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1. Introduction      

The St. Venant equations which are written for the calculation of free surface, gradually 
varied unsteady flows can only be solved analytically in very special limited problems. 
Apart from this they can be solved by numerical solution methods. Depending on the 
problem’s characteristics, St. Venant equations can be arranged in different forms such as 
kinematic wave, dynamic wave, gravity wave, quasi-steady dynamic wave, and non-inertia 
wave may emerge. In the solution of non-linear St. Venant equations, different numerical 
solution techniques may be used by linearization of the equations by mathematical 
approaches. In this study the St. Venant equations made linear have been solved by using 
the Differential Quadrature Method (DQM), and the results have been compared by the 
Finite Difference Method (FDM) and Finite Volume Method’s (FVM) results. 

2. Background 

The St Venant equations are used in the calculation of one-dimensional free surfaced flow.  
This equations, which is gained by writing the equations of continuity and motion, is semi-
linear and hyperbolic. Apart from some very special problems, it cannot be directly 
integrated. For this reason, it can be solved by numerical solution techniques. The numerical 
solution techniques, which are generally used, are Finite Difference Method, Finite Volume 
Method and Finite Element Method. 
In Finite Differences Method, such as  Preismann scheme (Cunge,1975), Holly-Preismann 
scheme (Yang et al.,1992), McCormack scheme (Aguirre-Pe et al.,1995; Garcia-Navarro & 
Saviron, 1992; Garcia & Kahawita, 1986; Fennema & Chaudhry, 1986), Lambda scheme 
(Fennema & Chaudhry, 1986), Gabutti scheme (Fennema & Chaudhry, 1986), Beam-
Warming scheme (Jha et al., 1996;1994; Fennema & Chaudhry, 1987; Mingham & Causon, 
1998) and more different schemes are used (Glaister, 1988; 1993; Abbot, 1979; Cunge et al., 
1980; Fread, 1983; Wang et al., 2000 ). Hsu and Yeh (2002) are investigated that is iterative 
explicit simulation of 1D surges and dam-break flows, and, has been summarized studies 
use different schemes. In addition to these studies, that have different boundary and initial 
conditions, Kiladze (2009) has investigated the study of the Stability of Finite Difference 
Schemes to Solve Saint-Venant Equations, Crossley and Wright (2005) has studied the time 
accurate local time stepping for the unsteady shallow water equations. Chambers (2000) and 
Hsu and Yeh (2002) are given studies that Finite Element Method has been used. 
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Additionally, Zhou et al. (2007) are proposed a split-characteristic Finite Element Model for 
1-D unsteady flows. In the solution of this method, such as RDKG2 scheme (Kesserwani et 
al.; 2009), the modified Godunov method (Savic & Holly, 1993) and the Petrov-Galerking 
finite element scheme (Yang et al. 1993; Khan 2000) has been used. In recently, use of Finite 
Volume Method is increasing. Very studies are existing that are use of Finite Volume 
Method with different approximations (Bradford & Sanders, 2002; Mingham & Causon, 
1998; Ying, et al., 2004; Erduran et al., 2002; Goutal &  Maurel, 2002; Ghidaoui et al., 2001; 
Lee & Wright, 2009). Besides that conventional methods, in recently, such as Transfer Matrix 
Method (Daneshfaraz & Kaya, 2008), Incremental Differential Quadrature Method (Hashemi 
et al., 2006; 2007) and Differential Quadrature Method (Kaya et al., 2010) has been used. In 
parallel development of computer technology, the numerical methods can be used more 
effectively. 
St. Venant equations can be written in different forms by omitting some terms and 
approaches such as kinematic wave, dynamic wave, gravity wave, quasi-steady dynamic 
wave and inertial wave may emerge. A considerable extent of publications regarding the 
solution of equations using different wave approaches are summarized in Yen and Tsai 
(2001) and Fan and Li (2006). 
DQM has been developed by Richard Bellman (Bellman et al, 1971). This method offers the 
solution of gained equations in differential form of any given system, including existing 
boundary/initial conditions in the equations.  Shu ve Richards (1992) have studies using the 
DQM in the area of some applications of fluid mechanics and the bending and twisting of 
beams. A recent study (Fung, 2001) has emphasized the application principles of DQM in 
problems we may face in the area of fluid mechanics and heat transfer. Kaya (2010) has 
investigated the use of DQM on the solution of Advection Diffusion Equation. 
Shu et al. (2003) are presented local radial basis function-based differential quadrature 
method. Shu et al. (2004) examined the DQM was used to simulate the eccentric Couette–
Taylor vortex flow in an annulus between two eccentric cylinders with rotating inner 
cylinder and stationary outer cylinder. Lo et al. (2005) are presented natural convection in a 
differentially heated cubic enclosure is studied by solving the velocity–vorticity form of the 
Navier–Stokes equations by a generalized differential quadrature method. Ding et al. (2006) 
examined, the local multi-quadric differential quadrature method is applied on three-
dimensional incompressible flow problems.  

3. Differential quadrature method  

In the DQM, the partial derivative of a function with respect to a variable at a discrete point 
is approximated as a weighted linear sum of the function values at all discrete points in the 
region of that variable. The approximation of the partial derivative can be written as 
(Civalek, 2004): 

 ( ) ( )
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where ux(r) is the rth order derivative of the function, xj are the discrete points of the variable 
x, u(xj) are the function values at points xj and A(r)ij  are the weight coefficients for the rth 
order derivative of the function. The DQM is an alternative approach to the standard 
numerical solution methods such as finite differences and finite elements, for the initial and 
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boundary value problems encountered in physics and mathematics (Shu, 1992; Shu et al., 
2003; Shu & Chew, 1997).  
The overall sensitivity of the model especially depends on the location and number of 
sampling grid points. However, Civalek (2003) points out that the determination of the 
effective choice of sampling grid points for any problem reduces the analysis time (Civalek, 
2003). For instance, previous studies show that for the solution of linear equations with 
homogeneous boundary conditions, selecting equal intervals between the adjacent grid 
points are adequate. On the other hand, for the vibration problems, the choice of grid points 
through the Chebyshev-Gauss-Lobatto method is more reasonable. In time-bound equations 
and initial value problems, selection of unequal intervals for sampling grid points produces 
the appropriate solutions (Civalek, 2003). For boundary value problems, DQM performance 
is highly dependent on the boundary conditions and sampling grid points. The boundary 
conditions can be easily implemented to DQ system and the common type of boundary 
conditions, which are Dirichlet, Neumann and/or mixed type function, do not create any 
difficulty in this implementation process (Bert, 1996; Civalek, 2003). 
Determining the weight coefficients is the most crucial step in the use of DQM. Shu and Xue 
(1997) worked on the selection of the weight coefficients and proposed several solutions in 
their studies. The weight coefficients change upon approximation function and according to 
the chosen approximation function, the method takes different names such as Polynomial 
Differential Quadrature, Fourier Expansion Base Differential Quadrature and Harmonic 
Differential Quadrature (Civalek, 2004; Shu et al., 2002). 

4. St.Venant equations and linearization 

For unsteady one-dimensional free surface flows, the continuity (Eq.2) and momentum  
(Eq.3) equations are to be called the Saint-Venant equations. In use of the Saint-Venant 
equations, some basic assumptions are made that are (1) the streamline curvature is very 
small and the pressure distributions are hydrostatic; (2) the flow resistance are the same as 
for a steady uniform flow for the same  depth and velocity; (3) the bed slope is small enough 
to satisfy : cosθ ≈ 1 and sinθ ≈ tanθ ≈ θ; (4) the water density is a constant; and (5) the channel 
has fixed boundaries, and air entrainment and sediment motion are neglected (Chanson, 2004).  

 l

A Q
q

t x

∂ ∂
+ =

∂ ∂
 (2) 

 x 0 f

yQ (QV)
V q gA -gA(S S ) 0

t x x
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In this equations, the velocities and water depths change with time and longitudinal 
position, and, Q is flow discharge [L3/T]; y, flow depth [L]; A, flow cross sectional area [L2]; 
ql, lateral outflow per unit length along the channel [L2] (infiltration, seepage, precipitation, 
etc); Vx, x component of velocity of lateral flow [L/T]; S0, channel bed slope [L/L]; Sf friction 
slope [L/L]; x, distance in longitudinal direction [L/L]; and t is time [T]. In the solution of St. 
Venant equations different approximations are used namely dynamic wave, quasi-steady 
dynamic wave, non-inertia wave, kinematic wave and gravity wave (Yen & Tsai, 2001). 
In practical terms, lateral outflows (seepage, infiltration etc) are comparatively low and can be 
neglected (q=0). The linearizing of the basis equation of unsteady and gradually varied flows 
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in prismatic channels can be done by the transformation Q=Q0+Q’ and A=A0+A’. Here Q0 and 
A0 show the steady initial conditions values. When the linearized St. Venant equations have 
been arranged and the 3rd degree terms have been neglected from the equation 
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is obtained (Yen & Tsai, 2001 ). In this equation,  
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happens. 
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impending, as seen this equation can be written as 
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This equation is used in the case of dynamic wave approach. In the other wave approaches 
because some waves are neglected; in the quasi-steady dynamic wave approach 
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in the non-inertia wave approach  

 hD m=  (12)  

and, in the kinematic wave approach Dh=0. Instead of the Q yield St. Venant equations can 
be arranged by the y value by changing y=y0+y’. In this case  
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equation is gained (Yen & Tsai, 2001).  
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The celerity used in Eq. (10) depends on the channel cross-section geometry, the flow area 
and the resistance formula (Sf). For a trapezoidal channel, C is defined as follows: 
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 (14)     

Here, α=1 for Chezy formula, α=4/3 for the Manning’s formula, b is bottom width [L], and z 
is the side slope [L/L].  

5. Application of differential quadrature method 

The equation (10) obtained as a result of an arrangement of of the linearized St. Venant 
equations, can be rewritten for the solution of DQM as seen in Eq. 15 

 (2)
, , , h , ,

1 1 1

C -D 0     1 2 , ;   s 1 2 ,
R N N

r s i r j i j i j s
r j j
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⎝ ⎠
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where N, is the number of sampling grid points in the x direction; R is the number of 
sampling grid points in time direction; and A, B, B(2) are weight matrix coefficients.  
Determining the boundary conditions, Eq. 15 is solved for the Q(i,s) values. For example, 
when Q(x,0)= f1(t)  and  Q(0,t)=f2(x), Eq. 15 yields 
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where,  i = 2,3,…N and s = 2,3,…R. 
Using the properties of Legendre polynomials, the weight coefficient matrix can be written 
as (Shu et al. 2004):  
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For the numerical discretization, several different methods are available. It can be selected 
with equal intervals, or non-equal intervals like Chebyshev-Gauss-Lobatto grid points, or 
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with the normalization of the routes of Legendre polynomials (Shu, 2000). In the present 
study, several different approximations have been tested, and, Chebyshev-Gaus-Lobatto 
grid points have been selected. In the Chebyshev-Gaus-Lobatto approximation, by writing   

 
1 1

1 cos
2 1i
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 (20)  

the locations as the calculation points can be calculated as follows:  
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In time domain, this yields   
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by considering R, in place of N, in Eq.(21) and Eq.(22). A matrix can be written like B matrix 
as follows. 
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6. Numerical examples  

In the Murumbidgee River in South Wales, Austria, in 1978 and 1983, two serious floods 
happen (Sivapalan et al. 1997). In the present study, the numerical calculations were 
performed by use of the flood propagation between Gundagai and Wagga Wagga stations 
over the river. Gundagai is located upstream of the river with 120 km length and 0.032% 
longitudinal slope. The Gundagai measurements were undertaken as initial data, and then 
the flood hydrograph at Wagga Wagga was determined. A comparison was conducted 
taking into account the DQM, FVM, FDM, actual measurements, and nonlinear FDM 
solution performed by Sivapalan et al. (1997). Here, the first three analyses (DQM FVM and 
FDM) were performed for constant C and Dh values. 
In the first example, Gundagai station’s measurements in 1978 were accepted as boundary 
data, and the flow rate values at Wagga Wagga station were calculated by use of Implicit 
Finite Difference Method (IFDM), Explicit Finite Difference Method (EFDM), Implicit Finite 
Volume Method (IFVM), Explicit Finite Volume Method (EFVM) and DQM. Gundagai and 
Wagga Wagga stations measurements and IFDM, IFVM and DQM results are given in Fig. 
1. An additionally, nonlinear solution at given Sivapalan et al (1997) was examined. The 
solution of Sivapalan et al. (1997), EFDM, EFVM and DQM results are given in Fig. 2.  

www.intechopen.com



Differential Quadrature Method for Linear Long Wave Propagation in Open Channels  

 

259 

The accuracy of these different numerical methods was obtained by using the Root Mean 
Square (RMS) equation as follows: 

 

2

.2
1
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R

i i observed num method
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e e e Q Q
R =

= = −∑  (25) 

where Qobserved is the observed value and Qnum.method is the numerical solution i.e., DQM, 
EFDM, IFDM, EFVM, IFVM and Sivapalan et al.(1997) values and R is the number of points 
in time direction.   
RMS error values of FDM, FVM and DQM were given in Fig. 3 and in Fig. 4. RMS errors in 
Sivapalan et al. (1997) for a nonlinear solution was calculated as approximately 170 m3/sec.  
RMS error values in FVMs, FDMs and DQM are converged to approximately 165, 137 and 
122, respectively.  
In the watershed in 1983, a flood had occurred again. Gundagai and Wagga Wagga stations 
measurements and solution of Sivapalan et al. (1997) at Wagga Wagga were given in Fig. 5. 
In addition, the results of IFDM, IFVM and DQM are seen in this Figure. EFDM, EFVM 
results are given in Fig. 6. In Fig. 7 and 8, FDMs, FVMs and DQM RMS error values are 
given as if in 1978 flood. 
RMS error values are converged to 73, 76 and 71 in FDM, FVM and DQM, respectively. This 
number is 41 in Sivapalan’s solution. 
 
 
 

 
 

 

Fig. 1. IFVM, IFDM and DQM results and Sivapalan et al.(1997) solution at Wagga Wagga 
and actual measurements at Gundagai (upstream boundary) and Wagga Wagga (1978 flood) 
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Fig. 2. EFDM, EFVM and DQM results, observed values and Sivapalan et al. (1997) solution 
at Wagga Wagga (1978 flood) 

 

 
 

Fig. 3. FDMs and FVMs  RMS error values for different sampling grid points (1978 flood) 
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Fig. 4. DQM RMS error values for different sampling grid points (1978 flood) 

 
 

 
 

Fig. 5. IFVM, IFDM and DQM results and Sivapalan et al.(1997) solution at Wagga Wagga 
and actual measurements at Gundagai (upstream boundary) and Wagga Wagga (1983 flood) 
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Fig. 6. EFDM, EFVM and DQM results, observed values and Sivapalan et al. (1997) solution 
at Wagga Wagga (1983 flood) 

 

 
 

Fig. 7. FDMs and FVMs  RMS error values for different sampling grid points (1983 flood) 
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Fig. 8. DQM RMS error values for different sampling grid points (1983 flood) 

7. Results and conclusion 

DQM has found increasing use in recent years in Hydraulic Engineering, because it is an 
alternative approach to the standard methods such as Finite Difference Method, Finite 
Element Method and Finite Volume Method.  From the previous applications of DQM in 
different engineering fields, it is seen that the results of DQM are converged rapidly and 
closer to analytical solutions than other numerical solutions. A similar consequence is 
observed in an application of Hydraulic Engineering (Kaya et al., 2010). 
The St. Venant equations that are written for an unsteady open channel flow under some 
acceptance can be translated to linear form, and then can be solved by numerical solution 
methods. In this study, DQM were employed for one-dimensional, gradually varied, 
unsteady open-channel flows. The DQM results were compared with the results using the 
FDMs and FVMs. It is obvious from the examples given above that the DQM results are 
closer to the measurements than the other numerical methods.   
In calculations making use of 1978 Murumbidgee River flood data, the DQM’s RMS error 
values are less than nonlinear solution results in Sivapalan et al. (1997); On the contrary, in 
calculations of 1983 flood, that is bigger. Yet, for a linear solution performed in this study, 
the DQM’s RMS error values are less than other numerical methods.  
In contrast to the FDM and FVM, in the DQM, a small number of grid points are sufficient 
for a stable solution. The results of FDMs and FVMs are converged from 2000 at t direction, 
but this value is 25 in DQM. 
Determining the weight coefficients is the most crucial step in the use of DQM. In wave 
propagation problems in open channels, by making use of Legendre polynomials for weight 
coefficients and Chebyshev-Gauss-Lobatto points for the numerical discretization, the 
results can be obtained closer to an analytical solution (Kaya, 2010). 
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