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1. Introduction 

Undulatory phenomena are probably among the most fascinating aspects of our existence. It 

is well known that plasma is the most dominant state of ionized matter in the Universe. 

Moreover, it can excite and sustain any kind of oscillatory motion, acoustic or 

electromagnetic (light) waves. A realistic perspective upon the dynamics of space or 

laboratory plasmas reveals a constant presence of various kinetic anisotropies of plasma 

particles, like beams or temperature anisotropies. Such anisotropic plasma structures give 

rise to growing fluctuations and waves. The present chapter reviews these kinetic 

instabilities providing a comprehensive analysis of their interplay for different 

circumstances relevant in astrophysical or laboratory applications. 

Kinetic plasma instabilities are driven by the velocity anisotropy of plasma particles residing 

in a temperature anisotropy, or in a bulk relative motion of a counter streaming plasma or a 

beam-plasma system. The excitations can be electromagnetic or electrostatic in nature and 

can release different forms of free energy stored in anisotropic plasmas. These instabilities 

are widely invoked in various fields of astrophysics and laboratory plasmas. Thus, the so-

called magnetic instabilities of the Weibel-type (Weibel; 1959; Fried; 1959) can explain the 

generation of magnetic field seeds and the acceleration of plasma particles in different 

astrophysical sources (e.g., active galactic nuclei, gamma-ray bursts, Galactic micro quasar 

systems, and Crab-like supernova remnants) where the nonthermal radiation originates 

(Medvedev & Loeb; 1999; Schlickeiser & Shukla; 2003; Nishikawa et al.; 2003; Lazar et al.; 

2009c), as well as the origin of the interplanetary magnetic field fluctuations, which are 

enhanced along the thresholds of plasma instabilities in the solar wind (Kasper at al.; 2002; 

Hellinger et al.; 2006; Stverak et al.; 2008). Furthermore, plasma beams built in accelerators 

(e.g., in fusion plasma experiments) are subject to a variety of plasma waves and 

instabilities, which are presently widely investigated to prevent their development in order 

to stabilize the plasma system (Davidson et al.; 2004; Cottril et al.; 2008). 
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2. Nonrelativistic dispersion formalism 

Plasma particles (electrons and ions) are assumed to be collision-less, with a non-negligible 
thermal spread, and far from any uniform fields influence, E0 = 0 and B0 = 0. This 
assumption allows us to develop the most simple theory for the kinetic plasma instabilities, 
but the results presented here can also be extended to the so-called high-beta plasmas 
(where beta corresponds to the ratio of the kinetic plasma energy to the magnetic energy) 
since recent analysis has proven that these instabilities are only slightly altered in the 
presence of a weak ambient magnetic field (Lazar et al.; 2008, 2009b, 2010). 
We here investigate small amplitude plasma excitations using a linear kinetic dispersion 
formalism, based on the coupled system of the Vlasov equation and the Maxwell equations. 
The standard procedure starts with the linearized Vlasov equation (Kalman et al.; 1968) 

 ,0= [ ] ,aa a
a

FF F
q

t c

∂∂ ∂ ×
+ ⋅ − + ⋅

∂ ∂ ∂
v B

v E
r v

 (1) 

where Fa(r,v, t) denotes the first order perturbation of the equilibrium distribution function 
Fa,0(v) for particles of kind a. The unperturbed distribution function is normalized as 

 ,0( ) = 1,ad F
∞

−∞∫ v v  (2) 

and is considered to be anisotropic (the free energy source), implying that 
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and the non-vanishing term 
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becomes responsible for the unstable solutions (Davidson et al.; 1972). Ohm’s law defines 

the current density, J, and the conductivity tensor, σ# , by  
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we find the solution of Vlasov equation (1) to be 

 ,0= .aa
a

Fiq
F

ω ω
⎛ ⎞ ∂⋅

− + ⋅⎜ ⎟
− ⋅ ∂⎝ ⎠

v E
E k

k v v
 (10) 

Here, we examine large-scale spatial and temporal variations in the sense ofWentzel-
Kramer-Brillouin (WKB) approximation and treat plasma wave perturbations as a 
superposition of plane waves in space (Fourier components) and harmonic waves in time 
(Laplace transforms). Thus, the analysis is reduced to small amplitude excitations with a 

sine variation of the form ~ exp(–iωt + k · r). Since we consider an infinitely large, 
homogeneous and stationary plasma, we choose the wave-number k to be real, but the 

Laplace transform in time gives rise to complex frequencies ω = ωr + ıωi, implying also a 

complex index of refraction, N = kc/ω. 
Now, substituting Fa from Eq. (10) into the Eq. (9) provides the wave equation for the 
linearized electric field, which admits nontrivial solutions only for 

 
2

2

2
det = 0ij i j ijk k k

c

ω δ+ −ε  (11) 

where the dielectric tensor has the components, εij ≡δij + (4πı/ω)σij, explicitly given by 
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3. Counterstreaming plasmas with intrinsic temperature anisotropies 

In order to analyze the unstable plasma modes and their interplay we need a complex 
anisotropic plasma model including various forms of particle velocity anisotropy. Thus, we 
consider two counter streaming plasmas (see Fig. 1) with internal temperature anisotropies 
described by the distribution function (Maxwellian counterstreams) 

{ }2 1 3/2 2 2 2 2 2 2 2
0 t t t 0 t , 0 t ,( , , ) = 2 exp exp ( ) exp ( ) .x y z h h x z h y h y y h yf v v v v v v v v v v v v v vπ− −

⊥ ⎡ ⎤ ⎡ ⎤⎡ ⎤− + − + + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (13) 

Recent investigations have proved that such a model is not only appropriate for a multitude 
of plasma applications but, in addition, it can be approached analytically very well. 
For the sake of simplicity, in what follows we neglect the contribution of ions, which form 
the neutralizing background, and the electron plasma streams are assumed homogeneous 

and symmetric (charge and current neutral) with the same densities, ωp,e,1 = ωp,e,2 = ωp,e, equal 
but opposite streaming velocities, v1 = v2 = v0, and the same temperature parameters, i.e., 
thermal velocities, vth,x,1 = vth,z,1 = vth,x,2 = vth,z,2 = vth, vth,y,1 = vth,y,2 = vth,y. Furthermore, for each 
stream, the intrinsic thermal distribution is considered bi-Maxwellian, and the temperature 
anisotropy is defined by A1 = A2 = A = Ty/Tx = (vth,y/vth)2. Taking the counterstreaming 
plasmas symmetric, a condition frequently satisfied with respect to their mass center at rest, 
provides simple forms for the dispersion relations, and solutions are purely growing 

exhibiting only a reactive part, Re(ω) = ωr →0 and Im(ω) = Γ > 0, and, therefore, a negligible 
resonant Landau dissipation of wave energy on plasma particles. The anisotropic 
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Fig. 1. Sketch of two plasma counter streams moving along y-axis and the instabilities 
developing in the system: the electromagnetic Weibel instability (WI) driven by an excess of 
transverse kinetic energy, and the electrostatic two-stream instability (TSI) both propagating 
along the streams, and the filamentation instability (FI) propagating perpendicular to the 
streams. 
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Fig. 2. Sketch of the distribution functions for two symmetric counterstreaming plasmas, 
and the wave-vectors for the unstable modes expected to develop when (a) Tx = Tz < Ty and 
(b) Tx = Tz > Ty. 

counterstreaming distribution functions are illustrated in Fig. 2, for two representative 
situations: (a) Tx = Tz < Ty and (b) Tx = Tz > Ty. 
Such a plasma system is unstable against the excitation of the electrostatic two-stream 
instability as well as the electromagnetic instabilities of the Weibel-type. We limit our 
analysis to the unstable waves propagating either parallel or perpendicular to the direction 
of streams. The orientation of these instabilities is given in the Figures 1 and 2. 
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4. Unstable modes with k E ŷ  

First we look for the unstable modes propagating along the streaming direction, k = ky, and 
due to the symmetry of our distribution function (13), the dispersion relation (11) simplifies 
to 

 
2 2

2 2

2 2
= 0.xx y zz y yyk k

c c

ω ω⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
ε ε ε  (14) 

 This equation admits three solutions, viz. two electromagnetic modes  

 
2 2 2 2

2 2
= = = 0,

y y

xx zz

k c k c

ω ω
ε ε  (15) 

 and one electrostatic mode  

 = 0,yyε  (16) 

where the dielectric tensor components are provided by Eq. (12), with our initial 
unperturbed distribution function given in Eq. (13). 
In a finite temperature plasma there is an important departure from the cold plasma model, 
where no transverse modes could interact with the electrons for wave vectors parallel to the 

streaming direction, k E ŷ , as no electrons move perpendicularly to the streams. These 

electrons are introduced here by a non-vanishing transverse temperature of the plasma 
counter-streams. Furthermore, the electromagnetic modes of Weibel-type and propagating 
along the streaming direction can be excited only by an excess of transverse kinetic energy, 
Tx = Tz > Ty (Bret et al.; 2004). These modes are characterized in the next. 

4.1 The Weibel instability (k ·E = 0, vth > vth,y) 

Thus, let we consider symmetric counterstreams with an excess of transverse kinetic energy, 
Tx = Tz > Ty, and described by a bi-Maxwellian distribution as given in Eq. (13) and 
schematically shown Fig. 2 (a). Due to the symmetry of the system (see in Fig. 2 a) the two 
branches of the transverse modes (Eq. 15) are also symmetric and will be described by the 
same dispersion relation (Okada et al.; 1977; Bret et al.; 2004; Lazar et al.; 2009c) 

 ( )
2 2 2

,W W
1 1 2 22 2

1 1
= = = 1 1 1 ( ) ( ) ,
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f Z f f Z f
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ω
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ε ε  (17) 

which is written in terms of the well-known plasma dispersion function (Fried & Conte; 

1961)  

 
2

01/2
1,2
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k vx
Z f dx ith f

x f k v

ω
π

∞−

−∞

−
−∫

∓
 (18) 

Numerical solutions of Eq. (17) are displayed in Fig. 3: the growth rates of the Weibel 
instability are visibly reduced in a counterstreaming plasma and the wave number cutoff is 
also diminished according to  
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Fig. 3. Numerical solutions of equation (17): with dotted lines are plotted the growth rates, 

W= ωi/ωpe, and with solid lines the real frequency,W = ωr/ωpe, for vth,y = c/30 = 107 m/s, 
three different streaming velocities, v0 = c/10 (red), c/30 (green), c/100 (blue), 0 (black), and 

two anisotropies (a) vth/vth,y = 3 and (b) vth/vth,y = 10 (K = kc/ωpe, and c = 3 ×108 m/s is the 
speed of light in vacuum). 
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Here, we have taken into account that, for a real argument, the real part of plasma 

dispersion function is negative: Re 2 2

0
( ) = 2exp( ) exp( ) < 0

x

Z x x dt t− − ∫ , and xZ(x) – xZ(–x) = 

2xReZ(x). 

This wave number cutoff must be a real (not complex) solution of Eq. (17) in the limit of Γ(k) 

= ℑω(k) = 0. For v0 = 0 we simply recover the cutoff wave number of the Weibel instability 

driven by a temperature anisotropy without streams. According to Eq. (19), in the presence 

of streams (v0 ≠0) the threshold of the Weibel instability ( 2 2
th th ,/ = / > 1y yv v T T ) grows to 

 
2 2
th th 0 0

2 3
th , th , ,

> 1 R .
y y th y

v v v v
eZ

v v v

⎛ ⎞
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⎝ ⎠
 (20) 

We remark in Fig. 3 that the Weibel instability is purely growing (ωr = 0) not only in a non-
streaming plasma (v0 = 0), but in the presence of streams as well. This is, however, valid only 
for small streaming speeds. Otherwise, for energetic streams with a sufficiently large bulk 
velocity, larger than the thermal speed along their direction, v0 > vth,y, the instability becomes 
oscillatory with a finite frequency ωr ≠ 0. As the temperature anisotropy is also large, both 
these regimes can be identified, the purely growing regime for small wave numbers, and the 
oscillatory growing regime for large wave numbers (see Fig. 3 b, and Lazar et al. (2009a) for 
a supplementary analysis). 

4.2 Two-stream instability (k × E = 0) 

The two-stream instability is an electrostatic unstable mode propagating along the streaming 
direction and described by the dispersion relation (16), where the dielectric function reads 
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Fig. 4. For a given anisotropy vth/vth,y =5 and streaming speed v0 = c/20, the growth rates (W 

= ωi/ωpe versus K = kc/ωpe) of the Weibel instability (dotted lines) increase and those of the 
two-stream instability (solid lines) decrease with parallel thermal spread of plasma particles: 
vth,y = c/100 (red lines), c/30 (green), c/20 (blue). 

 [ ]
2
,TSI

1 1 2 22 2
,

= 1 2 ( ) ( ) = 0.
p e

yy

y th y

f Z f f Z f
k v

ω
+ + +ε  (21) 

The two-stream instability is inhibited by the thermal spread of plasma particles along the 
streaming direction. The growth rates can be markedly reduced by increasing vth,y. Thus, the 
two-stream instability has a maximal efficiency in the process of relaxation only for a 

 

1/22 2
, , , ,TSI

, 2 2
0 0 0 0

3 3
= 1 1 .

2 4

p e th y p e th y

y c

v v
k

v v v v
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⎝ ⎠ ⎝ ⎠
0  (22) 

For a negligible thermal spread, v0 4  vth,y (i.e. cold plasmas), the cutoff wave number will 

depend only on the streaming velocity TSI
, , 0/y c p ek vω→ . 

The instability is purely growing because the streams are symmetric, otherwise it is 
oscillatory. The growth rates, solutions of Eq. (21), are displayed in Fig. 4 in comparison to 
the Weibel instability growth rates (vth > vth,y), for conditions typically encountered in 
intergalactic plasma and cosmological structures formation (Lazar et al.; 2009c). 
We can extract the first remarks on the interplay of these two instabilities from Fig. 1: 
1. When the thermal speed along the streams is small enough, i.e. smaller than the 

streaming speed, the two-stream instability grows much faster than theWeibel 
instability (the growth rates of the two-stream instability are much larger than those of 
the Weibel instability). 

2. While the two-stream instability is not affected by the temperature anisotropy, the 
Weibel instability is strictly dependent on that. 

3. While the thermal spread along the streams inhibits the two-stream instability, in the 
presence of a temperature anisotropy, the same parallel thermal spread enhances the 
Weibel instability growth rates. In this case, the Weibel instability has chances to arise 
before the two-stream instability can develop. 
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Otherwise, the two-stream instability develops first and relaxes the counterstreams to a 
plateau anisotropic distribution with two characteristic temperatures (bi-Maxwellian). If this 
thermal anisotropy is large enough, it is susceptible again to relax through aWeibel 
excitation. How large this thermal anisotropy could be depends not only on the initial bulk 
velocity of the streams but on their internal temperature anisotropy as well. 
Whether it develops as a primary or secondary mechanism of relaxation, the Weibel 
instability seems therefore to be an important mechanism of relaxation for such 
counterstreaming plasmas. This has important consequences for experiments and many 
astrophysical scenarios, providing for example, a plausible explanation for the origin of 
cosmological magnetic field seeds (Schlickeiser & Shukla; 2003; Lazar et al.; 2009c). 

5. Unstable modes with k ⊥ ŷ  

There is also another important competitor in this puzzle of kinetic instabilities arising in a 

counterstreaming plasma, and this is the filamentation instability which is driven by the 

bulk relative motion of plasma streams and propagates perpendicular to the streams, k ⊥ ŷ . 

In this case, we can choose without any restriction of generality, the propagation direction 

along x-axis, k = kx, and in this case the dispersion relation (11) becomes 

 
2 2

2 2

2 2
= 0.xx yy x zz xk k

c c

ω ω⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟
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ε ε ε  (23) 

This equation admits three branches of solutions, one electrostatic and two symmetric 
electromagnetic modes, but only the electromagnetic mode is unstable and this is the 
filamentation instability. 

5.1 Filamentation instability (E = Ey, k = kx) 

The filamentation instability does not exist in a nonstreaming plasma and has originally 
been described by Fried (1959). The mechanism of generation is similar to that of the Weibel 
in stability: any small magnetic perturbation is amplified by the relative motion of two 
counter-streaming plasmas without any contribution of their intrinsic temperature 
anisotropy. This instability is also purely growing and has the electric field oriented along 
the streaming direction. Therefore, for a simple characterization of the filamentation 
instability, first we assume the streams thermally isotropic, A ≡Ty/Tx = 1, with isotropic 
velocity distributions of Maxwellian type. The dispersion relation (23) provides then for the 
electromagnetic modes 

 
22 2 2 2
,FI 0 0

2 2 2 2
= = 1 2 1 2 .

p ex
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th th x th x th

k c v v
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v v k v k v

ω ω ω
ω ω
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ε  (24) 

The unstable purely growing solutions describe the filamentation instability, and the growth 
rates are numerically derived and displayed with solid lines in Fig. 5. We should observe 
that they are restricted to wave-numbers less than a cutoff given by 

 FI 0
, = 2 .

pe

x c

th

v
k

c v

ω
 (25) 
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Fig. 5. The growth rates of the filamentation instability (solid lines) as given by Eq. (24) for a 
streaming speed v0 = c/20, and different parallel thermal spread of plasma particles: vth,y = 
c/100 (red lines), c/80 (green), c/50 (blue). The growth rates of the cumulative 
filamentation-Weibel instability given by (26) are shown with dashed lines for (a) vth/vth,y =5 

and (b) vth/vth,y = 1/5. The coordinates are scaled asW = ωi/ωpe versus K = kc/ωpe. 

5.2 Cumulative filamentation-Weibel instability (E = Ey, k = kx, A ≠ 0). 

Since plasma streams exhibit an internal temperature anisotropy (see Fig. 2, a and b) the 
filamentation instability can be either enhanced by the cumulative effect of theWeibel 
instability when Ty > Tx (see Fig. 5, b), or in the opposite case of Ty < Tx, the effective velocity 
anisotropy of plasma particle decreases and the instability is suppressed (see Fig. 5, a). 
For streams with a finite intrinsic temperature anisotropy, A ≠ 0, the dispersion relation (23) 
provides for the electromagnetic modes 
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ε  (26) 

In this case the unstable purely growing solutions describe the cumulative filamentation- 
Weibel instability, and the growth rates are displayed with dashed lines in Fig. 5. Again, we 
remark that the unstable solutions are restricted to wave-numbers less than a cutoff value 
which is given by 

 

1/2
2

FW 0
, 2

= 1 2 .
peI

x c

th

v
k A

c v

ω ⎛ ⎞
− +⎜ ⎟

⎝ ⎠
 (27) 

The condition of existence for Eq. (27) provides the threshold of the cumulative 
filamentation-Weibel instability: 

 ( )1/2
2 2

, 0 ,< 2 .th th y th cv v v v+ ≡  (28) 

For interested readers, supplementary analysis of this instability can be found in the recent 
papers of Bret et al. (2004, 2005a,b); Bret & Deutsch (2006); Lazar et al. (2006); Stockem & 
Lazar (2008); Lazar (2008); Lazar et al. (2008, 2009d, 2010). Here we continue to consider 
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symmetric counterstreams making a simple description of this instability and compare to 
the other unstable modes discussed above. 
 

5.2.1 A = Ty/Tx < 1 
As plasma streams are transversally hotter, the effective anisotropy of the particle velocity 
distribution with respect to their mass center at rest decreases, and the growth rates of the 
cumulative filamentation-Weibel instability become also smaller (see Fig. 5 a). This 
instability is inhibited by a surplus of transverse kinetic energy (Lazar et al.; 2006; Stockem 
& Lazar; 2008). Furthermore, it has two competitors in the process of relaxation: the two-
stream instability and theWeibel instability, both propagating parallel to the streams and 
described in the sections above. 
For a complete characterization of their interplay, the growth rates of these three instabilities 
are displayed in Fig. 6 for the same conditions used in Fig. 4 but, for clarity, only two cases 
are plotted: vth,y = c/100 (red lines), c/30 (green). Thus, the filamentation (cumulative 
filamentation-Weibel) growth rates (plotted with dashed lines) are smaller than the Weibel 
instability growth rates (dotted line), which are, in turn, smaller than those of the 
filamentation instability (solid lines). Moreover, when thermal spread of plasma particles is 
large enough, the surplus of kinetic energy transverse to the streams compensates the 
opposite particle velocity anisotropy due to bulk (counterstreaming) motion along the 
streams, and the effective anisotropy of plasma particles vanishes. In this case, the 
filamentation instability is completely suppressed: no growth rates are found in Fig. 6 for 
vth,y = c/30 (no green dashed line). That is confirmed by the threshold condition (28): the 

instability exists only for ( )1/2
2 2

, , 0< 2 /14th th c th yv v v v c≡ + 0 , and in Fig. 6 this condition is 

satisfied only in the case of 1/2
,= = 5 /100 < /14th th yv A v c c−  (red dashed line), but not for 

1/2
,= = 5 / 30 > /14th th yv A v c c−  (no green dashed line). 
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Fig. 6. The growth rates (W = ωi/ωpe versus K = kc/ωpe) of the Weibel instability (dotted 
lines), the two-stream instability (solid lines), and the filamentation (cumulative 
filamentation-Weibel) instability (dashed line) for the same plasma parameters considered 
in Fig. 4: v0 = c/20, vth,y = c/100 (red lines), c/30 (green). The excess of transverse kinetic 
energy , vth/vth,y = 5, diminishes the growth rates of the filamentation instability (red dashed 
line), or even suppresses the instability (no green dashed line). 
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In section 4.2. we have shown that the thermal spread of plasma particles along the streams 
prevents a fast developing of the two-stream instability, which, in general, is the fastest 
mechanism of relaxation. Furthermore, here it is proved that kinetic effects arising from the 
perpendicular temperature of the streams could stabilize the non-resonant filamentation 
mode. These results have a particular importance for the beam-plasma experiments, 
specifically, in the fast ignition scenario for inertial confinement fusion, where these 
instabilities must be avoided. 

5.2.2 A = Ty/Tx > 1 
In the opposite case, when plasma streams exhibit an excess of parallel kinetic energy, A = 
Ty/Tx > 1, theWeibel effect due to the temperature anisotropy cumulates to the filamentation 
instability given by the relative motion of counterstreaming plasmas, and yields an 
enhancing of the growth rate (see Fig. 5 b). 
In this case, there is only one competitor for the cumulative filamentation-Weibel instability, 
and this is the two-stream electrostatic instability. The growth rates of these two instabilities 
are plotted in Figures 7 and 8 for several representative situations. 
In Fig. 7 we consider a situation similar to that from Fig. 4 but this time with an excess of 
parallel kinetic energy. Thus, for a given anisotropy, vth,y/vth = 5, the growth rates of the 
two-stream instability (solid lines), are inhibited by the parallel thermal spread of plasma 
particles and decrease. The growth rates of the filamentation instability (dashed lines) are 
relatively constant, but the instability is constrained to smaller wave-numbers according to 
Eq. (27). 
On the other hand, in Fig. 8 we change and follow the variation of the growth rates with the 
anisotropy: the streaming velocity is higher but still not relativistic, v0 = c/10, vth = c/100, 
and the anisotropy takes three values, vth,y/vth = 1 (red lines), 4 (green), and 10 (blue). In this 
case the cumulative filamentation-Weibel instability becomes markedly competitive, either 
extending to larger wave-numbers according to Eq. (27), or reaching at saturation, 
maximums growth rates comparable or even much larger than those of the two-stream  
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Fig. 7. The growth rates (W = ωi/ωpe versus K = kc/ωpe) of the two-stream instability (solid 
lines), and the filamentation instability (dashed lines) for the same plasma parameters 
considered in Fig. 4: v0 = c/20, vth,y = c/100 (red lines), c/30 (green), c/20 (blue), but an 
opposite temperature anisotropy, vth/vth,y = 1/5. 
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Fig. 8. The same as in Fig. 7 but for: v0 = c/10, vth = c/100 and the anisotropy vth,y/vth = 1 (red 
lines), 4 (green), 10 (blue). 

instability. The main reason for that is clear, the two-stream instability is inhibited by 
increasing Ty, and in this case, the cumulative filamentation-Weibel instability can provide 
the fastest mechanism of relaxation for such counterstreaming plasmas. 
This instability can explain the origin of the magnetic field fluctuations frequently observed 
in the solar wind, and which are expected to enhance along the temperature anisotropy 
thresholds. 

6. Discussion and summary 

In this chapter, we have described the interplay of kinetic plasma instabilities in a 
counterstreaming plasma including a finite and anisotropic thermal spread of charge 
carriers. Such a complex and anisotropic plasma model is maybe complicated but it allows 
for a realistic investigation of a wide spectra of plasma waves and instabilities. Small plasma 
perturbations, whether they are electrostatic or electromagnetic, can develop and release the 
free energy residing in the bulk relative motion of streams or in thermal anisotropy. Two 
types of growing modes have been identified as possible mechanisms of relaxation: an 
electrostatic growing mode, which is the two-stream instability, and two electromagnetic 
growing modes, which are the Weibel instability and the filamentation instability, 
respectively. The last two can cumulate leading either to enhancing or quenching the 
electromagnetic instability. 
The most efficient wave mode capable to release the excess of free energy and relax the 
counterstreaming distribution, will be the fastest growing wave mode, and this is the mode 
with the largest maximum growth rate. Thus, first we have presented the dispersion 
approach and the dispersion relations of the unstable modes, and then we have calculated 
numerically their growth rates for various plasma parameters. Possible applications in 
plasma astrophysics and fusion experiments have also been reviewed for each case in part. 
When the intrinsic temperature anisotropy is small, the two stream electrostatic instability 
develops first and relaxes the counterstreams to an anisotropic bi-Maxwellian plasma, 
which is unstable against the excitation of Weibel instability. 
If the intrinsic temperature anisotropy increases, the electromagnetic instabilities can be 
faster than the two-stream instability. This could be the case of a plasma hotter along the 
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streaming direction, when the two-stream instability is inhibited, but the contributions of 
the filamentation and Weibel instabilities cumulate enhancing the magnetic instability. 
Otherwise, if the plasma kinetic energy transverse to the streams exceeds the parallel kinetic 
energy, the anisotropy in velocity space decreases and becomes less effective, and the 
filamentation instability is reduced or even suppressed. However, in this case a Weibel-like 
instability arises along the streaming direction, and if the temperature anisotropy is large 
enough, this instability becomes the fastest mechanism of relaxation with growth rates 
larger than those of the two-stream and filamentation instabilities. 
We have neglected any influence of the ambient stationary fields, but the results presented 
here are also appropriate for the weakly magnetized (high-beta) plasmas widely present in 
astrophysical scenarios. 
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