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1. Introduction 

Our study is motivated by wave action models with time dependent diffusion coefficients 
where the decoupling algorithms are based on iterative splitting methods. The paper is 
organised as follows. Mathematical models of constant and time dependent diffusion 
coefficients’ wave equations are introduced in Section 2 and we provide analytical solutions 
as far as possible. In section 3 we give an overview to iterative operator-splitting methods in 
general, while in section 4 we discuss them with respect to wave equations. For the time 
dependent case we introduce overlapping schemes. We will do convergence and stability 
analysis of all methods in use. In section 5 we reformulate the methods for numerical 
applications, e.g. we give an appropriate discretisation and assembling. We present the 
numerical results in section 6 and finally, we discuss our future works in the area of splitting 
and decomposition methods. 

2. Mathematical model 

Motivated by simulating the propagation of a variety of waves, such as sound waves, light 
waves and water waves, we discuss a novel numerical scheme to solve the wave equation 
with time dependent diffusion coefficients, see [21]. We deal with a second-order linearly 
time dependent partial differential equation. It arises in fields such as acoustics, 
electromagnetics and fluid dynamics, see [5]. For example, when wave propagation models 
are physically more complex, due to combined propagations in three dimensions, time 
dependent equations of such dynamical models become the starting point of the analysis, 
see [3]. We concentrate on wave propagation models to obtain physically related results for 
time dependent diffusion parameters, see [5]. For the sake of completion we incorporate the 
constant case, too. 

2.1 Wave equations 

In this section we present wave equations with constant and time dependent diffusion 
coefficients.  



 Wave Propagation in Materials for Modern Applications 

 

66 

Wave equation with constant diffusion coefficients  

First we deal with a wave equation that represents a simple model of a Maxwell equation 
which is needed for the simulation of electro-magnetic fields. We have a linear wave 
equation with constant coefficients given by: 

 
2 2 2

12 2 2
1

= on [0, ],
d

d

c c c
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t x x

∂ ∂ ∂
+ + Ω×

∂ ∂ ∂
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c x c x x c x
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n

∂
∂Ω ×

∂
 

where c0, c1 are the initial conditions and c3 the boundary condition for the Dirichlet 
boundary. We have ∂ΩDirich ∩ ∂ΩNeum = ∂Ω. 
For this PDE we can derive an analytical solution: 

 
1 1

1

1 1
( , , , ) = sin( ) sin( ) cos( )

d d

d

c x x t x x d t
D D

π π π⋅ ⋅ ⋅… …  (2) 

where d is the spatial dimension. 

Wave equation with time dependent diffusion coefficients 

Mathematical models often need to have time dependent diffusion coefficients, e.g. 
hyperbolic differential equations. These are among others the Schrödinger equations or the 
wave equations with time dependent diffusion coefficients in fluid dynamics. In this paper 
we shall deal with the uncoupled wave equation with time dependent diffusion coefficients 
given by: 
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where c0, c1 are the initial conditions and c3 the boundary condition for the Dirichlet 
boundary. We have ∂ΩDirich ∩ ∂ΩNeum = ∂Ω. 
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In general, we can not derive an analytical solution for arbitrary coefficients’ functions. 
However, given linear diffusion functions, we can deliver an analytical solution with respect 
to a right hand side (inhomogeneous equation) where we may provide sufficient conditions 
for the right hand side to vanish in order to obtain an analytical solution for the 
homogeneous equation. Thus we have 

 
2 2 2
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= ( ) ( ) ( , , , ) on [0, ],
d d

d
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D t D t f x x t T

t x x

∂ ∂ ∂
+ + + Ω×

∂ ∂ ∂
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where canal  is the assumed analytical solution and Dj(t ) = ajt + bj with aj, bj ∈ R. 

Theorem 1. We claim to have the following analytical solution for d dimensions: 

 
1

=1

( , , , ) = sin( )(sin( ( ) )),
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d j j
j
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while the right hand side f (x1, . . . , xd, t) is given by 

 1/2
1

=1

( , , , ) = ( ) sin( )cos( ( ) ),
2

d
j

d j j j j
j

a
f x x t a t b x tπ π λ π−+∑…  (6) 

and where 

 3/22
( ) = ( ) , = 1, , .

3j j j

j

t a t b j d
a

λ + …  (7) 

Proof. We have the following derivatives 
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where 
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Hence, by employing the derivatives (8)–(9) in (4) we obtian for f (x1, . . . , xd, t) 
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 1/2

=1

( ) = ( ) sin( )cos( ( ) ).
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d
j

j j j j
j

a
f t a t b x tπ π λ π−+∑  (10) 

□ 
Remark 1. An analytical solution for the homogeneous equation (3) can be given for x ∈ Ω such that 
f (x, t) = 0, i.e. 

sin( ) = 0 = 1, ,
j

x j dπ⇔ …  

Z = 1, ,
j

x j d⇔ ∈ …  

Hence for x ∈ Zd ∩ Ω. 

2.1.1 Existence of solutions for time dependent wave equations 

We assume to have an analytical solution for the following equation. 
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where the analytical solution is given as canal
 (x1, . . . , xd, t) ∈ C 2(Ω)×C 2([0, T ]) and  

f (x1, . . . , xd, t) ∈ C 2(Ω) × C 2([0, T ]). 
The equation (11) can be reformulated into a system of first order PDEs. Then we can apply 
the variation of constants formula which is given by 

 
1 1 1 10

( , , , ) = ( , , , ) ( , , , ) ( , , , ) ,
t

d d d d
C x x t K x x t K x x t s F x x s ds+ −∫… … … …  (12) 

where F and C are obtained by the reformulation of a system of first order PDEs. Then we 

assume that there exists a kernel K(x1, . . . , xd, t) with C (x1, . . . , xd, 0) = K(x1, . . . , xd, 0). 

Proof. The variation of constants formula is given by 

1 1 1 10
( , , , ) = ( , , , ) ( , , , ) ( , , , ) ,

t

d d d d
C x x t K x x t K x x t s F x x s ds+ −∫… … … …  

Now we assume, given C and F such that we obtain an integral equation, where K(x1, . . . , 
xd, t) is the unknown. 
Based on the rewriting of the Voltera’s integral equation there exists a solution when K is 

bounded, i.e. 

1 1 1
| ( , , , ) ( , , , ) | ( , , ) | |,

d d d
K x x t K x x t L x x t t′ ′− ≤ −… … …  
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for all (x1, . . . , xd) ∈  and t, t′ ∈ [0, T ]. This is assumed in solving the solution and that the 

kernel is bounded, i.e. also for the case F(x1, . . . , xd, t) → 0.                                                         □ 

Remark 2. For F(x1, . . . , xd, t) ≡ 0 we obtain a solution for the homogeneous equation. Thus, there 

exists a solution for equation (3). 

3. Splitting methods 

Splitting methods have been designed for accelerating solver processes and decomposing 
them into simpler solvable equation parts, see [24] and [16]. Other ways are to consider the 
physical behaviour and split it into simpler and solvable equation parts, e.g. symplectic 
schemes, [22] and [30]. The natural way to decouple a differential equation into simpler 
parts is done by: 

 
full

( )
= ( ), for ( , ),ndc t

A c t t t T
dt

∈  (13) 

 
( )

= ( ) ( ), for ( , ),ndc t
A B c t t t T

dt
+ ∈  (14) 

 ( ) = , (initial condition),n nc t c  (15) 

 

where t
n

, T ∈ R+
 and t

n 

≤ T . The operator Afull can be decoupled into the operators A and B, 
cf. introduction in [28]. 
Based on these linear operators the equation (13) can be solved exactly. The solution is given 
by: 

 1
full

( ) = exp( ) ( ),n nc t A c tτ+  (16) 

 

where the time step is τ = t 
n+1 − t 

n and t 
n+1 ≤ T. 

The simplest operator splitting method is the sequential decoupling into two or more 
equations. The error for the linear case could be analysed by the Taylor expansion, see [1]. 
Remark 3. The introduction for ordinary differential equations presented above can be extended for 

the abstract Cauchy problem of a parabolic equation by regarding the possibility of defining the 

operator Afull using a Friedrichs’ extension. Thus, the mild solutions (or weak solutions) are possible 

and we can apply the notation of the exp-formulations, see [31]. 

3.1 Iterative operator splitting methods for wave equations 

In the following we apply the iterative operator-splitting method as an extension to the 
traditional splitting methods for wave equations. The idea is to repeat the splitting steps 
with the improved computed solutions. We have to solve a fixed-point iteration and we gain 
higher-order results. 
The iterative splitting method is given in the continous formulation as follows: 
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where 
0 0
( ), ( )c t c t′  are fixed functions for each iteration. Here sp sp,n nc c′  denote the known split 

approximations at time level t = tn. The split approximation at time level t = tn+1 is defined 
by 1 1

s 2 1
= ( )n n

p m
c c t+ +

+ . 
Remark 4. The stop criteria is given by: 

ε
1

| |
k k

c c+ − ≤  

for k ∈ 1, 3, 5, . . . and ε ∈ R+. Thus, the solution is given by c(tn+1) = ck+2. 

For the stability and consistency we can rewrite the equations (17)–(18) in continuous form 
as follows: 

 A F= ,
tt i i i
C C∂ +  (19) 

where Ci = (ci, ci+1)
t
 and the operators are given by 

 F 10
= , = .

0
i

i

A Bc
A

A B
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (20) 

We discuss this equation with respect to stability and consistency. 

4. Convergence analysis 

In the following we present the convergence analysis of the iterative splitting method for 
wave equations with constant and linear time dependent diffusion coefficients. 

4.1 Stability and consistency for the constant case 

The stability and consistency results can be done as for the parabolic case. The operator 
equation with second-order time derivatives can be reformulated into a system of first-order 
time derivatives. 

4.1.1 Consistency 

In the following we analyse the consistency and the order of the local splitting error for the 

linear bounded operators A,B : X → X where X is a Banach-space, see [31]. 

We assume our Cauchy-problem for two linear operators with second-order time derivative. 
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 = 0 , (0, ) ,
tt

c Ac Bc t T− − ∈  (21) 

 
0 1

with (0) = , (0) = ,
t

c c c c  (22) 

where c0 and c1 are the initial values, see equation (1). 

We rewrite (21)–(22) to a system of first order time derivatives: 

 
1 2

= 0 in (0, ),
t
c c T∂ −  (23) 

 
2 1 1

= 0 in (0, ),
t
c Ac Bc T∂ − −  (24) 

 
1 0 2 1

with (0) = , (0) = .c c c c  (25) 

where c0 = c (0) and c1 = ct(0) are the initial values. The iterative operator splitting method 
(17)–(18) is rewritten to a system of splitting methods. The method is given by: 

 
1, 2,

= ,
t i i
c c∂  (26) 

 
2, 1, 1, 1

= ,
t i i i
c Ac Bc −∂ +  (27) 

1, 1 2, 2
with ( ) = ( ), ( ) = ( )n n n n

i i
c t c t c t c t  

 
1, 1 2, 1

= ,
t i i
c c+ +∂  (28) 

 
2, 1 1, 1, 1

= ,
t i i i
c Ac Bc+ +∂ +  (29) 

 
1, 1 1 2, 1 2

with ( ) = ( ), ( ) = ( ).n n n n

i i
c t c t c t c t+ +  

We start with i = 1, 3, 5, . . . , 2m+ 1 

We can obtain consistency with the underlying fundamental solution of the equation system. 

Theorem 2. Let A,B ∈ L(X ) be linear bounded operators. Then the abstract Cauchy problem (21)–

(22) has a unique solution and the iterative splitting method (26)–(29) by i = 1, 3, . . . , 2m+1 is 

consistent with the order of the consistency O 2( )m

n
τ . The error estimate is given by: 

 O 2
1

= ( ).,
i n i n

e K B eτ τ− +& & & & & &  (30) 

where K ∈ R+, ei = max{|e1,i|, |ei,2|} and &B& is the norm of the bounded operator B. In general, 

we can do an estimation by recursive arguments: 

 O 1
0

= ( ),i i

i n n
e K eτ τ ++�& & & &  (31) 

where K�  ∈ R+ is the growth estimation. 
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Proof. We derive the underlying consistency of the operator-splitting method. Let us 
consider the iteration (17)–(18) on the subinterval [t 

n, t 
n+1]. For the local error function ei 

(t) = 
c (t) − ci(t) we have the relations 

 

1
1, 2,

1
2, 1, 1, 1

1
1, 1 2, 1

1
2, 1 1, 1, 1
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( ) = ( ) ( ), ( , ],

n n
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t i i
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t i i i

e t e t t t t

e t Ae t Be t t t t

e t e t t t t

e t Ae t Be t t t t

+

+
−

+
+ +

+
+ +

∂ ∈

∂ + ∈

∂ ∈

∂ + ∈

 (32) 

for m = 0, 2, 4, . . . , with e0(0) = 0 and e−1(t) = c(t). We use the notations X4 for the product 
space X×X×X×X endowed with norm &(u1, u2, u3, u4)t& = max{&u1&, &u2&, &u3&, &u4&}(u1, u2, 
u3, u4 ∈ X). 
The elements Ei(t ), Fi(t ) ∈ X4

 and the linear operator A : X4
 → X4

 are defined as follows: 

 E F A

1,

2, 1, 1

1, 1

2, 1

( ) 0 0 0 0

( ) ( ) 0 0 0
( ) = , ( ) = , = .

( ) 0 0 0

( ) 0 0 0

i

i i

i i
i

i

e t I

e t Be t A
t t

e t I I

e t A B

−

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (33) 

Then, using the notations (33), the relations (32) can be written as: 

 
E AE F

E

1( ) = ( ) ( ), ( , ],

( ) = 0.

n n

tt i i i

n

i

t t t t t t

t

+∂ + ∈
 (34) 

Due to our assumptions, A is a generator of the one-parameter C0 semi-group (expAt )t≥0. 

Hence, using the variations of constants formula, the solution to the abstract Cauchy 
problem (34) with homogeneous initial conditions can be written as: 

 E A F
0

( ) = exp( ( )) ( ) ,
t

i int
t c t s s ds−∫   (35) 

with t ∈ [tn, tn+1] (see, e.g. [6]). Hence, using the denotation 

 E E1[ , ]
= sup ( ) ,

i n n it t t
t∞ +∈

& & & &   (36) 

we have 

 
E F A

A 1
1, 1

( ) exp( ( ))

= exp( ( )) , [ , ].

t

i i nt
t

n n

i nt

t t s ds

B e t s ds t t t

∞

+
−

≤ −

− ∈

∫
∫

& & & & & &

& && & & &
  (37) 

Since (A(t))t≥0 is a semi-group, the so-called growth estimation 

 Aexp( ) exp( ), 0,t K t tω≤ ≥& &  (38) 
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holds with numbers K ≥ 0 and ω ∈ R, cf. [6]. 
The estimations (37) and (38) result in 

 E O 2
1

= ( ),
i n i n

K B eτ τ∞ − +& & & & & &   (39) 

where &ei−1& = max{&e1,i−1&, &e2,i−1&}. 

Taking into account the definition of Ei and the norm & · &∞, we obtain 

 O 2
1

= ( ),
i n i n

e K B eτ τ− +& & & & & &   (40) 

and hence 

 O2 3
1 1 1

= ( ),
i n i n

e K eτ τ+ − +& & & &   (41) 

which proves our statement. 
Remark 5. The proof is aligned to scalar temporal first-order derivatives, see [7]. The generalization 
for higher-order hyperbolic equations can also be done which are reformulated into first-order 
systems. 

4.1.2 Stability 

The following stability theorem is given for the wave equation done with the iterative 
splitting method, see (26)–(29). 
The convergence is examined in a general Banach space setting and we can prove the 
following stability theorem. 
Theorem 3. Let us consider the system of linear differential equation used for the spatial discretised 
wave equation 

 
1 2
= ,

t
c c∂  (42) 

 
2 1 1
= ,

t
c Ac Bc∂ +  (43) 

1 2
with ( ) = ( ), ( ) = ( ) ,n n n n

t
c t c t c t c t  

where the operators A,B : X → X are linear and densely defined in the real Banach-space X, see [32]. 

We can define a norm on the product space X × X with &(u, v)t& = max{&u&, &v&}. We rewrite the 

equation (42)–(43) and obtain 

 
( ) = ( ) ( ) ,

( ) = ,
t

n n

c t Ac t Bc t

c t c

∂ +� ��
� �

 (44) 

where = ( ( ), ( ))n n n T

t
c c t c t�  and 

0 1/ 2
=

0

I
A

A

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
�  and 

0 1/ 2
=

0

I
B

B

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
� . Let , :A B X X→� �  be 

linear bounded operators which are generators of the C0 semi-group and c0 ∈ X a fixed element. To 

obtain a scalar estimation for the bounded operators A, B, we assume 
A

λ�  as a maximal eigenvalue of 
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A�  and 
B

λ �  as a maximal eigenvalue of B� . Then the linear iterative operator-splitting method (26) - 

(29) is stable with the following result: 

 
1

1
1 0

=0

( ) ,
i

n j j

i max
j

c t K c τ λ
+

+
+ ≤ ∑��& &� & &  (45) 

where K�  > 0 is a constant and 
0

c�  = (c (tn ), ct (t
n )) is the initital condition, τ = (tn+1 − tn ) the time 

step and λmax the maximal eigenvalue of the linear and bounded operators A�  and B� . 
Proof. Let us consider the iteration (26)–(29) on the subinterval [tn, tn+1]. Then we obtain the 
eigenvalues of the following linear and bounded operators. Due to the well-posed problem 
we have: 

A
λ�  eigenvalue of A� , 

B
λ �

 eigenvalue of B� , see [32] and [13]. Then our iteration 
methods are given with the eigenvaules as follows: 
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1
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and 
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for i = 1, 3, 5, . . . , with 
0

c�  = (c (tn ), c 
t (t 

n ))t. The equations can be estimated: 

1
1

0 1
( ) = exp( ) exp( ( )) ( ) ,

nt
n

i B iA Ant
c t c t s c s dsλ τ λ λ

+
+

−+ −∫� � �� � �  

where we can estimate  

1 1
1 0 2 1

|| ( ) || || || || ( ) || .n n

i B i
c t K c K c tτ λ+ +

−≤ + �� � �  

Further the second equation can be estimated by: 

1
1

1 0
( ) = exp( ) exp( ( )) ( ) ,
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n

i B B iAnt
c t c t s c s dsλ τ λ λ

+
+
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where can be estimated by: 

1 1
1 3 0 4

|| ( ) || || || ||| ( ) || .n n

i iA
c t K c K c tτ λ+ +

+ ≤ + �� � �  

With a recursive argument and the maximum of the eigenvalues we can estimate the 
equations by: 

1
1

1 0
=0

|| ( ) || || || ,
i

n j j

i j max
j

c t K cτ λ
+

+
+ ≤∑� �  

1
1

1 0
=0

|| ( ) || || || ,
i

n j j

i max
j

c t K cτ λ
+

+
+ ≤ ∑�� �  

where K�  is the maximum of all constants and λmax = max{
A

λ� , 
B

λ � }.                                          □ 
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Remark 6. We have stability for sufficient small time steps τ. Based on the estimation with the 

eigenvalues we can do the same technique also for unbounded operators that are boundable locally. 

More accurate estimates can be derived by using the techniques of the mild or weak solutions, see 

[32]. 

4.2 Stability and consistency analysis for time dependent case 

We propose the following numerical methods to solve the time dependent wave equation: 
iterative splitting method with embedded semi-analytical initial conditions and overlapping 
intervals. 
Assumption 1. For the analysis with the linear time dependent coefficients we assume to have 
convergence of the semi-analytical solutions to the analytical. 
We give an error estimate for the standard splitting method in Theorem 4. For the iterative 
operator splitting method with embedded semi-analytical solutions we deal with two time 
partitions. An inner time partition in which we compute the numerical results and an outer 
time partition on which we compute the semi-analytical solution. 
We have the following definition: 

Definition 1. We part the time interval [0, T ] as follows 

 
,

= , = 0, , 1 = 0, , ,out in

i j
t i j i M and j Nτ τ⋅ + ⋅ −… …  (48) 

 = , =
out

out inT

M N

τ
τ τ  (49) 

where τout denotes the outer time step size and τin the inner. 

For all outer time points the semi-analytical solutions are computed to initialize the inner 
time interval, where we apply the iterative splitting method. 
Theorem 4. The error estimation of the iterative splitting method with embedded semi-analytical 
solutions is given by 

 O
,

|| ( ) ( ) || ( ) || ( ) || || ( ) ||,i m

num i n semi anal n n out
u u KN u t K eτ τ τ τ−− ≤ + �  (50) 

K, N ∈ R+. usemi−anal(t) is the semi-analytical solution and unum,i(t) is the numerical solution with i-th 

iterative steps computed and given at the outer time steps. The initial conditions are given at u(0). 
The overlapping does not cause any significant error in terms of that it would be higher than without 

overlapping. 
We prove theorem 4 for the 2-dimensional equation in the following lemma: 

Lemma 1. The wave equation 3, with parameters 
1 1 2
( ) =

T t t
D t D D

T T

−
+� �  and 

2 1 2
( ) =

t T t
D t D D

T T

−
+� � , (0, )t T∈  and R

1 2
,D D +∈� �  is given with the semi-analytical solution by  

1 2

1 1
( , , ) = sin( )sin( )cos( 2 ),

ˆ ˆsemi anal
u x y t x x t

D D
π π π−

 

1
( , ),( , ) ,

m m
t t t x y+∈ ∈ Ω  

1 1 2 2
ˆ ˆ= ( ), = ( ), = 0, ,

m m
D D t D D t m M� � …  
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We apply the iterative splitting scheme (17)–(18) with the η-method in the subtime- intervalls  

τout
 ∈ (tm, tm+1), with time step Nτn = τ. The local error is given by: 

 1
,

|| ( ) ( ) || ( ) || ( ) || || ( ) ||,n n i n

num i anal out
u t u t NKO u t K e tτ+ − ≤ + �  (51) 

Proof. The error analysis is given in two parts: 

• Error of the outer intervall || ( ) ( ) || || ( ) ||
anal semi anal out

u t u t K e τ−− ≤ �  

• Error of the inner interval 
,

|| ( ) ( ) || ( ) || ( ) || || ( ) ||i m

num i n semi anal n n out
u u KNO u t K eτ τ τ τ−− ≤ + �  

Part 1.) 
The differential equations are given by: 

 
2 2 2

1
1 22 2 2

= ( ) ( ) , ( , )m manal anal anal
u u u

D t D t t t t
t x y

+∂ ∂ ∂
+ ∈

∂ ∂ ∂
 (52) 

 
2 2 2

1
1 22 2 2

ˆ ˆ= , ( , )m msemianal semianal semianal
u u u

D D t t t
t x y

+∂ ∂ ∂
+ ∈

∂ ∂ ∂
 (53) 

We define eout(t) = uanal − usemi−anal and obtain: 

 
2 2 2

1 1 1
1 1 2 22 2 2

= ( ( ) ( )) ( ( ) ( )) , ( , )m m m m m mout out out
e e e

D t D t D t D t t t t
t x y

+ + +∂ ∂ ∂
− + − ∈

∂ ∂ ∂
 (54) 

We assume eout(t) → 0 for τout
 → 0. 

For all other solutions, we assume that the analytical solution ( )m

semi anal anal
u t u− ≤  

1( )m

semi anal
u t +

−≤  and we estimate 

1
1 1

1
|| ( ) || || sin( )

( ) ( )
out m m

e t x
D t D t

π
+

≤ ⋅
−

 

1
2 2

1
sin( )cos( 2 ) ( ) ||,

( ) ( )

m

outm m
x t e t

D t D t
π π

+ −
 

1
( , ),( , ) ,

m m
t t t x y+∈ ∈ Ω  

where eout(t
m) is sufficient small as an initial condition. 

Part 2.) 
Here we have to use the local error of the iterative splitting method, see previous section 4.1: 

O 2
1

= ( ),
i n i n

e K B eτ τ− +& & & & & &  

where 
1, ,2

= max{| |,| |}
i i i

e e e . 

Thus, the combination of both parts reflects the numerical error.                                                □ 



Iterative Operator-Splitting with Time Overlapping Algorithms:  
Theory and Application to Constant and Time-Dependent Wave Equations.  

 

77 

For the additional overlapping scheme we have only to prove the error of the overlapping 
regions. 
Lemma 2. In general, we assume that in each time step the error can be bounded by: 

ε ε
, ,

=1

( ) = | ( ) |
m

num i ana i
i

t u t u x y≥ − Δ Δ∑  

where m = (xsteps + 1)(ysteps + 1) is the number of the spatial steps in the overlapping area. So 
that the error for the overlapped time steps t1 and t2 can be bounded by: 

ε ε
overlap

≤  

Proof. The error in t1 and t2 is given by 

ε ε
1 , 1 , 1

=1

( ) = | ( ) ( ) |
m

overlap num i ana i
i

t u t u t x y− Δ Δ ≤∑  

ε ε
2 , 2 , 2

=1

( ) = | ( ) ( ) |
m

overlap num i ana i
i

t u t u t x y− Δ Δ ≤∑  

We obtain by overlapping, i.e. averaging the values in t1 and t2 

ε ε
ε1 2

( ) ( )

2
overlap overlap

t t+
≤  

Hence, the average error is also in the assumed error bound for the overlapped area. Thus, 
for a given error bound ε, the overlap error is below the error bound for sufficient large m. □ 

5. Discretization and assembling 

We exercise our theory for the two dimensional wave equation. More dimensional equations 
can be treated analogously, particularly, we did an implementation for the three 
dimensional case, too. First we present methods (finite difference and iterative methods) to 
solve the wave equation with constant diffusion coefficients. Besides their benefit for their 
own, the methods provide basic tools to solve the linearly time dependent equation. By 
adding overlapping schemes we have all tools at hand to deal with the latter case which we 
present in a second step. 

5.1 Wave equation with constant coefficients 
5.1.1 Finite difference discretization 

For getting an iterative method for the two dimensional wave equation we first have to apply 
the η-method together with the mixed forward-backward difference method in time and get: 

1 12n n nc c c+ −− +  

 ( )
2 1 2 2 1

2 1 1
1 1 12 2 2

= ( ) ( ) 1 2 ( )
n n n

n n nc c c
t D t D t D t

x x x
η η η

+ −
+ −

⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠
 (55) 
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( )
2 1 2 2 1

2 1 1 1
2 2 22 2 2
( ) ( ) 1 2 ( ) .

n n n
n n nc c c

t D t D t D t
y y y

η η η
+ −

+ + −
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜+Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠

 

Now we can apply the mixed forward-backward difference method in space defined as: 
 

( ) ( ) ( )( )
2

2 2

( , ) 1
, 2 , , ,i j

i j i j i j

c x y
c x x y c x y c x x y

x x

∂
≈ +Δ − + −Δ

∂ Δ
 

( ) ( ) ( )( )
2

2 2

( , ) 1
, 2 , , ,i j

i j i j i j

c x y
c x y y c x y c x y y

y y

∂
≈ +Δ − + −Δ

∂ Δ
 

and get for the uncoupled wave equation (1): 

 

1 1

2
1 1 1

1 1, , 1, 1, , 1,2

1 1 1
1, , 1,

2
1 1 1

2 , 1 , , 1 , 1 , , 12

, 1

2

= ( ( 2 ) (1 2 )( 2 )

( 2 ))

( ( 2 ) (1 2 )( 2 )

(

n n n

n n n n n n

i j i j i j i j i j i j

n n n

i j i j i j

n n n n n n

i j i j i j i j i j i j

n

i j

c c c

t
D c c c c c c

x
c c c

t
D c c c c c c

y
c

η η

η

η η

η

+ −

+ + +
+ − + −

− − −
+ −

+ + +
+ − + −

+

− +

Δ
− + + − − +

Δ
+ − +

Δ
+ − + + − − +

Δ
+ 1 1 1

, , 1
2 )).n n

i j i j
c c− − −

−− +

 (56) 

5.2 Application of the sequential operator-splitting method 
In the classical operator-splitting method we part every time step into two smaller substeps 
to get a better accuracy. 
In the first step the partial derivative in x will be discretised implicit. The partial derivative 
in y will be discretised explicit. In the second step it is the other way around. 
We exemplify the idea with the two dimensional wave equation. Thus we get form (55): 

 ( )

1

2 2 2 1
2

1 2 2 2

2
2

2 2

1) 2

= 1 2

,

n n

n n

n

c c c

c c c
t D

x x x

c
t D

y

η η η

−

−

− +
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠
∂

+ Δ
∂

�

�  (57) 

 ( )

( )

1 1

2 2 2 1
2

1 2 2 2

2 1 2 2 1
2

2 2 2 2

2) 2

= 1 2

1 2 .

n n n

n n

n n n

c c c

c c c
t D

x x x

c c c
t D

y y y

η η η

η η η

+ −

−

+ −

− +
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜+ Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠

�  (58) 

5.3 Application of the iterative operator-splitting method 

In the two dimensional iterative operator-splitting method we will change the algorithm 
(57)-(58) in such a way that the result of the second step will be again used in the first step. 
Thus we get an iterative method with an initial value ci−1: 
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 ( )

( )

1

2 2 2 1
2

1 2 2 2

2 1 2 2 1
2

2 2 2 2

1) 2

= 1 2

1 2 ,

i n n

i n n

i n n

c c c

c c c
t D

x x x

c c c
t D

y y y

η η η

η η η

−

−

− −

− +
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜+ Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠

 (59) 

 ( )

( )

1 1

2 2 2 1
2

1 2 2 2

2 1 2 2 1
2

2 2 2 2

2) 2

= 1 2

1 2 .

i n n

i n n

i n n

c c c

c c c
t D

x x x

c c c
t D

y y y

η η η

η η η

+ −

−

+ −

− +
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ⎟⎜ ⎟⎜+Δ + − + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠

 (60) 

Now we have an iterative operator-splitting method that stops by achieving a given 
iteration depth or a given error tolerance 

2|| ||i ic c TOL−− ≤  

Hereafter the numerical result for the function c at time point n+1 is given by: 

1 1, 1 1:= = .n i n ic c c+ + + +  

For the stability of the function it is important to start the iterative algorithm with a good 
initial value ci−1,n+1 = ci−1. Some options for their choice are given in the following subsection. 

5.3.1 Initial conditions for the iteration 
I.1) 

The easiest initial condition for our ci−1,n+1 is given by the zero vector, ci−1,n+1 ≡ 0, but it might 
be a bad choice, if the stability depends on the initial value. 
I.2) 

A better variant would be to set the initial value to be the result of the last step, ci−1,n+1 = cn. 
Thus the initial value might be next to cn+1, which would be a better start for the iteration. 
I.3) 
With using the average growth of the function depending on the time, the function at the 

time point n + 1 might be even better guessed: 1, 1 11
= ( )i n n n nc c c c

t
− + −+ ⋅ −

Δ
 

I.4) 
A better initial value can be achieved by calculating it with using a method for the first step. 
The easier one is the explicit method, 

1, 1 1

2 2
2

1 22 2

2

= ( ).

i n n n

n n

c c c

c c
t D D

x y

− + −− +

∂ ∂
Δ +

∂ ∂

 

I.5) 

The prestepping method might be the best of the ones described in this section because the 
iteration starts next to the value of cn+1. 
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5.4 Discretization and assembling 

Discretising the algorithm of the iterative operator-splitting method (59)–(60) analogously to 
(56), we get the following scheme for the two dimensional wave equation: 

 

2 2 2 2 1
, 1 1, , 1,

2 2 2 2
, 1 1, , 1,

2 2
2 , 1 , , 1

2 2 1 2 2 1 1
, 1 1, ,

1) ( ) ( 2 )

= 2 ( )(1 2 )( 2 )

( )(1 2 )( 2 )

( ) ( 2

i n i i i

k l k l k l k l

n n n n n

k l k l k l k l

n n n n

k l k l k l

n n n n

k l k l k l

x y c t y D t c c c

x y c t y D t c c c

t x D t c c c

x y c t y D t c c

η

η

η

η

+
+ −

+ −

+ +
− − − −

+

Δ Δ −Δ Δ − +

Δ Δ +Δ Δ − − +

+Δ Δ − − +

−Δ Δ +Δ Δ − 1 1
1,

2 2 1 1 1 1
2 , 1 , , 1

2 2 1 1 1 1
2 , 1 , , 1

)

( ) ( 2 )

( ) ( 2 ),

n

k l

n n n n

k l k l k l

n i i i

k l k l k l

c

t x D t c c c

t x D t c c c

η

η

−
−

− − − −
+ −

+ − − −
+ −

+

+Δ Δ − +

+Δ Δ − +

 (61) 

 

2 2 1 2 2 1 1 1 1
, 2 , 1 , , 1

2 2 2 2
, 1 1, , 1,

2 2
2 , 1 , , 1

2 2 1 2 2 1 1
, 1 1,

2) ( ) ( 2 )

= 2 (1 2 )( 2 )

( )(1 2 )( 2 )

( ) ( 2

i n i i i

k l k l k l k l

n n n n

k l k l k l k l

n n n n

k l k l k l

n n n

k l k l k

x y c t x D t c c c

x y c t y D c c c

t x D t c c c

x y c t y D t c c

η

η

η

η

+ + + + +
+ −

+ −

+ +
− − −

+

Δ Δ −Δ Δ − +

Δ Δ +Δ Δ − − +

+Δ Δ − − +

−Δ Δ +Δ Δ − 1 1
, 1,

2 2 1 1 1 1
2 , 1 , , 1

2 2 1
1 1, , 1,

)

( ) ( 2 )

( ) ( 2 ).

n n

l k l

n n n n

k l k l k l

n i i i

k l k l k l

c

t x D t c c c

t y D t c c c

η

η

− −
−

− − − −
+ −

+
+ −

+

+Δ Δ − +

+Δ Δ − +

 (62) 

This can be written in a matrix scheme as follows: 

1 1 1 1 1 1 1 1 11) = ( ) ( ) ( ( ) ( ) ( ) ),i n n i n n n n

i Alt
c Sys t Sys t c InterB t c InterC t c− + + − − −⋅ ⋅ + ⋅ + ⋅  

1 1 1 2 1 2 2 1 12) = ( ) ( ) ( ( ) ( ) ( ) ).i n n i n n n n

Neu i
c Sys t Sys t c InterB t c InterC t c+ − + + − −⋅ ⋅ + ⋅ + ⋅  

With this scheme the sequence ci can be calculated only with the results of the last steps. It 
ends when the given error tolerance is achieved. The matrices only have to be calculated 
once in the program. They do not change during the iteration. 

The matrices , , ,d d d d

i Oldj Newj
Sys Sys Sys InterB  and dInterC  depend on the solutions at different 

time levels, i.e. 1 1 1, , ,i i i nc c c c− + −  and nc . 

5.5 Wave equation with linear time dependent diffusion coefficients 

The main idea to solve the time dependent wave equation with linear diffusion functions is 

to part the time domain [0, T ] into sub-intervals at which we assume equations with 

constant diffusion coefficients on each of the sub-intervals. Hence, we reduce the problem of 
the time depedent wave equation to the one with constant diffusion coefficients. 
Mathematically, given: 

 
2 2 2

1 22 2 2
= ( ) ( ) , ( , , ) [0, ]

c c c
D t D t x y t T

t x y

∂ ∂ ∂
+ ∈ Ω×

∂ ∂ ∂
, (63) 

 2 1
1 1
( ) = ,

d d
D t d

T

−
+  (64) 
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 1 2
2 2 1 2
( ) = , , [0,1].

d d
D t d d d

T

−
+ ∈  (65) 

The partition of [0, T ] is given by: 

 
,

= , = 0, , 1 = 0, , ,out in

i j
t i j i M and j Nτ τ⋅ + ⋅ −… …  (66) 

 = , =
out

out inT

M N

τ
τ τ  (67) 

where τout denotes the outer time step size and τin the inner. 

We have the following system of wave equations with constant diffusion coefficients on the 
sub-intervals [ti,0, ti,N] (i = 0, . . . ,M − 1): 

 
2 2 2

1 ,0 2 ,0 ,0 ,2 2 2
= ( ) ( ) , ( , , ) [ , ].

i i i

i i i i N

c c c
D t D t x y t t t

t x y

∂ ∂ ∂
+ ∈ Ω×

∂ ∂ ∂
 (68) 

(69) 

For each sub-interval [ti,0, ti,N] (i = 0, . . . , M − 1) we can make use of the results in 4.1. In 

particular, we can give an analytical solution by: 

 
1 ,0 2 ,0

1 1
( , , ) = sin( ) sin( ) cos( 2 ),

( ) ( )

i

anal

i i

c x y t x y t
D t D t

π π π⋅ ⋅  (70) 

 
,0 ,

( , , ) [ , ], = 0, , 1.
i i N

x y t t t i M∈ Ω× −…  (71) 

Thus we assume for each i = 0, . . . , M − 1 following initial and boundary conditions for (68): 

 0 0( , ,0) = ( , ,0), ( , ) ,
anal

c x y c x y x y ∈ Ω  (72) 

 ( , , ) = ( , , ), [0, ].i i

anal
c x y t c x y t on T∂Ω×  (73) 

Furthermore, we can make use of the numeric methods, developed for the wave equation 

with constant diffusion-coefficients, to give a discretisation and assembling for each sub-

interval, see 5.1. We obtain a numerical, resp. semianalytical, solution for the time depedent 

equation (63) in Ω × [0, T ] by joining the results ci of all sub-intervals [ti,0, ti,N] (i = 0, . . . ,M 

− 1). In 4.2 we show that the semi-analytical solution converges to the presumed analytical 

solution for τout → 0. We need the semi-analytical solution as reference solution in order to 

be able to evaluate the numerical. 
In order to reach a more accurate result we propose an interval-overlapping method. Let 

,…,{0 [ ]}
2
N

p ∈ . We solve the following system: 
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2 0 2 0 2 0

1 0,0 2 0,02 2 2
= ( ) ( ) ,

c c c
D t D t

t x y

∂ ∂ ∂
+

∂ ∂ ∂
 (74) 

0,
( , , ) [0, ],in

N
x y t t pτ∈ Ω× +  

 
2 2 2

1 ,0 2 ,02 2 2
= ( ) ( ) ,

i i i

i i

c c c
D t D t

t x y

∂ ∂ ∂
+

∂ ∂ ∂
 (75) 

,0 ,
( , , ) [ , ], = 1, , 2,in in

i i N
x y t t p t p i Mτ τ∈ Ω× − + −…  

 
2 1 2 1 2 1

1 1,0 2 1,02 2 2
= ( ) ( ) ,

M M M

M M

c c c
D t D t

t x y

− − −

− −

∂ ∂ ∂
+

∂ ∂ ∂
 (76) 

1,0
( , , ) [ , ],in

M
x y t t p Tτ−∈ Ω× −  

while the initial and boundary conditions are as previously set. 
We present the interval-overlapping for the analytical solutions of (74)–(76). Hence, 
csemi−anal(x, y, t) is 

 
The same can be done analogously for the numerical solution. 

6. Numerical experiments 

We test our methods for the two dimensional wave equation. First we analyse test series for 
the constant coefficient wave equation. Here, we give some general remarks on how to carry 
out the experiments, e.g. choise of parameters, and how to interpret the test series correctly, 
e.g. CFL condition. Moreover, we present a method how to obtain acceptable accuracy with 
a minimum of cost. In a second step we do an error analysis for the wave equation with 
linearly time dependent diffusion coefficients. The tables are given at the end of the paper. 

6.1 Wave equation with constant diffusion coefficients 

The PDE to solve with our numerical methods is given by: 

2 2 2

1 22 2 2
= .

c c c
D D

t x y

∂ ∂ ∂
+

∂ ∂ ∂
 

We assume Dirichlet boundary conditions: 
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= on with
D Dirich

u u ∂Ω  

1 2

1 1
( , ) = ( ) ( )

D
u x y sin x sin y

D D
π π⋅ , 

We can derive an analytical solution which we will use as reference solution for the error 
estimates: 

1

1 2

1 1
( , , ) = sin( ) sin( ) cos( 2 )c x y t x y t

D D
π π π⋅ ⋅ , 

The analytical solution is periodic. Thus it suffices to do the error analysis for the following 
domain: 

1
[0,2 ]x D∈ ⋅  

2
[0,2 ]y D∈ ⋅  

[0, 2]t ∈  

Remark 7. The analytical solutions for the constant coefficients are given exact solutions for 

=
2

n
t , for this we obtain the boundary conditons of the solutions. The extrem values are given with 

respect to cos( 2 ) = 0.5tπ ± . 

We consider stiff and non stiff equations with D1, D2 ∈ [0, 1]. In section 5 we gave some 

options for the initial condition to start the iterative method. In [12] we discussed the 
optimization with respect to the initialisation process. Here the best initialisation is obtained 
by a prestep first order method, I.5. However, this option needs one more iteration step. 
Thus we take the explicit method I.4 for our experiment which delivers almost optimal 
results. 
As already mentioned above we take the analytical solution as reference function and 

consider an average of L1-errors over time calculated by: 

 
1 ,

( ) := | ( , , ) ( , , ) |n i j n i j n

L anal
i j

err t u x y t u x y t x y− ⋅Δ ⋅Δ∑ , (77) 

 
1 1

:= ( )n

L L
n

err err t t⋅Δ∑ , (78) 

We exercised experiments for non stiff (table (1) and (2)) and stiff (table (3) and (4)) 

equations while we changed the parameters η and Δt for constant spatial discretisation. 

Generally, we see that the test series for the stiff equation deliver better results than the one 
for the non stiff equation. This can be deduced to the smaller spatial grid, see domain 
restrictions. 
In table (1)–(4) we observe that we obtain the best result for η = 0 and tsteps = 16, e.g. for the 
explicit method. However, for smaller time steps we can always find an η, e.g. implicit 
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method, so that the L1-error is within an acceptable range. The benefit of the implicit 
methods is the reduction in computational time, see table (6), with a small loss in accuracy. 
During our experiments we observed a correlation between η and Δt. It appears that for 
each given number of time steps there is an η that minimizes the L1-error indepedently of 
the equation’s stiffness. In tables (1)–(4) we have just listed these numerically computed η’s 
with some additional values to see the movement. We experimented with up to three 
decimal places for η. We assume, however, that you can minimise the error more if you 
increase the number of decimal places. This leads us to the idea that for each given time step 
size there may exist a weight function ω of Δt with which we can obtain a optimal η to 
reduce the error. We assume that this phenomenon is closely related to the CFL condition 
and shall give a brief survey on it in the follwing section. 

6.2 CFL condition 

We look at the CFL condition for the methods in use, see [12], which is given by: 

1 1
,

2 1 2
min

max

x
t

D η
Δ ≤

−
 

where tΔ , 
1 2

= max{ , }
max

D D D , = min{ , }
min

x x yΔ Δ  for 1
2

=
D

x
xsteps

⋅
Δ  and 2

2
=

D
y

ysteps

⋅
Δ . 

Based on the observations in tables (1)–(4) we assume that we need to take an additional 
value into account to achieve optimal results:  

2
( ) = ,

2( ) (1 2 )

min

max

x
t

t D
ω

η
Δ

Δ −
 

where ω may be thought of as a weight function of the CFL condition. In table (5) we 
calculated ω for the numerically obtained optimal pairs of η and tsteps from the tables (1) 
and (2). Then, we applied a linear regression to the values in table (5) with respect to Δt and 
found the linear function 

 ( ) = 9.298 0.2245.t tω Δ Δ +  (79) 

With this function at hand, we can determine an ω for every Δt. We can use this ω to 
calculate an optimal η with respect to Δt in order to minimise the numerical error. Hence, 
we have a tool to minimise costs without loosing much accuracy. We think that it is even 
possible to have more accurate ω-functions based on the accuracy of the optimal η with 
respect to tsteps which we had calculated before to gain ω via linear regression. We will 
follow this interesting issue in our future work. 
Finally, we present test series where we changed the number of iterations in table (7). For 
different number of time steps we choose the correlated η with the smallest error and 
exercise on them different types of iteration. We do not observe any significant difference. 
Remark 8. In the numerical experiments we can see the benefit of applying less iterative steps, 

because of the sufficient accuracy of the method. Thus i = 2,3 is sufficient. The optimal iterative steps 

are realted to the order of the time- and spatial discretisation, see [12]. This means that with time and 
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spatial discretisation orders of O(Δt 
q ) and Δx 

p the number of iterative steps are i = min p, q, while 

we assume to have optimal CFL condition. The optimisation in the spatial and time discretisation can 
be derived from the CFL condition. Here we obtain at least second order methods. The explicit 
methods are more accurate but need higher computational time, so that we have to balance between 
sufficient accuracy of the solutions and low computational time achieved by implicit methods, where 

we can minimise the error using the wight function ω. 

6.3 Wave equation with linearly time dependent diffusion coefficients 

We carried out the experiments for the following time dependent PDE: 

2 2 2

1 22 2 2
= ( ) ( ) , ( , , ) [0,2] [0,2] [0, 2]

c c c
D t D t x y t

t x y

∂ ∂ ∂
+ ∈ × ×

∂ ∂ ∂
 

                            
1

1/1000 1
( ) = 1,D t

T

−
+  

                            
2

1 1/ 1000
( ) = 1/1000.D t

T

−
+  

For the experiments we fixe the spatial step sizes Δx and Δy, the iteration depths, η and the 
inner time step size τin and change the length of the overlapped region p and the number of 
outer time steps. We proved that the smaller τout the closer the numerical (resp. semi-
analytical) solution to the assumed analytical. For all subintervals we choose one η and τin 

optimally in accordance with our analysis in section 6.2. 
We consider L1-errors over the complete time domain, see (77)–(78), while we take as 
compare functions the semi-analytical solutions. 
In table (8) we compare the L1-error for different values of p and tstepsout. We do not see any 
significant difference when altering p. This may be a reassurement of what we proved in 
lemma 2. However, we can observe a considerable decrease of the L1-error increasing the 
outer time steps. 
Thus, in our next experiment, reflected in table (9), we fixe p = 4, too, and only alter tstepsout. 
We can observe that the error diminshes significantly while raising the number of outer time 
steps. 
Remark 9. The results show benefits in balancing between time intervals and the optimal CFL 
number. While implicit methods are less expensive in computations, explicit time discretization 
schemes are accurate and more expensive. Here we have to taken into account the CFL conditions. 
Small overlapping and sufficient small iterative steps helps to have an interesting scheme. A balance 
between time intervalls and iterative steps acchieve the best results in comparison to standard 
iterative schemes. 

7. Conclusions and discussions 

We have presented a new iterative splitting methods to solve time dependent wave 
equations. Based on a overlapping scheme we could obtain more accurate results of the 
splitting scheme. Effective balancing of explicit and implicit time-discretization methods, 
with semi-analytical solutions achieve higher order schemes. Here the delicate problem of 
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time-dependent wave equations are solved with iterative and analytical methods. In future 
we will continue on nonlinear wave equations and the balancing of time and spatial 
discretization schemes. 
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8. Appendix: regression (least square approximation) for extrapolation of 
functions 

Here we have points with values and we assume to have a best approximation with respect 
to following minimisation: 
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2

=1

= ( ( )) ,
m

k n k
k

S y L x−∑  

where m ≥ n, yk are the values for the regression and Ln is a function, e.g. polynom, 

exponential function, etc. that is constructed with the least square algorithm. 

9. Tables 

 

 

Table 1. D1 = 1, D2 = 1, Δx = Δy =  , iter depth= 2. 

 

 

Table 2. D1 = 1, D2 = 1, _x = _y = , iter depth= 2. 



Iterative Operator-Splitting with Time Overlapping Algorithms:  
Theory and Application to Constant and Time-Dependent Wave Equations.  

 

89 

 

 

 

 

 

Table 3. D1 = 1, D2 = 1/1000, Δx = Δy = 
 
, iter depth= 2. 

 

 

 

 

 

 

Table 4. D1 = 1, D2 = 1/1000, Δx = Δy = , iter depth= 2. 
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Table 5. Calculating ω for different values of dt and η. D1 = D2 = 1, dx = dy = 1/8,  

ttop = sqrt(2). 

 
Table 6. Computational time of the explicit and implicit schemes. 
 

 

Table 7. Δx = Δy = . For each tsteps we take the η with the best result from table 1 and 2. 

 

Table 8. Δx = Δy = , iter depth= 2, η = 0 and tsteps= 64. 

 

Table 9. Δx = Δy = , iter depth= 2, η = 0, tsteps= 64 and p = 4. 
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