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Kalman Filtering for Manufacturing Processes 

Thomas Oakes, Lie Tang, Robert G. Landers and S. N. Balakrishnan 
Missouri University of Science and Technology 

United States of America 

1. Introduction 

Unwanted signal variation commonly occurs in manufacturing process measurements. This 
variation, due to both random electrical noise and noise in the manufacturing process itself, 
can be quantified by calculating the steady–state process data variance 

 ( )22

1

1

1

N

k

k

x x
N

σ
=

= −
− ∑   (1) 

where xk is the measurement at iteration k, x  is the measurement average, and N is the 
number of samples. Noise due to the manufacturing process itself is often greater in 
magnitude than the electrical noise. Examples of process noise include: (1) high frequency 
cyclic variations due to tool eccentricity in a turning process, (2) low frequency variations 
due to discrete solidification of deposited material in Laser Metal Deposition (LMD) 
processes, and (3) chaotic mixing of materials in Friction Stir Welding (FSW) processes. 
Manufacturing process measurements must be filtered before the data can be used for 
dynamic modeling or control. First principle modeling is generally unable to capture 
inherent nonlinear dynamics such as non–uniform friction and system wear. Therefore, 
dynamic manufacturing process models are often developed empirically. Estimation 
techniques such as Recursive Least Squares and Particle Swarm Optimization are commonly 
used for system identification to create a “best fit” model based on collected measurements. 
However, the fidelity of an empirical model greatly depends upon the measurements used 
to create it and processes with high–magnitude variations in the measurement signals are 
often difficult to model due to the low signal–to–noise ratio. Manufacturing process models 
are often used to design process controllers. Process control is the on–line adjustment of 
process parameters to enhance operation productivity and improve part quality. Variations 
in the measurement signal are generally higher in frequency than the available actuator 
bandwidth, which can lead to increased actuator wear and possible instability. A filter must 
be developed for (1) post processing of data to compensate for large signal variations prior 
to use by a model identification method and (2) on–line filtering capable of preserving signal 
phase and magnitude with minimal computational burden. 
The fourth–order Butterworth filter is used in a number of manufacturing processes. 
Bhattacharyya and Sengupta (2007) used a fourth–order Butterworth filter on a face milling 
process to remove high frequency variation due to spindle rotation harmonics. Liang et al. 
(2002) employed a Butterworth filter on the spindle power signal of an end milling process 
for use in a fuzzy logic controller. Ghosh et al. (2007) used a Butterworth filter for neural–O
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based sensor fusion to estimate tool wear. Another common filter is a point–averaging filter. 
Freitag (2004) used a 50 ms Finite Impulse Response moving average filter to smooth 
command signals sent to the process controller of a miniature ball end mill. Zhao et al. 
(2007) employed a five–point moving average filter to reduce the standard deviation of the 
axial force signal of a FSW process for the purposes of modeling and process control. 
The objective of this chapter is to present a methodology for filtering manufacturing process 
measurement signals. The rest of the chapter is organized as follows. A general filtering 
methodology is established that uses a stochastic model and a two–step Kalman filter. The 
filtering methodology is compared to other common filters via simulation studies. Post 
process filtering is performed on FSW and LMD processes to develop dynamic process 
models. Then, on–line filtering is performed for FSW and LMD processes for use in process 
controllers. 

2. Filtering methodology 

Unlike standard frequency–based filters, the Kalman filter is a time domain filter that 
recursively estimates process states using data from both a dynamic system model and 
collected measurements. Selection of a reliable dynamic process model is vital in 
maximizing the filter performance. A Markov process is a model that expresses the 
stochastic evolution of a system. This implies that knowledge of the present system states 
completely describes all relevant information necessary for the process evolution. Past and 
future states of a Markov Process are statistically independent. The excessive signal 
variation observed in many manufacturing processes leads to the realization that these 
processes can be modeled as Markov processes. A general stochastic model of a 
manufacturing process is 

 ( ) ( ) ( )twtxtx += λ$   (2) 

where x(t) is the system state, λ is the system pole, and w(t) is the process noise, which 
accounts for the system’s stochastic nature, as well as changes in the input. It is assumed the 
process noise is Gaussian with a zero mean normal distribution and variance, Q. 
Transforming equation (2) into the discrete–time domain using a zero order hold 

 ( ) ( ) ( )1 1sTx k e x k w k
λ= − + −   (3) 

where k is the time step and Ts is the sample period (s). The two–step discrete–time Kalman 
filter uses the model 

 ( ) ( ) ( ) ( )1 1 1x k Fx k Gu k w k= − + − + −   (4) 

where sTF e
λ=  and u(k–1) = 0 to fit the form of equation (3). The input term in equation (4) 

is set to zero to allow the process noise term to account for all deviations in the state due to 
model uncertainty and input changes. Equation (4) has process noise characteristics 

 ( ) ( ) ( )( )~ 0,
T

w N Q E w k w k Q=   (5) 

The measurement is 
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 ( ) ( ) ( )y k Hx k v k= +   (6) 

Equation (6) has measurement noise characteristics  

 ( ) ( ) ( )( )~ 0,
T

v N R E v k v k R=   (7) 

where R is the measurement variance. Initial values of the state estimate and covariance, 
respectively, are 

 ( ) ( )ˆ 0 0x x+ =   (8) 

 ( ) ( ) ( )( ) ( ) ( )( )ˆ ˆ0 0 0 0 0
T

P E x x x x+ + += − −   (9) 

where +x̂  is the state estimate after the filter’s measurement update (aposteriori) and +P  is 
the covariance after the filter’s measurement update. A large initial covariance matrix is 
required to ensure the estimates convergence. Equation (4) is rewritten in terms of its 
estimates 

 ( ) ( )ˆ ˆ 1
Tx k e x kλ− += −   (10) 

where −x̂  is the state estimate before the filter’s measurement update (apriori). Equation 
(10) is used to propagate the state estimate to the next time step. The covariance is 
propagated to the next time step using 

 ( ) ( )1
TP k FP k F Q− += − +   (11) 

where P- is the covariance prior to the filter’s measurement update. The Kalman gain matrix is 

 ( ) ( ) ( )T TK k P k H HP k H R− −⎡ ⎤= +⎣ ⎦   (12) 

Then the measurement is used to update, respectively, the state estimate and covariance 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆx k x k K k y k Hx k+ − −⎡ ⎤= + −⎣ ⎦   (13) 

 ( ) ( ) ( ) ( ) ( ) ( )T TP k I K k H P k I K k H K k RK k+ −= − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   (14) 

The computations in equations (10)–(14) are repeated at each time step. 

2.1 Filter tuning 
A generic first order system is used to illustrate the tuning required for the filtering 
methodology. The system’s transfer function is 

 ( )
16.0

6

1 +
=

+
=

ss

K
sG

τ
  (15) 

where K is the gain and τ is the time constant. The system is converted into the discrete–time 
domain using a zero order hold and Ts = 0.01 s  

 ( )
2

9.917 10

0.9835
G z

z

−⋅
=

−
  (16) 

www.intechopen.com



 Kalman Filter: Recent Advances and Applications 

 

490 

The unit step response is shown in Fig. 1. Random noise with variance 0.25 is added to the 
output to simulate a noisy measurement. The measurement variance, R, is calculated 
directly from the measurement data while values of λ and Q are tuned to optimize the 
filter’s performance. This can be accomplished by first setting Q = R, implying equal faith in 
the measurements and model, and tuning λ while leaving Q and R constant until the 
disparity between the filtered and measured data is minimized. 
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Fig. 1. Unit step response of system described by equation (16) 

Figure 2 illustrates the effect of tuning λ. As λ approaches zero, the observable offset 
between the measurement data and the estimated state is eliminated. For this particular 
portion of the tuning process, it can be assumed that the optimal value of λ is zero. 
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                           (c)                                                                          (d) 
Fig. 2. Outputs and estimates for system described by equation (16) with a unit step input 
and (a) λ = –1000, (b) λ = –100, (c) λ = –10, and (d) λ = 0, with Q = R = 0.25 and Ts = 0.01 s 
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Fig. 3. Outputs and estimates for system described by equation (16) with a unit step input 
and (a) Q = 0.5R, (b) Q = 0.1R, (c) Q = 0.01R, and (d) Q = 0.005R, with λ = 0 and Ts = 0.01 s 

The sampling period also has a tremendous affect on the filter performance. Applying a zero 
order hold to equation (15) with Ts = 0.1 s 

 ( )
8465.0

9288.0

−
=
z

zG   (17) 

With λ = 0, the same tuning process of Q is performed to illustrate the affect the sample rate 
has on the filter performance. The results are shown in Fig. 4. The larger sample period 
impacts the degree to which adjusting the value of Q will affect the phase. Lowering the 
value of Q significantly reduces the variance when compared to Fig. 3; however, it also 
significantly increases the phase due to less data being available to the filter during the 
transient portion of the process. 

2.2 Filter comparison 

The performances of two common filters are compared to that of the proposed filtering 
methodology. A first order low–pass filter is 

 ( )
( )

1

1

fX s

X s sτ
=

+
  (18) 
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Fig. 4. Outputs and estimates for system described by equation (17) with a unit step input 
and (a) Q = 0.5R, (b) Q = 0.25R, (c) Q = 0.1R, and (d) Q = 0.05R, with λ = 0 and Ts = 0.1 s 

where Xf(s) is the filtered signal, X(s) is the unfiltered signal, τ is the time constant and τ–1 is 
the filter break frequency (rad/s). The break frequency is selected to be 2π to provide a cut 
off frequency of 1 Hz; therefore, τ = 0.1592 s. Transforming equation (18) into the discrete–
time domain with a zero order hold and Ts = 0.01 s 

 ( )
( )

2
6.882 10

0.9391

fX z

X z z

−⋅
=

−
  (19) 

Transforming equation (18) into the discrete–time domain with a zero order hold and Ts = 
0.01 s 

 ( )
( )

0.4664

0.5336

fX z

X z z
=

−
  (20) 

A fourth–order Butterworth filter with a 1 Hz cutoff frequency and Ts = 0.01 s is 

 ( )
( )

7 4 6 3 6 2 6 7

4 3 2

8.982 10 3.594 10 5.391 10 3.594 10 8.982 10

3.836 5.521 3.534 0.8486

fX z z z z z

X z z z z z

− − − − −⋅ + ⋅ + ⋅ + ⋅ + ⋅
=

− + − +
 (21) 

A fourth order Butterworth filter with a 1 Hz cutoff frequency and Ts = 0.1 s is 
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 ( )
( )

3 4 2 3 2 2 2 3

4 3 2

4.824 10 1.937 10 2.891 10 1.937 10 4.824 10

2.366 2.314 1.055 0.1874

fX z z z z z

X z z z z z

− − − − −⋅ + ⋅ + ⋅ + ⋅ + ⋅
=

− + − +
  (22) 

Plots of filters’ performances are shown for the transient portion of the response in Fig. 5 for 
Ts = 0.01 s and in Fig 6 for Ts = 0.1 s. Values of Q = 0.01 and Q = 0.25 are selected for the 
Kalman filter with Ts = 0.01 and 0.1 s, respectively. Figures 5 and 6 show that the filtering 
methodology outperforms the low–pass and Butterworth filters. All three filters 
underpredict the measurement for both sample periods. The maximum error of the 
Butterworth filter is approximately 44% for both sample periods while the low–pass and 
Kalman filters contain comparable maximum errors at approximately 13%. Less error is 
present in the Kalman filter estimates in both plots through the majority of the transient 
portion of the response. 
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Fig. 5. (a) Output and (b) error for low–pass, Butterworth, and Kalman filters, Ts = 0.01 s 
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Fig. 6. (a) Output and (b) error for low–pass, Butterworth, and Kalman filters, Ts = 0.1 s 

2.3 Modeling 

The Recursive Least Squares technique (Åström & Wittenmark, 1995) is used to develop 
system models from the filtered and raw signals. The model responses for a step input are 
shown in Figs. 7 and 8 for Ts = 0.01 and 0.1 s, respectively. The model coefficients and 
percent error are shown in Tables 1 and 2 for Ts = 0.01 and 0.1 s, respectively. The model 
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constructed from the data processed with the Kalman filter is the most accurate in terms of 
coefficient estimates, transient response, and steady–state error. The model constructed from 
the data processed with the Butterworth filter has significant errors due to the phase shift 
created by the Butterworth filter. The model constructed from the raw data contains the 
most error since the noise distorts the system dynamics. 
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Fig. 7. Model (a) output and (b) error using raw data, low–pass, Butterworth, and Kalman  
filters, Ts = 0.01 s 
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Fig. 8. Model (a) output and (b) error using raw data, low–pass, Butterworth, and Kalman  
filters, Ts = 0.1 s 

 
Table 1. Coefficient estimates for models with Ts = 0.01 s, a = –0.983, and b = 9.917·10–2 

 
Table 2. Coefficient estimates for models with Ts = 0.01 s, a = –0.846, and b = 0.922 
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The filtering methodology can be used to filter data prior to empirical modeling to acquire a 
more reliable model. Since this filter relies on model–based estimation, it has always been 
necessary to have a precise model of the system dynamics to ensure proper filter 
performance. However, the stochastic process model provides a way to use a Kalman filter 
for state estimation with limited knowledge of the system behavior. 

3. Friction Stir Welding example 

Friction Stir Welding is a new welding technique capable of joining traditionally hard to join 
materials such as 2000 and 7000 series aluminum alloys (Mishra & Ma, 2005). The process 
utilizes a rotating, non–consumable tool containing a shoulder and profiled pin to induce 
gross plastic deformation along a weld path. In a FSW process, the tool is plunged into the 
material at a specified spindle speed, ω, until the shoulder contacts the material and is then 
left to dwell for a specified period of time to soften the surrounding area. The tool then 
advances along its weld path at a  traverse speed, v, joining the material as it leaves the 
processing zone. Schematics of the FSW process are shown in Fig. 9. 
 

   

Fig. 9. FSW Process Schematics 

Constant process parameter runs in FSW processes can lead to internal defects known as 
wormholes and surface voids due to improper fixturing of the parts and machine geometric 
errors. Therefore, the process is typically run in a force control mode in which the  traverse 
speed and spindle speed are held constant while the plunge depth is adjusted on–line to 
maintain a desired axial force profile. Before a controller can be designed, the system is 
modeled empirically through a series of step tests. An example of a step test is shown in Fig. 
10. It can be seen that small changes in plunge depth create large changes in axial force. If no 
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Fig. 10. FSW step test (a) axial force and (b) plunge depth, v = 2.6 mm/s and ω = 1600 rpm 
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post signal processing is used, the combined process and sensor noise is so large in 
magnitude that it is difficult to detect changes in the axial force due to changes in the plunge 
depth. This is particularly apparent between the fourth and fifth step changes. From the 
experimental data, R = 1.63·10–2 kN2. The filtering methodology is applied using λ = 0 and Q 
= 0.05R to the measurement data in Fig. 10. It is seen that the variance is greatly reduced 
(i.e., nearly a factor of fifteen) without compromising the phase and magnitude fidelity. 

3.a FSW process modeling 

Twelve experiments are conducted based on a central composite Design of Experiments 
(DOE) over the operating range of all three process parameters. The filtering methodology is 
applied with λ = 0 and Q = 0.05R to all twelve runs. Table 3 shows the process parameters, 
heat index, and variance reduction ratio for each run. The variance reduction ratio is the 
unfiltered signal variance divided by the filtered signal variance. The results demonstrate 
the filtering methodology can reduce signal variance by a factor of 3 to nearly a factor of 
seventeen for FSW processes. 
The results from runs 11 and 12 were deemed to be unacceptable and, therefore, were not 
used to create the dynamic model. This can be explained by the heat index, which is 

 
2

4
10

HI
v

ω
=   (23) 

Note the  traverse speed is given in inches per minute when calculating the heat index. Runs 
11 and 12 had particularly low heat indices, although they were not the lowest. A low heat 
index can lead to a “cold run” that sometimes produces poor welds. 
 

 
Table 3. Process parameters and variance reduction ratio for FSW runs used for process 
modeling 

An empirical second order model of the process and equipment dynamics is 

 ( )
( )

1 2

2

1 2

dn
F z b z b

v z
U z z a z a

α βω −+
=

+ +
  (24) 

where F(z) is the axial force, U(z) is the control signal, nd is the number of delay periods, and 
b1, b2, a1, a2, ǂ, and ǃ are model coefficients. The model structure is based upon visual 
inspection of the runs in Table 3. The control signal and plunge depth are related by 
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 ( ) ( )u k d kγ=   (25) 

where Ǆ is a model coefficient. The model coefficients ǂ, ǃ, and Ǆ are found by using the 
steady–state model 

 γβαω dCvFss =   (26) 

where Fss is the average steady–state axial force and C is the steady–state gain. Taking the 
natural log of both sides of equation (19) 

 ( ) ( ) ( ) ( ) ( )dvCFss lnlnlnlnln γωβα +++=   (27)  

and applying Least Squares to the data in runs 1–10, C = 6.18·10–2, ǂ = 0.185, ǃ = –0.374, and 
Ǆ = 2.65. Transforming equation (24) into the discrete–time domain 

 ( ) ( ) ( ) ( ) ( )1 2 1 2
1 2 1 2

d dF k a F k a F k v b u k n b u k nα βω= − − − − + − − + − −⎡ ⎤⎣ ⎦   (28) 

where nd is determined to be 5 iterations by visually inspecting the step tests. Recursive 
Least Squares is used to determine the model coefficients b1, b2, a1, and a2. A complete 
covariance reset is employed if any of the diagonals of the covariance matrix become less 
than ten percent of their initial value. After the algorithm is executed for runs 1–10, the 
model coefficient sets are averaged and the transfer function is 

 ( )
( )

2

0.185 0.374 5

2 2

1.22 10

0.848 4.77 10

F z z
v z

U z z z
ω

−
− −

−

⋅
=

− + ⋅
  (29) 

The empirical model is now constructed in the same manner as above using the unfiltered 
data. In this case the transfer function is 

 ( )
( )

2 3

0.189 0.372 5

2 2 2

6.04 10 6.2 10

7.34 10 3.48 10

F z z
v z

U z z z
ω

− −
− −

− −

⋅ − ⋅
=

− ⋅ − ⋅
  (30) 

The response of each model is now compared to the measured data. An example is shown in 
Fig. 11. Both dynamic models predict steady–state values within five percent of each other.  
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                           (a)                                                                          (b) 
Fig. 11. Measured response compared to (a) response of model developed using filtered data 
and (b) response of model developed using unfiltered data, with v = 3.02 mm/s, ω = 1810 
rpm, and plunge depth profile in Fig. 10b. 
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The model in equation (29) contains two overdamped poles with time constants of 3.57·10–2 
and 0.418 s. The model in equation (30) contains two overdamped poles with time constants 
of 6.74·10–2 and 5.33·10–2 s. Based on the work of Zhao et al. (2007), the system is dominated 
by a time constant of 0.519 s. This implies the model acquired through the use of the 
unfiltered data is not reliable and should not be used for controller design. 

3.b FSW process control 

A general tracking controller with constant disturbance rejection is designed to control the 
axial force. The block diagram is shown in Fig. 12. The transfer function is 

 ( ) ( )
( )za
zb

zG =   (31) 

The disturbance generating polynomial is 

 ( ) 1−= zzv   (32) 

The controller polynomial is 

 ( )
32

2

1
gzgzgzg ++=   (33) 

where g1, g2, and g3 are chosen to shape the closed–loop system error dynamics. The 
closed–loop error dynamics are third order with one overdamped pole and two 
underdamped poles. The time constant of the overdamped pole is τ1 = 0.03 s and the two 
underdamped poles are characterized by a natural frequency of 10 rad/s and a damping 
ratio of 0.5. Equating the actual and desired closed–loop characteristic polynomials 

 ( ) ( ) ( ) 3 2 2
0.8216 0.3959 1.311 10v z a z g z z z z −− = − + − ⋅   (34) 

Equating like coefficients in z in equation (34), g1 = –1.026, g2 = 0.4994, and g3 = –0.3460. The 
control signal is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2

1

1 1 2 1 3 1

1

2 1 2

1

1
1 1 1 2

1
1 2

1
1 2

r r r ru k F k a F k a a F k a F k
b

g E k g E k g E k
b

b b u k b u k
b

= + + − + − − − −⎡ ⎤⎣ ⎦

− − − − −⎡ ⎤⎣ ⎦

+ − − + −⎡ ⎤⎣ ⎦

  (35) 

The controller is implemented on the FSW platform with saturation limits on the plunge 
depth set between 4.17 mm and 4.8 mm to ensure the shoulder does not lose contact with 
the material surface.  The imposed rate limitation on change in plunge depth is 0.5 mm/s to 
prevent tool breakage. 
Four control experiments are now presented. In the first experiment the axial force 
controller uses the unfiltered measurement to track Fr(t) = 2.7 kN. The  traverse speed and 
spindle speed are 2.18 mm/s and 1810 rpm, respectively. The results are plotted in Fig. 13. 
The controller maintains a constant force with an average 2.74 kN and standard deviation of 
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0.372 kN; however, the average absolute error during the steady–state response is 0.341 kN 
and large axial force oscillations occur due to the large amounts of variation present in the 
raw measurement signal. The plunge depth signal has large oscillations and often saturates 
at its lower limit. 
 

Kalman

Filter

( )
( )zb
za

( )
( ) ( )zbzv
zg

( ) dn
zzG
−

( )[ ]dnzzG −−1

+
+

- -

+ -
Σ Σ Σ

( )zFr

( )zE

( )zE1

( )zu ( )zFa

 
Fig. 12. Axial force closed–loop system block diagram 
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Fig. 13. Axial force controller results using unfiltered measurement and Fr(t) = 2.7 kN, (a) 
axial force and (b) plunge depth 

In the second experiment the axial force controller uses the filtered measurement to track 
Fr(t) = 2.7 kN. The  traverse speed and spindle speed are 2.18 mm/s and 1810 rpm, 
respectively. The results are shown in Fig. 14. In this case the average axial force is 2.705 kN, 
the standard deviation is 0.141 kN, and the absolute average error is 0.106 kN during the 
steady–state response. The filter effectively reduces the magnitude of the oscillations in both 
the axial force and plunge depth signals. Implementation of the filtering methodology 
allows for a wider range of reference tracking as the controller no longer saturates. 
Next, the axial force controller is used to track the time varying reference 

 ( ) ( )2.7 0.1sin 0.8rF t tπ= +   (36) 

In the third experiment the axial force controller uses the unfiltered measurement to track 
the reference signal in equation (36). The  traverse speed and spindle speed are 2.18 mm/s 
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and 1810 rpm, respectively. The results are shown in Fig. 15. As in Fig. 13, the controller is 
able to adequately track the desired reference, but with considerable oscillations and plunge 
depth saturation at both its upper and lower limits. For this experiment the average absolute 
error is 0.413 kN during the steady–state response. 
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                           (a)                                                                          (b) 
Fig. 14. Axial force controller results using filtered measurement and Fr(t) = 2.7 kN, (a) axial 
force and (b) plunge depth 
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Fig. 15. Axial force controller results using unfiltered measurement and reference force in 
equation (36), (a) axial force and (b) plunge depth 

0 10 20 30
2

2.5

3

3.5

time (s)

a
x
ia

l 
fo

rc
e
 (

k
N

)

 

 

measured

filtered

reference

 
0 10 20 30

4.1

4.2

4.3

4.4

4.5

4.6

4.7

time (s)

d
e
p

th
 (

m
m

)

 
                          (a)                                                                           (b) 
Fig. 16. Axial force controller results using filtered measurement and reference force in 
equation (36), (a) axial force and (b) plunge depth 
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In the fourth experiment the axial force controller uses the filtered measurement to track the 
reference signal in equation (36). The  traverse speed and spindle speed are 2.18 mm/s and 
1810 rpm, respectively. The results are shown in Fig. 16. Similar to Fig. 14, the filter effectively 
reduces the magnitude of the axial force oscillations and allows for a wider range of reference 
signals to be utilized since the plunge depth is not saturating during the steady–state response. 
For this experiment the average absolute error is 0.124 kN during the steady–state response. 

4. Laser metal deposition example 

Laser Metal Deposition is an important Solid Freeform Fabrication technique that allows 
direct fabrication of functional metal parts directly from CAD solid models (Liou et al., 
2007). The process can also be used for part repair, thereby extending product service life. 
Generally an LMD system consists of a multiple–axis motion system, a laser, and a powder 
feeder (see Fig. 17). During the process, a powder stream is injected into a laser generated 
melt pool on the substrate. With the axis moving, the melt pool quickly solidifies and forms 
a clad; thus, the injected powder is metallurgically bonded with the substrate. Depending on 
the trajectory of the motion system, parts with complex geometries can be fabricated in a 
layer–by–layer manner. Melt pool temperature control is an important control problem in 
LMD because it affects the part microstructure, which is highly related to the material 
properties. The measurement signal has tremendous variations that may deteriorate the 
controller performance. The application of the filtering methodology to the temperature 
measurement signal will significantly reduce measurement signal variation, resulting in 
improved controller performance. 
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Fig. 17. LMD system schematic 

To illustrate the affect the filtering methodology has on the measured temperature signal, an 
open–loop test is conducted. In this experiment the powder flow rate is 4 g/min and the 
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traverse speed is 4 ipm. The powder material is H13 tool steel with particles having a mean 
diameter of 100 µm. The filtered and measured temperature signals are shown in Fig. 18. 
The filtering methodology reduces the standard deviation from 39.2 °C in the raw signal to 
30.2 °C in the filtered signal.  
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              (a)                                                 (b)                                                 (c) 

Fig. 18. Open–loop LMD test with Ts = 0.01 s, λ = 0, R = 2500, and Q = 25, (a) temperature 
versus time, (b) zoomed–in view of temperature versus time, and (c) laser power versus 
time 

4.a LMD process modeling 

The melt pool temperature is modeled using the following transfer function 

 ( ) ( ) ( ) ( )
1

K
T s V s Q s M s

s

α β γ

τ
=

+
  (37) 

where T is the melt pool temperature (°C), V is the traverse speed (ipm), Q is the laser power 
(W), M is the powder flow rate (g/min), K is the system gain, and τ is the time constant (s). 
Transforming equation (37) into the discrete–time domain using a zero order hold 

 ( ) ( ) ( ) ( )0

0

b
T z V z Q z M z

z a

α β γ=
+

  (38) 

where /

0
sTa e
τ−= −  and ( )/

0
1 sTb K e

τ−= − . To determine the model coefficients K, ǂ, ǃ, and Ǆ, 

the steady–state portion of equation (38) is considered 

 
ssT Kv q mα β γ=   (39) 

where Tss is the average steady–state temperature. A series of experiments, covering the 
process operating range, are designed using DOE. The results are listed in Table 4. The 
parameters are estimated using the Least Squares method based on the data listed in Table 4 
and are found to be K = 1170, ǂ = –8.18·10–3, ǃ = 7.16·10–2, and Ǆ = 3.42·10–3. The filtering 
methodology is applied to the data in Table 4 and it is seen the signal variance has been 
reduced by 16 to nearly 60%. 
To determine the time constant, an experiment is conducted where the laser power is 
increased and decreased in a step–wise manner. For this experiment, m = 4 g/min and v = 4 
ipm. The measured temperature data is processed using the filtering methodology with λ = 
0, R = 2500, and Q = 25. Recursive Least Squares is then applied to estimate the time 
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constant. The value of the time constant is determined to be τ = 7.27·10–2 s. The model 
response is compared to the filtered measurement data in Fig. 18. 
 

 
Table 4. Experimental results for model coefficient identification of LMD process 

4.b LMD process control 

Letting U(z) = Vǂ(z)Qǃ(z)MǄ(z), equation (38) becomes 

 ( ) ( )0

0

b
T z U z

z a
=

+
  (40) 

A general tracking controller using the Internal Model Principle is designed to regulate the 
melt pool temperature. The block diagram is shown in Fig. 19. 
 

 
Fig. 19. Melt pool temperature closed–loop control system block diagram 

With the disturbance generating polynomial given in equation (32) and a closed–loop 
characteristic polynomial v(z)a(z)–g(z) with two poles located at 1/sTe

τ−−  and 2/sTe
τ−− , where 

τ1 = 0.1 s and τ2 = 0.11 s, the controller polynomial is 

 ( ) ( ) ( )1 2 1 2/ / / / / /

1 0
1s s s s s sT T T T T T

g z g z g e e e z e e
τ τ τ τ τ τ− − − − − −= + = + − − + −   (41) 

The control signal is 

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
/ /
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1 1 1 1
1

1

s s

s

T T

r r r
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u k u k

K e

τ τ
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− −
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−
  (42) 
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and the commanded laser power is 

 ( ) ( )
( ) ( )

1/

r

u k
q k

v k m k

β

α

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠

  (43) 

Four control experiments are now presented. In the first experiment the temperature 
controller uses the unfiltered measurement to track Tr(t) = 1900 °C. The mass flow rate and  
traverse speed are 6 g/min and 6 ipm, respectively. The results are shown in Fig. 20. For this 
experiment, the average melt pool temperature is 1904 °C, the average absolute error is 61.8 
°C, and error standard deviation is 76.8 °C. The results show that significant variation exists 
in both the temperature and the laser power signals. 
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             (a)                                                  (b)                                                  (c) 

Fig. 20. Temperature controller results using unfiltered measurement and Tr(t) = 1900 °C, (a) 
temperature, (b) zoomed–in view of temperature, and (c) laser power 

In the second experiment the temperature controller uses the filtered measurement to track 
Tr(t) = 1900 °C. The mass flow rate and  traverse speed are 6 g/min and 6 ipm, respectively. 
The results are shown in Fig. 21. For this experiment, the average melt pool temperature is 
1901 °C, the average absolute error is 42.3 °C, and error standard deviation is 57.9 °C. The 
results show that the average absolute error is reduced by 31.6% and the error standard 
deviation is reduced by 24.6%. 
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Fig. 21. Temperature controller results using filtered measurement and Tr(t) = 1900 °C, (a) 
temperature, (b) zoomed–in view of temperature, and (c) laser power 

The performances of the controllers are now compared when tracking a time varying 
reference. The temperature reference for these experiments is 

 ( ) ( )1850 50sinrT t t= +   (44) 
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In the third experiment the temperature controller uses the unfiltered measurement to track 
the temperature reference given in equation (44). The mass flow rate and  traverse speed are 
6 g/min and 6 ipm, respectively. The results are shown in Fig. 22. The average absolute 
error is 52.9 °C and error standard deviation is 71.0 °C. The results show that significant 
variation exists in both the temperature and the laser power signals due to the fact that the 
controller operates on the unfiltered signal. 
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              (a)                                                 (b)                                                  (c) 

Fig. 22. Temperature controller results using unfiltered measurement and reference 
temperature given in equation (44), (a) temperature, (b) zoomed–in view of temperature, 
and (c) laser power 

In the fourth experiment the temperature controller uses the filtered measurement to track 
the temperature reference given in equation (44). The mass flow rate and  traverse speed are 
6 g/min and 6 ipm, respectively. The results are shown in Fig. 23. The average absolute 
error is 40.8 °C and error standard deviation is 55.7 °C. Compared with the results in Fig. 22, 
the average absolute error is reduced by 22.9% and error standard deviation is reduced by 
21.6%. Also, the oscillations in the temperature and laser power signals have been greatly 
reduced. 
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Fig. 23. Temperature controller results using filtered measurement and reference 
temperature given in equation (44), (a) temperature, (b) zoomed–in view of temperature, 
and (c) laser power 

5. Summary and conclusions 

This chapter presented a methodology, based on stochastic process modeling and Kalman 
filtering, to filter manufacturing process measurements, which are known to be inherently 
noisy. Via simulation studies, the methodology was compared to low pass and Butterworth 
filters. The methodology was applied in a Friction Stir Welding (FSW) process to filter data 
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used to construct a dynamic axial force process model and by an on–line axial force 
controller. Also, the methodology was applied to a Laser Metal Deposition (LMD) process to 
filter data used to construct a dynamic melt pool temperature process model and by an on–
line melt pool temperature controller. 
The simulation studies demonstrated that the filter methodology was able to reduce signal 
variation and maintain signal phase and magnitude fidelity better than the low–pass and 
Butterworth filters. Also, the dynamic response generated from the model constructed from 
data processed with the filtering methodology was closer to the true response than those 
generated from models constructed from data processed with the low–pass and Butterworth 
filters. The experimental results demonstrated that models for the FSW and LMD process 
constructed from data processed by the filtering methodology provided more accurate 
responses than models constructed from the raw data. Also, when the filtering methodology 
was used to process the measurements in the FSW and LMD controllers, better closed–loop 
response was realized as compared to the closed–loop response when implementing the 
controllers using unprocessed measurements. 

6. References 

Åström, K.J. and Wittenmark, B., 1995, Adaptive Control, Addison–Wesley, New York. 
Bhattacharyya, P. and Sengupta, D., 2007, “Estimation of Tool Wear Based on Adaptive 

Sensor Fusion of Force and Power in Face Milling,” International Journal of 
Production Research, Vol. 43, pp. 1–17. 

Freitag, K.P., 2004, “Two–Axis Force Feedback Deflection Compensation of Miniature Ball 
End Mills,” Mechanical Engineering Department, North Carolina State University. 

Ghosh, N., Ravi, Y.B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A.R., and 
Chattopadhyay, A.B., 2007, “Estimation of Tool Wear during CNC Milling Using 
Neural Network Based Sensor Fusion,” Mechanical Systems and Signal Processing, 
Vol. 21, pp. 466–479. 

Liang, M., Yeap, T., Rahmati, S., and Han, Z., 2002, “Fuzzy Control of Spindle Power in End 
Milling Processes,” International Journal of Machine Tools and Manufacture, Vol. 42, 
pp. 1487–1496. 

Liou, F.W., Slattery, K., Kinsella, M., Newkirk, J., Chou, J–N., and Landers, R.G., 2007, 
“Applications of a Hybrid Manufacturing Process for Fabrication of Metallic 
Structures,” Journal of Rapid Prototyping, Vol. 13, No. 4, pp. 236–244. 

Mishra, R.S. and Ma, Z.Y., 2005, “Friction Stir Welding and Processing,” Materials Science and 
Engineering: R, Vol. 50, No. 1–2, pp. 1–78. 

www.intechopen.com



Kalman Filter Recent Advances and Applications

Edited by Victor M. Moreno and Alberto Pigazo

ISBN 978-953-307-000-1

Hard cover, 584 pages

Publisher InTech

Published online 01, April, 2009

Published in print edition April, 2009

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The aim of this book is to provide an overview of recent developments in Kalman filter theory and their

applications in engineering and scientific fields. The book is divided into 24 chapters and organized in five

blocks corresponding to recent advances in Kalman filtering theory, applications in medical and biological

sciences, tracking and positioning systems, electrical engineering and, finally, industrial processes and

communication networks.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Thomas Oakes, Lie Tang, Robert G. Landers and S. N. Balakrishnan (2009). Kalman Filtering for

Manufacturing Processes, Kalman Filter Recent Advances and Applications, Victor M. Moreno and Alberto

Pigazo (Ed.), ISBN: 978-953-307-000-1, InTech, Available from:

http://www.intechopen.com/books/kalman_filter_recent_adavnces_and_applications/kalman_filtering_for_man

ufacturing_processes



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


