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1. Introduction 

For decades, developments have been taking place, separately, in the areas of power 
systems, digital signal processing and automatic control. Despite of some isolated cases, 
where the “trajectories” touched, there never was a time when these areas more benefited 
from each other than in the last few years. Traditionally, power systems problems and 
applications have been solved by means of purely analog circuits, while an enormous 
number of digital signal processing and control algorithms have been developed by people 
working in the communications and control areas. The ever increasing improvement of the 
semiconductor industry on one hand, and the rising of power electronics applications on the 
other, have changed this scenario forever, paving the way to the very fruitful area of digital 
control and signal processing applied on power systems and power electronics. This new 
area has been applying successfully all the knowledge gathered to improve processes, like 
power quality monitoring, power system’s protection, power conditioning and 
synchronization of distributed generators (among others), and the most used digital 
techniques have been digital filtering, discrete Fourier transform, phased-locked loop 
tracking methods and more recently, the Kalman filtering (Kalman, 1960). 
The Kalman filter (KF) was originally proposed to solve a control theoretic problem: 

considering a linear time-invariant (LTI) system, including state disturbances and 

measurement errors, how to obtain the best process’ LTI state-estimator (in a stochastic 

sense, that is, minimizing the covariance of the estimation error), in order to be used in a 

state feedback control law? In conjunction with optimal linear quadratic regulator, the KF 

found its first application in the well known LQG control (Linear Quadratic Gaussian). 

After, it became very popular in other areas, according to (Papoulis, 1991), when people 

became aware of its desirable properties as an estimator. Then several different applications 

progressively emerged in economics, image processing and biomedical instrumentation, to 

name a few. More recently, the KF found applications as part of more complex systems, as 

in an adaptive control system – see for example (Sastry & Bodson, 1989), where it is shown 

that the RLS (recursive least mean square) algorithm is a particular case of the KF – and 

attempts to find a nonlinear KF have been taking place, as in (Wong & Yau, 1999) and 

(Colón & Pait, 2004).  O
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Source: Kalman Filter: Recent Advances and Applications, Book edited by: Victor M. Moreno and Alberto Pigazo,  
 ISBN 978-953-307-000-1, pp. 584, April 2009, I-Tech, Vienna, Austria
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This chapter presents a concise survey of applications of KF to power systems and power 
electronics, giving emphasis on the topic of signal’s fundamental component identification, 
which has a key role in most of them. The text is divided as follows: In section two, a review 
of the fundamental aspects of the KF, as well as a qualitatively explanation of its properties, 
are given. In section three, a brief description of different applications of the KF is presented. 
In section four, it is demonstrated how to achieve the fundamental component of measured 
voltages and/or current signals (their magnitude, frequency and phase angle), 
independently of input signal distortions or frequency and amplitude deviations. 
Simulation and experimental results concerning the fundamental component identification 
are presented in section five. Finally, section six summarizes the main discussions and 
results presented in this chapter. 

2. Theoretical foundations 

In order to design systems that use the KF, it is important to distinguish between three 
different concepts: 1) the real process; 2) the state-space mathematical model and 3) the KF 
itself. The real process can be interpreted as a “black box”, producing signals by mean of 
sensors, which could be disposed in m-dimensional vectors and it could be a power plant or 
an airplane to be controlled or a signal to be decomposed in harmonics. The state-space 
mathematical model, on the other hand, is a way to predict the future behaviour of the real 
process, and consists of a set o first-order (differential or difference) equations, one for each 
state variable describing its dynamics. This model does not exist physically. Finally, the KF 
is a system whose objective is to produce on-line estimates for the state-variables, based on 
on-line measurements of the real process (the outputs). The KF is a system to be 
implemented digitally. 
It is important to note that: 1) the state variables do not necessarily represent a physical 
quantity and as far as signal processing is concerned, not even one of them does; 2) The KF 
and the state-space model must be linear time-variant systems, but the KF is a deterministic 
system, in the sense that all of their inputs are deterministic signals. The state-space model, 
on the other hand, must have some stochastic inputs to account for the randomness of the 
real process. In the following, a detailed description of both systems is given. It is supposed 
also that the process is of discrete-time nature, so only the theory for discrete-time system is 
considered.  

2.1 Stochastic state-space mathematical models 

The state-space mathematical model must be, as said above, a linear (possibly time-variant) 
system of the form:  

 犯姉岫倦 髪 な岻 噺 冊岫倦岻姉岫倦岻 髪 刷岫倦岻四岫倦岻 髪 殺岫倦岻始岫倦岻姿岫倦岻 噺 察岫倦岻姉岫倦岻 髪 札岫倦岻子岫倦岻  (1) 

where 姉岫倦岻 is the n-vector state (containing the n-state variables), 姿岫倦岻 is the output m-
vector, 四岫倦岻 is a deterministic input p-vector signal (control sequence) and 始岫倦岻 and 子岫倦岻 
are stochastic processes (process noise and measurement noise, respectively), representing, 
respectively, the uncertainty in the model and in the measurements. The matrices 冊岫倦岻, 刷岫倦岻, 察岫倦岻, 殺岫倦岻 and 札岫倦岻 are generally time-invariant and represent the dynamic of 
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the process modelled and the noise. The initial state 姉岫ど岻 噺 姉宋 is a random n-vector 
uncorrelated to the others 始岫倦岻 and  子岫倦岻.  
Additional restrictions must be done in the stochastic processes 始岫倦岻 and 子岫倦岻 in order to 
derive a KF, that is, they must be Wide Sense Stationary (WSS) white noise. The 
mathematical formalism behind stochastic systems, putting altogether, can be a little 
clumsy. On the other hand, if one works with WSS processes as inputs, and models with 
matrices varying in a known way, it is easier to cope with. As could be expected, one can 
only determine statistical parameters of the states/outputs given the statistics of the inputs. 
In the WSS case, on the other hand, if one knows the input’s expected value and auto-
covariance functions, one can determine the same functions for the states and outputs.  
It is a basic result that a sufficiently rich class of spectral power density function can be 
obtained as the output of a LTI model excited by white noise process. The class of linear 
time-varying models excited by WSS stochastic process is sufficiently vast to the purposes of 
this work, as it exhibits sufficient complex correlations between different instants.  

2.2 Kalman filter 

The KF to a state-space model must be a deterministic linear (possibly time-variant) system, 
as it must be implemented in, for example, a computer, and its inputs must be deterministic 
signals. The equations for the KF are: 

 犯姉赴岫倦 髪 な|倦岻 噺 冊岫倦岻姉赴岫倦|倦 伐 な岻 髪 刷岫倦岻四岫倦岻 髪 皐岫倦岻岷姿岫倦岻 伐 察岫倦岻姉赴岫倦|倦 伐 な岻峅姿赴岫倦岻 噺 察岫倦岻姉赴岫倦|倦 伐 な岻    (2) 

where 姉赴岫倦|倦 伐 な岻 represents the current state-estimate based in the information collected up 
to instant 倦 伐 な, 姿赴岫倦岻 is the current estimate of the real process output, 姿岫倦岻 is the current 
real process output and 皐岫倦岻, known as the Kalman open-loop gain, is given by the formula 
(Davis & Vinter, 1985): 

 皐岫倦岻 噺 岷冊岫倦岻皿岫倦岻察脹岫倦岻 髪 殺岫倦岻札脹岫倦岻峅岷察岫倦岻皿岫倦岻察脹岫倦岻 髪 札岫倦岻札脹岫倦岻峅貸怠  (3) 

The matrix 皿岫倦岻 is the estimates’ error covariance, given by 皿岫倦岻 噺 継岷岫姉岫倦岻 伐 姉赴岫倦 髪な|倦岻岻岫姉岫倦岻 伐 姉赴岫倦 髪 な|倦岻岻脹峅 , which can be calculated by the Riccati difference equation: 
 皿岫倦 髪 な岻 噺 冊岫倦岻皿岫倦岻冊脹岫倦岻 髪 殺岫倦岻殺脹岫倦岻伐 岷冊岫倦岻皿岫倦岻察脹岫倦岻 髪 殺岫倦岻札脹岫倦岻峅岷察岫倦岻皿岫倦岻察脹岫倦岻髪 札岫倦岻札脹岫倦岻峅貸怠岷冊岫倦岻皿岫倦岻察脹岫倦岻髪 殺岫倦岻札脹岫倦岻峅脹                                                                                                                岫ね岻 
 

where 皿岫ど岻 噺 皿待 is the initial covariance (given by the user). 
It can be shown (Davis & Vinter, 1985) and (Yeh, 1990) that a KF is the best estimator for the 
states of (1) in the sense of minimum covariance of the estimations and least square 
estimation.  
Some observations are now in order: 
I. 殺岫倦岻殺脹岫倦岻 is the covariance matrix of the process noise and 札岫倦岻札脹岫倦岻 is the 

covariance matrix of the measurement noise inside the system (not white anymore). 
Those parameters strongly influence the KF performance in the following way: 1) If the 
model is known to have more process than measurement noise (that is, 札岫倦岻札脹岫倦岻 is 
smaller than 殺岫倦岻殺脹岫倦岻, what makes sense given that both are positive-definite), the 
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KF should put more confidence in 姿岫倦岻, what means to have greater 皐岫倦岻. As a 
consequence, the dynamic response become faster (the bandwidth becomes larger and 
the filter closed-loop gain tends to one); 2) In the opposite situation, on the other hand, 
the model output (KF input) is heavily influenced by the measurement noise, and a 
better result would be achieved giving less weight to 姿岫倦岻, that is, smaller values in the 
entries of 皐岫倦岻. In consequence, the bandwidth would be narrower and the closed-loop 
gain less than one. In fact, according to (Yeh, 1990), the Kalman gain can be interpreted 
as being proportional to the ratio of the norms of 札岫倦岻札脹岫倦岻 over 殺岫倦岻殺脹岫倦岻. Therefore, 
the KF design depends on a compromise between desired accuracy and dynamic 
response, what can be achieved by a proper choice of matrices 殺岫倦岻 and 札岫倦岻, taking 
into account input waveform distortions and desired characteristics of final 
applications. 

II.  The system in (2) and (3) is to be implemented in a digital processor, and calculates the 
state-estimates recursively and on-line, as it depends on the current output of the 
process. The equation (4), however, could be solved off-line, that is, before the KF starts 
to “filter”, if the values of the model’s matrices are known in advance. This 
implementation significantly reduces the memory and CPU time needed in digital 
systems, what is essential in practical applications. 

III. Independently of its final use, which can be either on open or closed-loop applications, 
the KF is itself a closed-loop system, in the sense that the estimation 姿赴岫倦岻 generated is 
constantly compared to the real signal 姿岫倦岻 and the discrepancy is used in calculating 
the future estimates. Also, the optimality guarantees robustness and stability. 

IV. Substituting (3) in (4), it is easy to see that the equation (4) could be restated in the form 皿岫倦 髪 な岻 噺 冊岫倦岻皿岫倦岻冊脹岫倦岻 髪 察岫倦岻察脹岫倦岻 

                                       伐皐岫倦岻岷冊岫倦岻皿岫倦岻察脹岫倦岻 髪 殺岫倦岻札脹岫倦岻峅脹   (5) 

V. The optimality of the KF is guaranteed under the hypothesis of (uncorrelated) Gaussian 
white noise  始岫倦岻 and 子岫倦岻. Of course, some modifications in the covariance matrices 
can change the spectral power density in order to produce the kind of correlation 
necessary to turn the KF optimal in these cases.  

VI. In case of all the matrices being time-invariant (that is, LTI model), it is expected that, 
after the transient, the estimation process would result in more accurate results than in 
the beginning, as the process reaches a stationary condition. In fact, equation (4) is 
deterministic and tends to stabilize in a final value. 

3. KF on power electronics and power systems – state of the art 

A concise description of different applications of the KF in power electronics and power 
systems areas is summarized in next sections. Even if some of them have been proposed 
more than 20 years ago, especially those based on off-line processing, the applications are 
quite limited if compared with other digital techniques applied in such areas. Probably, it 
happened because of the computational complexity of the KF for on-line applications that 
could not have the equation (4) solved off-line (for example, when the model’s matrices 
change in not a priori known pattern). 
Nevertheless, considering the ever increasing capacity of digital processor’s technology, this 
line has been broken down and new KF applications have emerged, including on-line 
approaches. Most of them are based on the identification of the fundamental 60Hz 
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components 岫捲怠岻 of phase voltages and/or currents (amplitude, phase and frequency) or 
even based on the fundamental positive sequence components (捲怠袋). 

3.1 Load forecasting and modal estimation 

One of the first applications of the KF in the power system area had been to forecast the total 
load demanded by a multi-node system (Abu-El-Magd et al., 1981; Park et al., 1991). 
Temporal load data, collected by the various agents in the power system administration, are 
used in order to predict load conditions, and the KF is frequently a fundamental part of the 
algorithm. Normally, the collected data are hourly based, and the prediction algorithm must 
yield short-term results, that would be useful in scheduling the actual system in order to 
supply the daily demand, and medium and long-term results, what would be useful in, for 
example, expansion planning and annual maintenance scheduling. Load forecasting has 
been gaining more importance as long as the electricity market becomes deregulated and the 
power sources become more and more distributed in the interconnected grid (Song et al., 
2006). 
In this kind of application, there is not much difference from the forecasting of economic 
data, as presented in (Clements & Hendry, 1998). There is a temporal series of power 
consumption and several periodicities and trends can be detected. The most evident is the 
daily periodicity on weekdays, which assumes the peak value around the beginning of the 
night. On Sundays and holydays, however, the pattern consumption tends to be less 
correlated. This pattern also reveals a weekly and monthly periodicity, and a yearly 
periodicity can obviously be assumed. Trends are always present in this kind of data, and 
the most important is the rising consumption that can be observed in the series. It is also 
important to mention the parameter dependence variations coming from the climate (mostly 
temperature). In tropical countries, the load is expected to be higher in summer, by the use 
of air conditioning systems, for example. 
On the technical side, it is always possible to associate to a temporal series a model like (1), 
where 姿岫倦岻 is the series itself. The states, on the other hand, could be the periodic 
components (in a Fourier series sense) or even non-periodic, and the matrices could be 
determined in order to generate those components (obviously time-invariant in this case). 
Disturbances and noise covariance should be adequately selected. The KF would act in 
order to estimate those components, which would be the states and could represent trends 
and seasonal behaviour. The matrices could even be time-varying, if the process is known to 
be more complex. 
In a similar way, other interesting application is the modal estimation of the power system. 
Based on power system’s measurements under normal conditions and defining a stochastic 
model relating different disturbance inputs (e.g., load changes), the KF is adjusted to 
estimate the outputs produced by the disturbances. Then, by monitoring the difference 
between the measured output and the estimated output, one can recognize if there is any 
change in the model parameters (Wiltshire et al., 2007). 

3.2 Protection and digital relaying  

Other key application of KF in power systems is to detect fault conditions and to control 
protection devices, a task normally done by digital relays. Based on information coming 
from voltages and currents, decisions must be taken in order to detect and protect the power 
system from more severe faults and maintain its stable operation (Girgis & Brown, 1981). 
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The discrete signals coming from several sensors do contain valuable information, but it is 
necessary to extract it from input disturbances, what means that it is necessary to identify 
the signals fundamental component 岫懸怠岻, given that during transient conditions the 
fundamental voltages or currents are corrupted (Girgis, 1982; Mir & McCleer, 1984; Sachdev 
et al., 1985). 
Of course, this information is in the transient condition and depending on the kind, 
frequency of occurrence and location of the fault, the effects produced in the 60 Hz 
components (and other frequencies), are of very particular type, allowing gathering valuable 
information in order to control a protective device or to plan a repair as soon as possible.  

3.3 Analysis and control of electrical machinery 

Considering the digital control or analysis of induction motors, the KF has been applied in 
some different ways, e.g., to estimate the rotor time constant in PWM motor drives (Zai et 
al., 1992); to estimate the airgap flux in order to implement a direct flux control strategy 
(Pietrzak-David et al., 1992) or also to identify the rotor resistance in order to propose 
adaptive vector control schemes (Wade et al., 1997).  In addition, KF has been also applied in 
order to reduce or avoid the use of additional sensors in the motor controlling or 
monitoring, considering the so called sensorless applications (Bolognani et al., 2001). 
It is interesting to mention that these applications use the KF as part of an automatic closed-
loop control system, that is, in the same way as its first applications (see section 1). 
Conversely, in the others mentioned in sections 3.1 and 3.2, the information from the 
estimates was used by people in decision making processes or open-loop applications. 

3.4 Power conditioners control and synchronization 

The requirement of synchronization of several electronic devices (such as active rectifiers, 
active power filters, uninterruptible power suppliers, dynamic voltage restorers, distributed 
generators, etc.) has been motivating the development of different algorithms to detect the 
amplitude, frequency and phase angle of the power grid fundamental voltage (Padua et al., 
2007; Moreno et al., 2007). Such required information can be provided by the KF output 
(Padua et al., 2007a; Cardoso, et al., 2007; Huang et al., 2008), as it will be demonstrated in 
the following. 
In the matter of power conditioning, several closed-loop control schemes have been applied 
in order to control the voltages and currents waveforms, frequency, and amplitudes of an 
electrical load or point of common coupling (PCC) (Peng, 2001). Many control laws can be 
used in order to guarantee the voltage/current to track the references, and to compensate 
for disturbances, running from classically inspired techniques (Marafão et al., 2008) to those 
including a KF in the control loop (Moreno et al., 2004; Kwan et al., 2005; Rosendo et al, 
2007).  
An active rectifier, e.g., should drain a sinusoidal current from the supply system, which 
should be in-phase with the fundamental component of the grid voltage, even if this one is 
distorted. This will ensure a high power factor for the resulting active rectifier. In case of 
three-phase devices, it is also desired to ensure equal phase currents, it means that the three-
phase rectifier will act as resistive balanced load. 
An active power filter, either in series or parallel to the loads, should ensure, e.g., that 
voltages and/or currents (depending of the configuration) are sinusoidal, balanced, 
symmetrical and with constant magnitude. It is possibly based on the identification of the 
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disturbing signals, which will become the references for the control scheme in order to be 
injected in or filtered out of the power system. In this case, the KF should be responsible for 
the detection of the ideal signals (fundamental positive sequence components 捲怠袋) and by the 
difference with the original voltages or currents, the deteriorated signals (harmonic 
distortions, voltage sags and swells, low power factor, unbalances, etc.) could be identified 岫 捲鳥 噺 捲 伐 捲怠袋岻. 
In the matter of distributed generation, the control of different power sources (AC or DC) 
have been carried out by means of electronic power converters and usually, it depends on 
some synchronized signal, in order to ensure that the generated voltages have the same 
frequency and phase angle of the main power grid (Padua et al., 2007). Again in this case, 
the required information could be achieved by means of the KF. 

3.5 Revenue metering and power quality monitoring 

The continuously increasing demand for electronic equipments and power converter 
applications has been the most important cause of power quality deterioration phenomena, 
including voltage and current distortions and imbalances. The impacts of such disturbing 
effects can be directly related to power losses, insulation stress, over voltages, power 
oscillations or even malfunction and damage on sensitive loads (Bollen, 2000). 
Among a number of different areas related to this question, during the last decades 
intensive research has been directed to the definition of power quality indices and revenue 
metering techniques, suitable for monitoring nonlinear and unbalanced systems (Ferrero et 
al, 1998; Marafão et al., 2002; Farghal et al, 2002).  
Considering the power quality monitoring, important indices have been defined to estimate 
the amount of harmonic distortion or unbalances on the measured voltage (v) and currents 
(i) or also how these distortions affect other indicators, such as, e.g., the power factor (PF). 
Once more, the KF can be applied in order to identify the fundamental components 岫懸怠 , 件怠岻 
and the positive sequence components 岫懸怠袋 , 件怠袋岻, which could be used to the calculation of 
the mentioned indices. Thus, indices such as: the voltage Total Harmonic Distortion 劇茎経蝶 噺 謬∑ 蝶廿鉄灘廿転鉄蝶迭   or Negative Unbalance Factor 計貸 噺 蝶迭貼蝶迭甜  are defined.   

In the matter of revenue metering, considering for example the IEEE STD 1459-2000, which 
brings the definition of several power quantities related to fundamental components, 
positive sequence components, harmonic components, among others, the KF application 
could be responsible for the calculation of, e.g., the Fundamental Active Power (鶏怠), the 
Fundamental Equivalent Apparent Power (鯨勅怠), the Fundamental Power Factor (繋鶏怠), the 
Fundamental Positive Sequence Power Factor (繋鶏怠袋). 
The KF has also been applied to the development of expert systems focused on the analysis, 
classification and possible cause’s identification of short term power quality disturbances, 
such as: voltage sags, swells and interruptions (Styvaktakis et al., 2002; Dash & Chilukuri, 
2004; González et al., 2006). 

4. Fundamental component identification 

As stated in the above section, in many power system and power electronics’ applications, it 
is necessary to identify the fundamental component of voltages and/or currents signals, 
independently of frequency fluctuations, amplitude variations and waveform distortions.  
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phase-locked loop (PLL) has been one of the most applied algorithms to get the required 
information (Kaura & Blasko, 1997; Zhan et al, 2001; Padua et al, 2005). Recent researches, 
however, have shown that recursive discrete Fourier transform (RDFT) could also be 
applied (Andria & Salvatore, 1990; McGrath et al., 2005). Other possibility is the KF. All of 
the mentioned techniques can be used in single-phase systems. Moreover, the PLL and KF 
can also be applied in three-phase systems with a suitable model (Padua et al., 2007; Moreno 
et al., 2007). 
In the following sections, two distinct ways of using the KF in fundamental component 
identification are presented. One method uses a second order KF, treating all the signal 
components as disturbances (except for the fundamental). The other uses a 2n-order KF, and 
includes the harmonics in the deterministic part of the model (Cardoso et al., 2006; Mustafa, 
2007). It can be shown that the last KF represents a great computational burden, and the 
performance of both, as long as fundamental component identification is concerned, is very 
similar. The first section presents both KF for the single-phase case, and the following 
section presents the three-phase case.  

4.1 Single-phase case 

The filter design begins with determining a state-space model to the real signal to be 
measured, including the fundamental component, harmonics, inter-harmonics, and other 
disturbances. In stationary regime, the harmonic of order 件 of a (voltage) signal (with N 
samples per period) is given by 

懸沈岫倦岻 噺 撃沈 sin 釆に講倦件軽 髪 肯沈挽 

 

where 撃沈  is the fundamental amplitude, 肯沈 is the phase angle and 軽 噺 血鎚 血怠⁄ , that is, the 
number of samples in the fundamental component. By using the values of this sequence in 
successive steps, one can show, by basic trigonometric properties, that 
 

懸沈岫倦岻 噺 懸沈岫倦 伐 な岻 cos に講件軽 伐 懸沈槌 岫k 伐 な岻sin に講件軽  

The signal 懸沈槌岫倦岻  is known as the in quadrature component and is orthogonal to 懸沈岫倦岻. 

Searching for a similar identity for 懸沈槌岫倦岻 , it is possible to write down a recursive formula 

for both components in a vector form. By defining the vector 惨餐岫倦岻 噺 範懸沈岫倦岻 懸沈槌岫倦岻飯脹
, the 

formula becomes: 惨餐岫倦岻 噺 冊餐. 惨餐岫倦 伐 な岻, where the matrix 冊餐 is given by 

冊餐 噺 頒cos に講件軽 伐 sin に講件軽sin に講件軽 cos に講件軽 番 

 

The formula above represents a dynamical state-variable model of a harmonic of order 件 and 
could be used, in combination with other similar systems, to represent a periodic signal, 
(with harmonics till order 券岻, which would have a matrix of the form: 
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A=煩冊怠 橋 ど教 狂 教ど 橋 冊津晩 

 

The state-vector would have the form 惨岫倦岻 噺 岷惨層 … 惨仔峅T, and the fundamental 
component of periodic signal would be given by  懸岫倦岻 噺  岷な ど ど … ど ど峅. 惨岫倦岻 噺 察. 惨岫倦岻 

 

In order to represent the disturbances (all the components other than the harmonics till 
order n) and the measurement noise and errors (for example, the quantization noise), 
process and measurement noise should be added, which put the model in the form 
presented in (1), but with null exogenous control input 刷岫倦岻 噺 ど. Thus, the complete signal 
model is:   

 犯惨岫倦 髪 な岻 噺 冊岫倦岻. 惨岫倦岻 髪 殺. 始岫倦岻懸岫倦岻 噺 察. 惨岫倦岻 髪 札. 子岫倦岻     (6) 

 

All the matrices in the model, except 冊岫倦岻, do not vary with time, and 殺 and 札 are related to 
the covariance matrices of the process and measurement noises, that could be conveniently 
chosen if a priori information about the nature of the disturbances is available. The model to 
be used in case of complete lack of prior information is Gaussian white noise, and both 
matrices would be proportional to the identity matrix. 
Having the estimates coming from the KF, it is possible to calculate the fundamental 
component’s magnitude and phase, by the formulas: 

警 噺 謬懸賦怠態岫倦岻 髪 岫懸賦怠槌岫倦岻岻態 

and  

 肯岫倦岻 噺 tan貸怠 釆塚賦迭 岫賃岻塚賦迭忍岫賃岻挽    (7) 

 

and the fundamental frequency 血怠 can be estimated from zero-crossing detection of the 

signal 肯岫倦岻 and improved with an average of the last four estimates.  

In these applications, if the sample frequency 血鎚 is kept constant, the 冊岫倦岻 matrix must be 

varied according to the most recent estimation of 血怠. It means that the difference Riccati 

equation have to be solved on-line. Of course, the greater the number of harmonics 

represented in the 冊 matrix, the greater the computational burden.  

A more attractive alternative, as presented in (Padua et al, 2007), is to consider only the 

fundamental component in the 冊岫倦岻 matrix, and by choosing 殺 and 札 adequately, the other 

harmonics would be represented in the noise models. The performance of this simplified 

model is as good as in the first case, and the computational burden is significantly reduced. 

In section 5, simulation and experimental results for this case are presented.   

Another possible alternative can be applied if the sampling frequency were a free 

parameter, it means, if it were possible to change its value on-line, in order to ensure a fixed 

number of samples regarding to the fundamental component (N). 
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4.2 Three-phase case 
In the same spirit of the single-phase model, a set of three-phase fundamental voltages can 
also be represented by means of a state space model of the form (1), but where the matrix 冊 
is given by: 

冊 噺
琴欽欽
欽欽欽
欽欽欣 cos 磐に講軽 卑 な√ぬ sin 磐に講軽 卑 伐 な√ぬ sin 磐に講軽 卑 ど伐 な√ぬ sin 磐に講軽 卑な√ぬ sin 磐に講軽 卑sin 磐に講軽 卑

cos 磐に講軽 卑           な√ぬ sin 磐に講軽 卑 ど伐 な√ぬ sin 磐に講軽 卑   cos 磐に講軽 卑       ど            ど                      ど          cos 磐に講軽 卑筋禽禽
禽禽禽
禽禽禁
 

And the state vector is given by 惨岫倦岻 噺  範士珊層岫倦岻 士産層岫倦岻 士算層岫倦岻 士珊層刺 岫倦岻飯参
, where the first 

three components are three-phase signals and the last component is orthogonal to the first. 
The matrix 察, that represents the output of the model, that is, the three-phase components, is 
given by: 

察 噺 峪な ど ど どどど な ど どど な ど崋 

The signals 始岫倦岻 and 子岫倦岻 are Gaussian white noise vectors, as expected, and represents the 
distortions. The instantaneous phase angle can thus be obtained by: 

肯岫倦岻 噺 tan貸怠 峪懸賦銚怠岫倦岻懸賦銚怠槌 岫倦岻崋 

and the fundamental frequency 血怠 can be calculated in the same way as in the simplified 
single-phase model. In case of unbalanced (amplitudes), but symmetrical (phase angle) 
input voltages, such KF model has the advantage to be able to identify the positive sequence 
component, in such a way that its magnitude can be calculated by: 

 撃袋岫倦岻 噺 謬態戴 岷懸賦銚怠態 岫倦岻 髪 懸賦長怠態 岫倦岻 髪 懸賦頂怠態 岫倦岻峅  (8) 

In addition, it has been verified that if 殺 and 札 were set to attenuating harmonic distortions, 
the dynamic convergence of the three-phase model is better than the single-phase one, since, 
statistically, its model has more information than the previous. However, it should be 
considered that its implementation complexity is also superior (4 x 4 systems instead of 2 x 2). 

5. Simulation and experimental results 

5.1 Simulation results 
In order to compare different KF´s for the same application, some simulations were realized 
and the results are presented in the sequel. The sampling frequency fs was chosen to be 12 
kHz, what means that the number of samples per period N varies with f1 (N = 200 for f1 = 60 
Hz). In order to find the ideal balance between velocity of response and filtering quality, 
different matrices GGT(k) and HHT(k) were tested. Considering adequate results for both, the 
filtering and dynamic response, appropriate values were defined as, for the single-phase system: 
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GGT = 
⎥
⎦

⎤
⎢
⎣

⎡
01.00

001.0      e     HHT = [ ]25 ,   

and for the three-phase system: 

GGT = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0025.0000

00025.000

000025.00

0000025.0

 e  HHT = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1600

0160

0016

,               

These values were found following the suggestion of (Simon, 2001) and references therein. 
Note that the entries of HHT(k) are much greater than the ones in GGT(k), what is the way to 
attenuate the harmonic distortion. 
It is worth mentioning that in order to guarantee the same performance, different values of 
these matrices must be used for different voltage levels. 

5.1.1 Single-phase case 

In order to evaluate the performance of the simplified single-phase KF on the fundamental 
component identification, four different input voltage conditions were simulated:  
 

Case 1 – Sinusoidal 60 Hz voltage with amplitude equal to 127 Vrms and 90° phase angle; 
Case 2 – The same conditions of Case 1, but with the addition of 5% of harmonic distortion in 
each 3rd, 5th and 7th harmonics; 
Case 3 – The same conditions of Case 2, but with a voltage sag of 50%;  
Case 4 – The same conditions of Case 2, but with the addition of an abrupt frequency 
transition from 60 Hz to 59 Hz. 
 

Fig. 1 shows the influence of the initial state of the filter, which must be set by the user. In 
this case, values were chosen such that the initial phase of the signal should be 0°. In the 
uppermost graphic, the sinusoidal voltage 懸 (output of the KF) along with their in-phase 
(懸な) and orthogonal (懸圏) components are presented. Note that the convergence is achieved 
in about six cycles. In the bottom graphic, the fundamental frequency f1 calculated as 
indicated earlier, converges to 60 Hz. The observed transient comes from the difference 
between the real state of the system 岫肯 噺 9ど°岻 and the one fixed in the algorithm 岫肯 噺 ど°岻. 
Just for comparison, in Fig. 2 the initial phase angle was set to 岫肯 噺 ど°岻, as the KF initial state 
definition. It is obvious that the closer the initial value to the real phase, the faster the 
convergence. Observe that the convergence in this case is achieved in less than 3 cicles. 

The good filtering performance of KF-1φ can be observed in Fig. 3 (Case 2). The Total 
Harmonic Distortion (THD), which would be 8.66% in the modelled signal (懸), was reduced 
to about 1% in the fundamental output (懸な). 

Figs. 4 e 5 show the performance of KF-1φ when there are abrupt transitions in amplitude 
and frequency. In the first case, estimated voltages converge in less than 2 cycles, while 
fundamental frequency estimate practically does not change. In the second case, 懸な and 懸圏 
follow 懸 while f1 stabilizes in 9 cycles. Little ripple in frequency (58.90 Hz -59.04 Hz) can be 
observed as the ratio fs/f1 is no longer an integer number. If necessary, such frequency 
ripple could be minimized updating the matrix A or the sampling frequency in order to 
maintain a fixed number of samples per fundamental period (N). 
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Fig. 1.  KF-1φ (Case 1): Input voltages (127 Vrms, 60 Hz, 90°) and filter outputs: v1, vq e f1. 

 

  
 

Fig. 2.  KF-1φ (Case 1): Input voltages (127 Vrms, 60 Hz, 0°) and filter outputs: v1, vq e f1. 
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Fig. 3.  KF-1φ (Case 2): Input voltage (127 Vrms, 60 Hz, 0°), with 5% of distortion in 3rd, 5th  
and 7th harmonics and filter outputs:  v1, vq e f1.  
 

 

Fig. 4.  KF-1φ (Case 3): Input voltage and filter outputs: v1, vq e f1, after a voltage sag.  
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Fig. 5. KF-1φ (Case 4): Input voltage and filter outputs: v1, vq e f1, after a frequency transient. 

5.1.2 Three-phase case 

In the same way of the previous section, four different conditions were imposed to the three-
phase KF in order to evaluate its performance. The results are discussed in the following. 
 

Case 1 – Sinusoidal and balanced (60Hz, 127 Vrms) three-phase voltages, with 肯欠 噺 ど° 
(initial phase-a angle); 
Case 2 – Unbalanced voltages (70% in phase b and 85% in phase c), with 5% of 3rd, 5th and 7th 
harmonic distortion; 
Case 3 – The same conditions of Case 2, but with a voltage sag of 50%; 
Case 4 – The same conditions of Case 2, but with the addition of an abrupt frequency 
transition from 60 Hz to 59 Hz. 
 

Fig. 6 shows the fast dynamic response of the KF-3φ outputs considering Case 1. In the 
central graphic, the sinusoidal phase voltage (va) and its fundamental component (va1), that 
comes from the KF are put together. One can see the convergence in less than 2 cycles. In the 
bottom, the left graphic indicates the evolution of the positive sequence magnitude (Seq+) 
and the right-side graphic shows the fundamental frequency convergence. 
In Fig. 7, a case with unbalanced and distorted (THD=8.66%) three-phase voltages is 
analyzed. Once more, one can see the convergence in about 2 cycles (with the same initial 
state in the KF) and the good filtering behaviour of the KF (fundamental output with a 
distortion reduction to THD=0.8%). Besides, the amplitudes of va1 and of the others 

resulting fundamental components are equal to 179,6x(1+0,7+0,85)/3 ≅ 152,66 V, what is the 
mean value of the measured amplitudes, which in this case, coincides with the positive 
sequence magnitude (Seq+). 
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Fig. 6.  KF-3φ (Case 1): Sinusoidal and balanced input voltages (127 Vrms, 60 Hz, 0° - phase 
a), and KF outputs - va1, Seq+ and f1.  
 

 

Fig. 7.  KF-3φ (Case 2): filter response with unbalanced and distorted three-phase input 
voltages.  
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filtered voltages converge in 1 cycle while the frequency practically does not alter. In case of 
frequency variation, f1 stabilizes in about 9 cycles. 
 

 

Fig. 8.  KF-3φ (Case 3): outputs with distorted voltages and a three-phase voltage sag. 
 

 

Fig. 9.  KF-3φ outputs with distorted voltages and abrupt frequency deviation. 
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Fig. 10 shows the performance of the KF in such condition. Comparing to Fig. 6, note that in 
this case the KF convergence is faster than in the previous configuration. 
 

 

Fig. 10.  KF-3φ (Case 1): Sinusoidal and balanced input voltages and KF outputs considering 
a different configuration in matrices 殺 and 札.  

5.2 Experimental results 

For the purpose of evaluating the KF in practical real-time applications, the single-phase 
model was implemented in a high performance acquisition system and the three-phase 
model was implemented in a fixed point digital signal processor (DSP).  The obtained 
results are presented in next sections. 

5.2.1 High performace acquisition system 

The single-phase algorithm was tested in a data acquisition and processing system based on 
the concept of virtual instrumentation (Moreira et al., 2005). The experimental apparatus 
was composed by an eight-channel simultaneous acquisition board with 16-bit AD 
converter (PCI-6143 from National Instruments - NI) with maximum frequency of 200 kHz. 
The analog signals were measured by current and voltage Hall-effect sensors (LV-25P and 
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with LabView 7.1 software (National Instruments). The voltages were generated by a 
programmable three-phase generator from California Instruments, model 4500iL.  

Initially, the KF-1φ algorithm was tested for different voltage conditions. In the uppermost 
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Fig. 11.  KF-1φ: Top - input voltage (127 Vrms, 60 Hz), with 10% of 3rd, 5th and 7th harmonic 
distortion; middle - fundamental component and bottom - fundamental frequency estimated 
by the KF. 

In Fig. 12, the input voltage suffers a voltage sag of 50%, but despite that, the algorithm 
manages to converge in about one cycle. In Fig. 13, the amplitude remains constant but there 
is an abrupt change in the fundamental frequency from 60 to 59 Hz. There is no change in 
the filtered voltage, but the frequency stabilizes in about 10 cycles. 
 

 

Fig. 12.  KF-1φ: Performance of the KF output under 50% voltage sag. 
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Fig. 13.  KF-1φ: Performance of the KF output under an abrupt frequency deviation (from 60 
to 59 Hz). 

5.2.1 32-bits fixed point DSP 

In order to demonstrate that the KF can be implemented even in fixed-point discrete 
systems, the three-phase model was implemented in a fixed-point 32-bit DSP, from Texas 
Instruments (TMS320F2812). The sampling frequency was set to 12kHz.  
Fig. 14 shows the three-phase input voltages, which became distorted (20% of 3rd and 10% of 
5th harmonics and each phase) after a 50% voltage sag. Considering just one of the phase 
voltages, Fig. 15 shows the convergence of the KF estimated fundamental component. Note 
that it converges in less than 2 fundamental cycles. Observe that the magnitudes in both 
figures are normalized by the digital to analog (DA) converter applied to reconstruct the KF 
output and the digitalized input voltages.  

6. Conclusion 

This chapter has discussed the main characteristics of the Kalman Filter and possible 
applications in the areas of power electronics and power systems. Since a great number of 
this applications are based on the identification of the fundamental voltage and/or current 
signals, it was demonstrated how the KF can be applied to estimate the fundamental 
component from a distorted signal (and/or an unbalanced set of signals in case of three-
phase systems) like those present in real power system. The filter was designed by adopting 
a stochastic state-space model for the power system voltage, what is a very reasonable 
hypothesis. The performance of the zero-crossing detection method, based on the estimated 
voltage, was shown to be very effective as a way to calculate the fundamental frequency f1, 
even in the presence of harmonic distortion. 
Complex matrix calculations are not a concern here because their dimensions never exceed 
two,  in  the  single-phase case (and  four, in the  three-phase  case).  It  makes possible to  do 
calculations elementwise. In the three-phase case, the algorithm also estimates the mean- 
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Fig. 14.  KF-3φ: DSP input voltages considering a 50% voltage sag and 20% of 3rd and 10% of 
5th harmonics and each phase. 
 

 

Fig. 15.  KF-3φ: Fundamental component estimation after the 50% voltage sag, with 
corresponding voltage distortion (for one of the phases). 
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amplitude in the presence of unbalanced voltages, what could be used, in some cases, in 
place of a positive-sequence detector (Padua et al., 2005). It was also shown that, setting 
adequate values to H and G, the performance of the three-phase could be better than the 
single-phase case. 
Simulated and experimental results illustrate the suitable performance of the KF (single and 
three-phase models) in different conditions and tuning. So the proposed models are 
interesting alternatives for power systems and power electronics applications, even if real-
time and fixed-point implementations are required.   
Comparing with other synchronization algorithms, like those in (Kaura & Blasko, 1997; 
Zhan et al., 2001 ; McGrath et al., 2005 ; Cardoso et al, 2006; Mostata, 2007), as to say the 
PLL-based and the DFT-based, one can say that the proposed Kalman filter based algorithm 
is 1) so precise in steady-state as the others two; 2) as fast and sensible to voltage distortions 
as the PLL-based and 3) computationally simpler than other Kalman-based algorithms 
presented in literature. 
It is important to point out that no matter how complex the detection algorithm is, there is 
always a compromise between precision (or in a wide sense, robustness) and rapidity of the 
response. The designer should thus know how to adjust H and G matrices in the most 
convenient way for the application in hand. Besides, the computational complexity can be a 
major concern, as in real-time analysis and control. 
Considering future works, the author’s intend to modify the three-phase KF in order to 
obtain the fundamental positive sequence components in the presence of phase-angle 
asymmetries, since in this case, equation (8) does not represent correctly such information. 
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