 
identical for clear comparison. 
 

    

Fig. 11. Measured impulse response of TD line.  
 

 

Fig. 12. Measured dependence of shortened pulse width on line capacitance. 

The thin and thick pulses represent the compressed pulses for 10.0 and 4.7 nF capacitors, 
respectively, and the dotted pulse represents the one obtained by artificially compressing 
the solid pulse by 70 % along the horizontal axis.For the first peak, the dotted pulse fits the 
thick-solid line well.  These observations strongly suggest that the compressed pulses are 
generated in the test TD line. 

4.2 Step pulse response 
For step pulse applications, the series inductance, resistance, and shunt capacitance were 

implemented using 1.0 μH inductors (TDK SP0508), 1.0 Ω resistors (Tyco Electronics 
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CFR25J), and 470 pF capacitors (TDK FK18C0G1), respectively. To monitor the waveforms 
using the oscilloscope, we input a pulse having finite duration instead of a step pulse. The 

input pulse had rise, and fall times, and duration of 1.0 μs, 1.0 μs, and 30.0 μs, respectively. 

The output impedance of the function generator was 50 Ω.  
Figure 13 shows the voltage waveforms monitored at the first cell. Figure 13(a) shows a 
measured waveform resulting from a single sweep with the oscilloscope. Although the 
input signal was a simple pulse, we can observe a cycle of short-period pulses. Because of 
the weakness of the coherence between the input step pulse and the short-period pulses, the 
temporal positions of the short-period pulses varied for different single sweeps. A typical 
measured waveform of the short-period pulse is shown in the inset of Fig. 13(a). It exhibits 
trapezoidal shape with oscillation. 
When the pulse edge passes a point, the voltage at that point remains constant until the edge 
returns. Moreover, the forward edge is carried by the sinusoidal-exponential hybrid mode. 
These observations are consistent with the measured pulse shape. 
Figure 14(a) shows the measured waveform monitored at the first cell, which was averaged 
1024 times with the oscilloscope. As mentioned above, the short-period pulses have weak 
coherence with the step input. Through the waveform averaging, we can extract the 
coherent part. It is interesting to note that the averaged amplitude of the short-period pulse 
becomes smaller, i.e., the degree of decoherence increases, with time after the rising edge of  
 

 

Fig. 13. Experimentally obtained step pulse response of TD line. 
 

 
Fig. 14. Observation of oscillating pulse edge. 
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Fig. 15. Measured dependence of edge’s oscillating frequency on pulse amplitude. 

the input step pulse. By using the coherent parts, it is possible to compare the phase of the 
voltage waveform at a cell with that at other cells. The spatio-temporal distribution of the 
averaged voltage wave is shown in Fig. 14(b). The waveforms at the first 20 cells with a 7.5 

μs duration are plotted. The edge first travels forward. Then, at the turning point Pi (i=1, 2, 
3, 4) in Fig. 14(b), the wave edge starts to travel backward. The backward wave front is 
reflected at the input port, starts to travel forward again, and reaches the turning point Pi+1. 
This spatio-temporal voltage distribution clearly shows that the oscillating motion of the 
edge is established in the test switch line. 
To examine the dependence of the oscillation frequency on the input amplitude, we carried 
out frequency-domain measurements, the results of which are shown in Fig.15. We 
monitored the voltage in the first section using the spectrum analyzer. The frequency of the 
resulting lowest spectral peak, which corresponds to the inverse of the turn-around time of 
the oscillating pulse edge, is shown as a function of the input amplitude. Consistently, it is 
observed that the oscillating frequency increases as the amplitude decreases (Yokota et al., 
2009). 

5. Applications 

This section discusses the potential of TD lines for pulse management. We show two such 
applications. One is the detection of pulse amplitudes on a one-dimensional TD line. The 
other utilizes a TD line in two dimensions—the control of pulse propagation orientation on 
a two-dimensional TD line. 
As mentioned above, we consider only pulses that are greater than Vpk; therefore, the pulse 
is attenuated partially at the bottom. It is then expected that a pulse of large amplitude can 
travel on the line longer than the one with small amplitude. This phenomenon is illustrated 
in Fig. 16. 
Pulses with amplitudes A1, A2, and A3 (A1>A2>A3) travel on the TD line by X1, X2, and X3 

(X1>X2>X3), respectively. When we monitor the waveform at M1, we detect the pulse 

regardless of the amplitude. However, because the smallest pulse disappears before it 

reaches M2, we can detect only those pulses of amplitudes of A1 and A2. Similarly, at M3, we 

can detect only the largest pulse. By specifying the monitoring cell on the switch line, we can 

set thepeak voltage level to detect pulses as required. 

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

450 

Figure 17 shows the measured results. The waveforms were monitored at a fixed cell for two 

pulses having different amplitudes. By arranging the input amplitudes, only the larger pulse 

can be detected. Figures 17(a) and (b) show the voltage waveforms monitored at cells n=1 

and  5, respectively.  The dashed waveforms in Figs. 17(a) and (b) are for the pulse of 

amplitude 720 mV; the solid waveforms are for the pulse of amplitude 490 mV. Only the 

dashed pulse is detected at the output. It is thus established that only the larger pulse is 

detected at the output.  

 

 
 

Fig. 16. Pulse control using one-dimensional TD line. 

 

 

Fig. 17. Experimental demonstration of voltage-level detection. 

Another example of the TD line applications requires a two-dimensional TD line. Figure 18 

showsa unit cell of two-dimensional TD lines. When several points are excited by the 

voltage pulses in a two-dimensional line, the propagating pulses overlap and gain 

amplitude. As mentioned above, the larger pulse survives longer than the smaller pulses; 

therefore, as time progresses, the overlapped pulses have finite amplitude. The simplest 

application of this phenomenon is to control pulse propagation orientation by the 

arrangement of cells where the pulses are applied. To examine the validity of this 

www.intechopen.com



Nonlinear Waves in Transmission Lines Periodically Loaded with Tunneling Diodes  

 

451 

application, we numerically solved the transmission line equations of a two-dimensional 

switch line. We set C, L, Vpk, and G0 as 1.0 pF, 1.0 nH, 0.1 V, and 0.04 S, respectively. The 

total cell size was 100×100. Each edge cell was terminated using a 50 Ω resistor.  An impulse 

having a Gaussian form with amplitude 1.0 V and FWHM 100.0 ps was input at cells located 

at (45, 45) and (55, 55). 

 
 

 
 

Fig. 18. Two-dimensional TD line. 

Figure 19 shows the numerical results of pulse propagation. Waveforms at times 0.4, 0.8, 1.2, 

and 1.6 ns passed after the pulse incidence are shown in Figs.19(a), (b), (c), and (d), 

respectively. As observed in Fig. 19(b), each pulse starts isotropic propagation and overlaps 

the other pulses. As shown in Fig.19(c), the parts of the overlapped pulses with large 

amplitude survive. The remainders of the pulses on the bisection of the line connecting two 

excitation cells are shown in Fig.19(d). By changing the positions of the two excitation cells, 

we can control the propagation orientation of the surviving pulses as required. 

For a pulse with a wave vector ( , )x yk k , the dispersions of the two-dimensional switch line 

are given by 

 2 2
,sin

2
sin sin

2 2

yx
I

k dk d
v

k d
= + , (15) 

 2 2 2
,exp

1
16sinh 16sinh

2 2 2 2

yx
II

k dk d
v

kd kd

β β= − + + + , (16) 

 

where vI,sin, and vII,exp show the normalized phase velocities of the sinusoidal mode in region 

I, and the exponential mode in region II, respectively.  Because the cutoff frequency 

increases monotonically with 1tan ( / )x yk kθ −= up to π/4 and is 2  times as large as at 

0θ = , it becomes possible for the intersection frequency, where vI,sinis coincident with vII,exp, 

in a two-dimensional switch line to surpass the upper limit achieved in a one-dimensional 

switch line; therefore, we can expect that the pulse shortening is more effectively established 

in two dimensions. 
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Fig. 19. Fundamental property of two-dimensional TD line. 

6. Conclusions 

This chapter reviews the pulse propagation characteristics of TD lines.We found that a pulse 

wave propagates on the line either by theunstable exponential-sinusoidal hybrid mode or 

stable exponential-exponential mode. Through thesepeculiar wave propagation properties, 

an input impulse experiences width shortening and an edge of the step pulse oscillates. 

These provide efficient methods for generating short pulses and continuous waves. 

Moreover, TD lines can be used to manage pulse amplitude and propagation orientation. 

Test TD lines using Esaki diodes successfully demonstrated the pulse generation and 

management.Our approach could be scaled from its current MHz form into microwave, 

millimeter-wave, and terahertz forms, for implementation with state-of-the-art RTDs. 
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