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1. Introduction      

Radial Basis Function neural network (RBFNN) is a combination of learning vector 
quantizer LVQ-I and gradient descent. RBFNN is first proposed by (Broomhead & Lowe, 
1988), and their interpolation and generalization properties are thoroughly investigated in 
(Lowe, 1989), (Freeman & Saad, 1995). Since the mid-1980s, RBFNN has been used to apply 
on many applications, such as pattern classification, system identification, nonlinear 
function approximation, adaptive control, speech recognition, and time-series prediction, 
and so on. In contrast to the well-known Multilayer Perceptron (MLP) Networks, the RBF 
network utilizes a radial construction mechanism. MLP were trained by the error Back 
Propagation (BP) algorithm, since the RBFNN has a faster training procedure substantially 
and adopts typical two-stage training scheme, it can avoid solution to fall into local optima.  
A key point of RBFNN is to decide a proper number of hidden nodes. If the hidden node 
number of RBFNN is too small, the generated output vectors may be in low accuracy. On 
the contrary, it with too large number of hidden nodes may cause over-fitting for the input 
data, and influences global generalization performance. In conventional RBF training 
approach, the number of hidden node is usually decided according to the statistic properties 
of input data, then determine the centers and spread width for each hidden nodes by means 
of k-means clustering algorithm (Moddy & Darken, 1989). The drawback of this approach is 
that the network performance is depended on the pre-selected number of hidden nodes. If 
an unsuitable number is chosen, RBFNN may present a poor global generalization 
capability, as slow training speed, and requirement for large memory space. To solve this 
problem, the self-growing RBF techniques were proposed in (Karayiannis & Mi, 1997), 
(Zheng et al, 1999). However, the predefined parameters and local searching on solution 
space cause the inaccuracy of approximation from a sub-solution. 
Evolutionary computation is a globally optimization technique, where the aim is to improve 
the ability of individual to survive. Among that, Genetic Algorithm (GA) is a parallel 
searching technique that mimics natural genetics and the evolutionary process. In (Back et 
al, 1997), they employed GA to determine the RBFNN structure so the optimal number and 
distribution of RBF hidden nodes can be obtained automatically. A common approach is 
applied GA to search for the optimal network structure among several candidates 
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constructed initially by the unsupervised clustering method (Chen et al, 1999). However, its 
results depend on the pre-selected RBFNN structures which may not be appropriate. 
Another method is to fix the number of RBF nodes and adopted GA to search optimal 
network parameters, for example, centers and spread widths for RBF hidden nodes, and the 
weights connected to the output layer (Aiguo & Jiren, 1998). This method requires heavy 
computational cost while the number of RBF hidden nodes is too large, the dimension of 
each chromosome has to extend to corresponding length. It will spend too much time for 
training. GA based self-growing RBF network training method was proposed by (Yunfei & 
Zhang, 2002) to overcome the mentioned drawbacks. It searches single parameter, the 
cluster distance factor, which can avoid organizing a large dimension in a chromosome. It 
performs a fast training speed and well convergences while the GA operators (reproduction, 
recombination, and mutation, etc.) and fitness evaluation is properly applied. However, GA-
based approaches are poorer in several aspects, as premature convergence and falling into 
local optima, than new evolutionary computation techniques. 
The particle swarm optimization (PSO) is a novel and popular search algorithm based on 
the simulation of the social behavior of birds within a flock in evolutionary computation. As 
opposed to (Yunfei & Zhang, 2002), this paper proposes a PSO based RBFNN self-structure 
algorithm to overcome the drawbacks that mentioned above. PSO is a swarm intelligence 
method that roughly models the social behavior of swarms and has been proved to be 
efficient on many optimization problems in science and engineering. The social behavior of 
PSO allows particles to stochastically return toward previously successful regions in the 
search space. We propose a PSO-based approach for searching the optimal cluster distance 
factor to provide a suitable criterion on self-structure RBFNN training. The results of 
simulation experiments exhibit the rapid convergence and more better optimal solutions 
than other related approaches. Furthermore, it yields efficient training for constructing 
RBFNN. 
The paper is organized as follows. Section II describes structure and the training of the RBF 
network. Section III describes the principle and procedures of the self-structure RBF 
algorithm. Section IV presents the application of a PSO to search the cluster distance factor. 
Section V evaluates our method for modeling nonlinear function and predicting time series 
by RBF Network and comparing the results with the GA-RBF Network and K-means 
methods. Section VI is the conclusion.  

2. Radial Basis Function Neural Network 

Generally, a RBFNN consists of three layers: the input layer, the RBF layer (hidden layer) 
and the output layer. The inputs of hidden layer are the linear combinitions of scalar 

weights and the input vector  [ ]Tnxxx ,,, 21 L=x , where the scalar weights are usually 

assigned unity values. Thus the whole input vector appears to each neuron in the hidden 
layer. The incoming vectors are mapping by the radial basis functions in each hidden node. 

The output layer yields a vector [ ]myyy ,,, 21 L=y  for m outputs by linear combination of 

the outputs of the hidden nodes to produce the final output. Fig. 1 presents the structure of a 
single output RBF network; the network output can be obtained by 

 ∑
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)()( xxy φ  (1) 
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where  f(x) is the final output, ( )⋅iφ  denotes the radial basis function of the i-th hidden node, 

iw  denotes the hidden-to-output weight corresponding to the i-th hidden node, and k is the 

total number of hidden nodes. 

 

Figure 1. The structure of a RBFNN 

A radial basis function is a multidimensional function that describes the distance between a 
given input vector and a pre-defined center vector. There are different types of radial basis 
function. A normalized Gaussian function usually used as the radial basis function, that is  
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where 
iµ  and 

iσ denote the center and spread width of the i-th node, respectively.  

Generally, the RBFNN training can be divided into two stages:  
1. Determine the parameters of radial basis functions, i.e., Gaussian center and spread 

width. In general, k-means clustering method was commonly used here. 
2. Determine the output weight w  by supervised learning method. Usually Least-Mean-

Square (LMS) or Recursive Least-Square (RLS) was used. 
The first stage is very crucial, since the number and location of centers in the hidden layer 
will influence the performance of the RBFNN directly. In the next section, the principle and 
procedure of self-structure RBF algorithm will be described. 

3. Self-structure RBFNN 

The hidden layer of an RBFNN acts as a receptive field operating on the input data space. 
The number of hidden node based on the distribution of the training data set. The proposed 
approach performs this task by defining a cluster distance factor, ε , which is the maximum 

distance between an input sample and a specific RBF node center and allowing the number 
of basis function to increase iteratively according to this factor. 
The rationale of this learning is described as follows: the hidden layer starts with no hidden 
node and ε  is pre-determined by PSO to control the clusters production. The first RBF node 

center 
1µ  is set by choosing one data, x1, randomly from NT input data sample. The value of 

Euclidean 2-norm distance between 
1µ  and the next input sample, x2, is compared with ε . 
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If it is greater, a new cluster whose center location is x2 is created as 
2µ ; otherwise, the 

elements of 
1µ are updated as  

 ( ) ( ) ( ) Nix iiii ,,2,1 ,oldoldnew 1211 L=−+= µαµµ   (3) 

where 
i1µ  and x2i are the i-th component of vectors 

1μ  and x2, respectively, ⋅  denotes the 

Euclidean distance and 10 << α  is the updating ratio. Thus, this procedure is carried out on 

the remaining training samples. The number of clusters grows or RBF nodes center self-
adjust continuously until all of the samples are processed. The proposed self-structure 
RBFNN algorithm can be summarized as follows: 
1. Assuming that there are p clusters with their centers, 

pµµ ,,1 L , are generated from 

previous iterations. Taking a new input sample xn to calculate the distances with the 

each clusters 
inx µ− , where pi ,,1L= . 

2. The cluster whose center 
qµ  is ( )pix in

i

,...,1  where,minarg =− µ
µ

  will be focused. 

3. Comparing 
qnx µ−  with the distance criterion parameter, ε . If it is greater than ε , 

then a new cluster center, 
1+pµ , is created at the position of the sample point, xn. 

Otherwise the elements of 
pµ are updated by (3). 

4. Repeating the above steps until all of the samples are processed. 
For L clusters, a global spread width σ  can be derived by the average of Euclidean distance 

between each cluster center and its nearest neighbor as  

 
ji μμ −=σ   (4) 

where ⋅  denotes the expression for the average value for Li ≤≤1 , Lj ≤≤1  and ji ≠ . 

In (Yunfei & Zhang, 2002), the cluster distance factor, ),0( ∞∈ε , is obviously a critical 

factor to determine input space partitioning and obtains the hidden node number and 
locations in RBFNN. An unduly large value of ε  does not reflect an enough number of 

cluster so it may cause a poor-generalized precision solution. On the contrary, an unduly 
small value of ε  will create redundant clusters; therefore, it may cause overlap between 

RBF neurons; moreover, it may lead to poor accuracy and slow convergence either. This 
paper proposes a PSO-based searching approach to determine the proper value of ε ; 

further, the optimal structure of RBF network can be obtained. And, an objective function to 
evaluate the effectiveness of applying PSO is proposed. Following section will describe how 
to employ PSO technique to search a potential optimal value ε . 

4. PSO-based Self-structure RBFNN  

The PSO is a population based optimization technique that was proposed by Kennedy and 
Eberhart in 1995 (Eberhart & Kennedy, 1995), which the population is referred to as a swarm. 
The particles express the ability of fast convergence to local and/or global optimal 
position(s) over a small number of generations. 
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4.1 Evolution of PSO 

A swarm of PSO consists of a number of particles. Each particle represents a potential 
solution of the optimization task. All of the particles iteratively discover the probable 
solution. Each particle generates a position according to the new velocity and the previous 
positions of the particle, and it is compared with the best position which is generated by 
previous particles according to the cost function. The best solution is then kept; i.e., each 
particle accelerates in the directions of not only the local best solution but also the global 
best position. If a particle discovers a new probable solution, other particles will move closer 
to it so as to explore the region more completely in the process (Gudise & 
Venayagamoorthy, 2003).  
Let N denotes the swarm numbers. In general, there are three attributes, current position aij, 
current velocity vij and past best position Pbij, for particles in the search space to present 
their features. Each particle in the swarm is iteratively updated according to the 
aforementioned attributes assuming that the objective function f is to be minimized so that 
the dimension consists of n particles and the new velocity of every particle is updated by (5). 

 
)]()()[(                               

)]()()[()()1(

,22

,11

tatGbtrc

tatPbtrctwvtv

ijii

ijijiijij

−+

−+=+
  (5) 

where vij is the velocity of the j-th particle of the i-th swarm for all Ni  ...1∈ , w is the inertia 

weight of velocity, c1 and c2 denote the acceleration coefficients, r1 and r2 are two uniform 
random values falling in the range between (0, 1), and t is the number of generations. The 
new position of the i-th particle is calculated as follows: 

 )1()()1( ++=+ tvtata ijijij
  (6) 

The past best solution of each particle is updated by: 
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The global best solution Gb will be found from all of particles during previous three steps 
are defined as: 

 nitPbftGb i
P ib

≤≤+=+ 1)),1((min arg)1(   (8) 

4.2 Disturbance  

Since initial particles are generated by randomly, they may not uniform enough to distribute 
over the solution space. Therefore, it may trap particles into local optimal solution 
inevitably. To avoid solution falling into the local minimal and jumping it out to find the 
global minimal, this paper added a mutation-like disturbance strategy into the PSO process 
(Sun et al, 2005). The disturbance mechanism randomly activates under a disturbance 
probability. While the disturbance mechanism is active, the selected particle will be 
randomly placed at a new position (ε  value in this paper), then this particle will keep 

following the PSO process to search a better solution. The other non-selected particle will 
keep following the PSO iteration as usual and trying to find a new solution. 
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4.3 Objective function 
For searching a suitable ε  value for RBFNN training, a function of root mean squared error 

(RMSE) which evaluates discrepancies between the sampling data output yn and the 

predictive output ∗

ny  is applied. Thus, the objective function for NT sample is defined as  

 ( ) ( )
( ) ( )( )

T

N

k

nn

n
N

kyky

yyf

T

∑
=

−

== 1

*

* RMSE ,ε   (9) 

where ( )kyn
∗

 is the predictive output of the k-th sample data which is obtained by ε  value 

during training. 
In the section II, the relationship between self-structure RBF network training and cluster 
distance factor ε  was discussed. If (9) can be reduced to a sufficiently small value, a suitable 

value of ε  could be obtained to train the structure of RBFNN. Thus, the predictive RBFNN 

output would be closed to the sampling data output. 

4.4 RBFNN structure determination by PSO 
In this paper, our goal is to minimize the value of ( )∗

nyf ,ε . The objective function minimized 

by PSO and found potential optimal solution finally. Since we only search one parameter by 
PSO (i.e., the cluster distance factor ε ), the swarm number i=1, and defined the particle 

number as mj ≤≤1 . In the initial state of PSO, all the particles’ positions aj (i.e., initial 

cluster distance factor ε ) were set as 0.02, vj were set as 0, and the Pbj and Gbj  were 

initialized by a random number generator in the range of [0, 1]. After particles moved by (6), 
each particle will find a potential solution, the new past best position would be updated by 
(7), and the global best position would be updated by (8). The particle would keep moving 
to find a better solution until it reaches the goal or meets the termination condition (Lin et al, 
2005). The pseudo code of our PSO-based cluster distance factor searching approach 
presented in Fig. 2. 

 

 

Figure 2. The pseudo code of PSO-based cluster distance factor searching 

Create and initiate an N-dimension PSO: P 

Repeat: 

Execute PSO to update P by (5) and (6) 
for each particle ] ...1[ mi∈  

       if *),(*),( nijnij yPbfyf <ε  

then 
ijijPb ε=  

         if *),(*),( ninij yGbfyPbf <  

then 
iji PbGb =  

endfor 

Until Termination condition is met 
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5. Simulations and Results 

5.1 Setting of simulation 

The six nonlinear functions with different complexities are tested here. These tested 
functions are listed as follows: 

Ex. Tested function Range 

1 
)1(

)12)(2(
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−−
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x

x
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2
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ππ
+=  ]10,0[∈x  

6 )
5

2
cos()

10
sin(

xx
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ππ
+−=  ]10,10[−∈x  

Table 1. The six tested nonlinear functions 

In order to confirm the advantages of the proposed approach, the K-means algorithm 
(Moddy & Darken, 1989) and GA-based self-growing RBFNN training algorithm (Yunfei & 
Zhang, 2002) are also carries out in these tested functions. Due to (Yunfei & Zhang, 2002) 
adopted Simple Genetic Algorithm (SGA) which using binary coding to train RBF structure 
for saving computation time, but it will loose some accuracy compared to the real-valued, 
i.e., this method may not present the optimal solution. So we implemented it with Real-
value Genetic Algorithm (RGA) to obtain accuracy results.  
For every simulation, the training data set consists of 50 input-output data samples taken at 
random, and the testing data set includes 75 samples different from the training data set. For 
the definition of parameters in the proposed approach, w, c1 and c2 are given 0.12, 0.25 and 
0.25 respectively, and the search range of ε  is bounded between 0.2 and 1, the particle 

number is 10. For the GA-based self-growing RBFNN training algorithm the search range of 

ε  in the input space is also in the range from 0.2 to 1, the crossover rate Pc is given 0.8, and 

mutation rate Pm is given 0.01, the population size is 10. For the K-means method, the 
optimal number of RBF neurons in the hidden layer is chosen to be 30 by experience.  

5.2 Simulation results 
After simulations, the RMSE of training data, RMSE of testing data, maximal error and 
number of hidden node will be presented in tables for each case. In these tables, the three 
involved algorithms are denotes as PSO-based, GA-based (Yunfei & Zhang, 2002) and K-
means (Moddy & Darken, 1989). Additionally, the real data and approximated data will be 
shown in the same figure; meantime, the error from each approximation will be presented 
by figures. There three sub-figures in each figure, the results from the left sub-figure to the 

www.intechopen.com



Particle Swarm Optimization 

 

430 

right sub-figure are generated by PSO-based approach, GA-based approach and K-means 
approach, respectively. 
Example 1. 

 PSO-based GA-based K-means

RMSE for training data 0.0332 0.0584 0.1552 

RMSE for testing data 0.0520 0.0786 0.1962 

Maximal error 0.3852 0.2355 0.9508 

Number of hidden node 33 29 30 

Table 2. Comparison between the three approaches in example 1 

 

Figure 3. Curves of RBFNN output and real data in example 1. (solid-line represents the real 
data, dashed-line represents the output data) 

 

Figure 4. The errors between the real data and approximations in example 1 

Example 2. 

 PSO-based GA-based K-means

RMSE for training data 0.0035 0.0046 0.0234 

RMSE for testing data 0.0099 0.0113 0.0357 

Maximal error 0.0460 0.0509 0.1006 

Number of hidden node 28 28 30 

Table 3. Comparison between the three approaches in example 2 
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Figure 5. Curves of RBFNN output and real data in example 2. (solid-line represents the real 
data, dashed-line represents the output data) 

 

Figure 6. The errors between the real data and approximations in example 2 

Example 3. 

 PSO-based GA-based K-means

RMSE for training data 0.0056 0.0173 0.1271 

RMSE for testing data 0.0057 0.0188 0.0803 

Maximal error 0.0134 0.0432 0.2441 

Number of hidden node 24 22 30 

Table 4. Comparison between the three approaches in example 3 

 

Figure 7. Curves of RBFNN output and real data in example 3. (solid-line represents the real 
data, dashed-line represents the output data) 
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Figure 8. The errors between the real data and approximations in example 3 

Example 4. 

 PSO-based GA-based K-means

RMSE for training data 0.0079 0.0112 0.0337 

RMSE for testing data 0.0192 0.0292 0.0740 

Maximal error 0.1217 0.0939 0.1854 

Number of hidden node 19 31 30 

Table 5. Comparison between the three approaches in example 4 

 

Figure 9. Curves of RBFNN output and real data in example 4. (solid-line represents the real 
data, dashed-line represents the output data) 

 

Figure 10. The errors between the real data and approximations in example 4 
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Example 5. 

 PSO-based GA-based K-means

RMSE for training data 0.0460 0.0519 0.0637 

RMSE for testing data 0.0546 0.0564 0.0867 

Maximal error 0.3056 0.3236 0.2208 

Number of hidden node 20 21 30 

Table 6. Comparison between the three approaches in example 5 

 

Figure 11. Curves of RBFNN output and real data in example 5. (solid-line represents the 
real data, dashed-line represents the output data) 

 

Figure 12. The errors between the real data and approximations in example 5 

Example 6. 

 PSO-based GA-based K-means

RMSE for training data 0.0079 0.0092 0.0690 

RMSE for testing data 0.0439 0.0509 0.0859 

Maximal error 0.2159 0.2486 0.1855 

Number of hidden node 29 27 30 

Table 7. Comparison between the three approaches in example 6 
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Figure 13. Curves of RBFNN output and real data in example 6. (solid-line represents the 
real data, dashed-line represents the output data) 

 

Figure 14. The errors between the real data and approximations in example 6 

5.3 Discussion 

In the simulation results in tables, PSO-based approach has lower RMSE for training data 
and testing data. It means that over fitting does not happen in the proposed approach. From 
figures of the curves of RBFNN output and real data, the approximated curves by PSO-
based approach is closer to the real data than these by others. From figures of the 
approximated errors, it could be shown that PSO-based approach results small error in most 
of sample, whereas the K-means approach has largest error.  
We know that RBFNN needs different number of hidden node and cluster radius for 
different complexities. K-means approach usually performs a larger error because it is not 
able to decide a suitable number of hidden node. Though GA-based approach decides a 
suitable number of hidden node, its cluster radius is not good enough to classify whole data. 
The proposed approach is able to find out the optimal cluster radius to further decide a 
number of hidden node because PSO has better capacity of global searching than GA. 

6. Conclusion 

This paper has presented a novel approach for self-structure RBFNN. A very important step 
for the RBFNN training is to decide a proper number of hidden node. If the number of 
hidden node does not chosen properly, the RBFNN may present poor global generalization 
capability, slow training speed, and the requirement of large memory space. Therefore, to 
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decide a suitable cluster distance factor (ε ) is the crucial condition for creating an optimal 

self-structure RBFNN. This paper proposed a PSO-based approach for searching the optimal 
ε ; further, RBFNN is able to determine the optimal number of hidden node automatically.  

For proofing benefits of the proposed PSO-based approach, the simulations consisting of six 
nonlinear system modeling were tested; meanwhile, GA-based approach and K-means 
approach  were also carried out for comparison. Simulation results show that the PSO-
RBFNN algorithm outperforms the GA-RBFNN and K-means methods by the minimal 
training RMSE and the minimal testing RMSE.  
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Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the

social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation

techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions

and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such

as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by

following the current optimum particles. This book represents the contributions of the top researchers in this

field and will serve as a valuable tool for professionals in this interdisciplinary field.
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