
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26

A Radial Basis Function Neural Network with
Adaptive Structure via Particle Swarm

Optimization

Tsung-Ying Sun, Chan-Cheng Liu, Chun-Ling Lin, Sheng-Ta Hsieh and
Cheng-Sen Huang

National Dong Hwa University
Taiwan, R.O.C.

1. Introduction

Radial Basis Function neural network (RBFNN) is a combination of learning vector
quantizer LVQ-I and gradient descent. RBFNN is first proposed by (Broomhead & Lowe,
1988), and their interpolation and generalization properties are thoroughly investigated in
(Lowe, 1989), (Freeman & Saad, 1995). Since the mid-1980s, RBFNN has been used to apply
on many applications, such as pattern classification, system identification, nonlinear
function approximation, adaptive control, speech recognition, and time-series prediction,
and so on. In contrast to the well-known Multilayer Perceptron (MLP) Networks, the RBF
network utilizes a radial construction mechanism. MLP were trained by the error Back
Propagation (BP) algorithm, since the RBFNN has a faster training procedure substantially
and adopts typical two-stage training scheme, it can avoid solution to fall into local optima.
A key point of RBFNN is to decide a proper number of hidden nodes. If the hidden node
number of RBFNN is too small, the generated output vectors may be in low accuracy. On
the contrary, it with too large number of hidden nodes may cause over-fitting for the input
data, and influences global generalization performance. In conventional RBF training
approach, the number of hidden node is usually decided according to the statistic properties
of input data, then determine the centers and spread width for each hidden nodes by means
of k-means clustering algorithm (Moddy & Darken, 1989). The drawback of this approach is
that the network performance is depended on the pre-selected number of hidden nodes. If
an unsuitable number is chosen, RBFNN may present a poor global generalization
capability, as slow training speed, and requirement for large memory space. To solve this
problem, the self-growing RBF techniques were proposed in (Karayiannis & Mi, 1997),
(Zheng et al, 1999). However, the predefined parameters and local searching on solution
space cause the inaccuracy of approximation from a sub-solution.
Evolutionary computation is a globally optimization technique, where the aim is to improve
the ability of individual to survive. Among that, Genetic Algorithm (GA) is a parallel
searching technique that mimics natural genetics and the evolutionary process. In (Back et
al, 1997), they employed GA to determine the RBFNN structure so the optimal number and
distribution of RBF hidden nodes can be obtained automatically. A common approach is
applied GA to search for the optimal network structure among several candidates

www.intechopen.com

Particle Swarm Optimization

424

constructed initially by the unsupervised clustering method (Chen et al, 1999). However, its
results depend on the pre-selected RBFNN structures which may not be appropriate.
Another method is to fix the number of RBF nodes and adopted GA to search optimal
network parameters, for example, centers and spread widths for RBF hidden nodes, and the
weights connected to the output layer (Aiguo & Jiren, 1998). This method requires heavy
computational cost while the number of RBF hidden nodes is too large, the dimension of
each chromosome has to extend to corresponding length. It will spend too much time for
training. GA based self-growing RBF network training method was proposed by (Yunfei &
Zhang, 2002) to overcome the mentioned drawbacks. It searches single parameter, the
cluster distance factor, which can avoid organizing a large dimension in a chromosome. It
performs a fast training speed and well convergences while the GA operators (reproduction,
recombination, and mutation, etc.) and fitness evaluation is properly applied. However, GA-
based approaches are poorer in several aspects, as premature convergence and falling into
local optima, than new evolutionary computation techniques.
The particle swarm optimization (PSO) is a novel and popular search algorithm based on
the simulation of the social behavior of birds within a flock in evolutionary computation. As
opposed to (Yunfei & Zhang, 2002), this paper proposes a PSO based RBFNN self-structure
algorithm to overcome the drawbacks that mentioned above. PSO is a swarm intelligence
method that roughly models the social behavior of swarms and has been proved to be
efficient on many optimization problems in science and engineering. The social behavior of
PSO allows particles to stochastically return toward previously successful regions in the
search space. We propose a PSO-based approach for searching the optimal cluster distance
factor to provide a suitable criterion on self-structure RBFNN training. The results of
simulation experiments exhibit the rapid convergence and more better optimal solutions
than other related approaches. Furthermore, it yields efficient training for constructing
RBFNN.
The paper is organized as follows. Section II describes structure and the training of the RBF
network. Section III describes the principle and procedures of the self-structure RBF
algorithm. Section IV presents the application of a PSO to search the cluster distance factor.
Section V evaluates our method for modeling nonlinear function and predicting time series
by RBF Network and comparing the results with the GA-RBF Network and K-means
methods. Section VI is the conclusion.

2. Radial Basis Function Neural Network

Generally, a RBFNN consists of three layers: the input layer, the RBF layer (hidden layer)
and the output layer. The inputs of hidden layer are the linear combinitions of scalar

weights and the input vector []Tnxxx ,,, 21 L=x , where the scalar weights are usually

assigned unity values. Thus the whole input vector appears to each neuron in the hidden
layer. The incoming vectors are mapping by the radial basis functions in each hidden node.

The output layer yields a vector []myyy ,,, 21 L=y for m outputs by linear combination of

the outputs of the hidden nodes to produce the final output. Fig. 1 presents the structure of a
single output RBF network; the network output can be obtained by

 ∑
=

==
k

i

iiwf
1

)()(xxy φ (1)

www.intechopen.com

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

425

where f(x) is the final output, ()⋅iφ denotes the radial basis function of the i-th hidden node,

iw denotes the hidden-to-output weight corresponding to the i-th hidden node, and k is the

total number of hidden nodes.

Figure 1. The structure of a RBFNN

A radial basis function is a multidimensional function that describes the distance between a
given input vector and a pre-defined center vector. There are different types of radial basis
function. A normalized Gaussian function usually used as the radial basis function, that is

 ()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

2

2

2
exp

i

i

i
σ

µ
φ

x
x

 (2)

where
iµ and

iσ denote the center and spread width of the i-th node, respectively.

Generally, the RBFNN training can be divided into two stages:
1. Determine the parameters of radial basis functions, i.e., Gaussian center and spread

width. In general, k-means clustering method was commonly used here.
2. Determine the output weight w by supervised learning method. Usually Least-Mean-

Square (LMS) or Recursive Least-Square (RLS) was used.
The first stage is very crucial, since the number and location of centers in the hidden layer
will influence the performance of the RBFNN directly. In the next section, the principle and
procedure of self-structure RBF algorithm will be described.

3. Self-structure RBFNN

The hidden layer of an RBFNN acts as a receptive field operating on the input data space.
The number of hidden node based on the distribution of the training data set. The proposed
approach performs this task by defining a cluster distance factor, ε , which is the maximum

distance between an input sample and a specific RBF node center and allowing the number
of basis function to increase iteratively according to this factor.
The rationale of this learning is described as follows: the hidden layer starts with no hidden
node and ε is pre-determined by PSO to control the clusters production. The first RBF node

center
1µ is set by choosing one data, x1, randomly from NT input data sample. The value of

Euclidean 2-norm distance between
1µ and the next input sample, x2, is compared with ε .

www.intechopen.com

Particle Swarm Optimization

426

If it is greater, a new cluster whose center location is x2 is created as
2µ ; otherwise, the

elements of
1µ are updated as

 () () () Nix iiii ,,2,1 ,oldoldnew 1211 L=−+= µαµµ (3)

where
i1µ and x2i are the i-th component of vectors

1μ and x2, respectively, ⋅ denotes the

Euclidean distance and 10 << α is the updating ratio. Thus, this procedure is carried out on

the remaining training samples. The number of clusters grows or RBF nodes center self-
adjust continuously until all of the samples are processed. The proposed self-structure
RBFNN algorithm can be summarized as follows:
1. Assuming that there are p clusters with their centers,

pµµ ,,1 L , are generated from

previous iterations. Taking a new input sample xn to calculate the distances with the

each clusters
inx µ− , where pi ,,1L= .

2. The cluster whose center
qµ is ()pix in

i

,...,1 where,minarg =− µ
µ

 will be focused.

3. Comparing
qnx µ− with the distance criterion parameter, ε . If it is greater than ε ,

then a new cluster center,
1+pµ , is created at the position of the sample point, xn.

Otherwise the elements of
pµ are updated by (3).

4. Repeating the above steps until all of the samples are processed.
For L clusters, a global spread width σ can be derived by the average of Euclidean distance

between each cluster center and its nearest neighbor as

ji μμ −=σ (4)

where ⋅ denotes the expression for the average value for Li ≤≤1 , Lj ≤≤1 and ji ≠ .

In (Yunfei & Zhang, 2002), the cluster distance factor,),0(∞∈ε , is obviously a critical

factor to determine input space partitioning and obtains the hidden node number and
locations in RBFNN. An unduly large value of ε does not reflect an enough number of

cluster so it may cause a poor-generalized precision solution. On the contrary, an unduly
small value of ε will create redundant clusters; therefore, it may cause overlap between

RBF neurons; moreover, it may lead to poor accuracy and slow convergence either. This
paper proposes a PSO-based searching approach to determine the proper value of ε ;

further, the optimal structure of RBF network can be obtained. And, an objective function to
evaluate the effectiveness of applying PSO is proposed. Following section will describe how
to employ PSO technique to search a potential optimal value ε .

4. PSO-based Self-structure RBFNN

The PSO is a population based optimization technique that was proposed by Kennedy and
Eberhart in 1995 (Eberhart & Kennedy, 1995), which the population is referred to as a swarm.
The particles express the ability of fast convergence to local and/or global optimal
position(s) over a small number of generations.

www.intechopen.com

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

427

4.1 Evolution of PSO

A swarm of PSO consists of a number of particles. Each particle represents a potential
solution of the optimization task. All of the particles iteratively discover the probable
solution. Each particle generates a position according to the new velocity and the previous
positions of the particle, and it is compared with the best position which is generated by
previous particles according to the cost function. The best solution is then kept; i.e., each
particle accelerates in the directions of not only the local best solution but also the global
best position. If a particle discovers a new probable solution, other particles will move closer
to it so as to explore the region more completely in the process (Gudise &
Venayagamoorthy, 2003).
Let N denotes the swarm numbers. In general, there are three attributes, current position aij,
current velocity vij and past best position Pbij, for particles in the search space to present
their features. Each particle in the swarm is iteratively updated according to the
aforementioned attributes assuming that the objective function f is to be minimized so that
the dimension consists of n particles and the new velocity of every particle is updated by (5).

)]()()[(

)]()()[()()1(

,22

,11

tatGbtrc

tatPbtrctwvtv

ijii

ijijiijij

−+

−+=+
 (5)

where vij is the velocity of the j-th particle of the i-th swarm for all Ni ...1∈ , w is the inertia

weight of velocity, c1 and c2 denote the acceleration coefficients, r1 and r2 are two uniform
random values falling in the range between (0, 1), and t is the number of generations. The
new position of the i-th particle is calculated as follows:

)1()()1(++=+ tvtata ijijij
 (6)

The past best solution of each particle is updated by:

 ()
() ()() ()()

()⎩
⎨
⎧

+

≥+
=+

otherwise,1

1 if,
1

ta

tPbftaftPb
tPb

i

ii

i
i (7)

The global best solution Gb will be found from all of particles during previous three steps
are defined as:

 nitPbftGb i
P ib

≤≤+=+ 1)),1((min arg)1((8)

4.2 Disturbance

Since initial particles are generated by randomly, they may not uniform enough to distribute
over the solution space. Therefore, it may trap particles into local optimal solution
inevitably. To avoid solution falling into the local minimal and jumping it out to find the
global minimal, this paper added a mutation-like disturbance strategy into the PSO process
(Sun et al, 2005). The disturbance mechanism randomly activates under a disturbance
probability. While the disturbance mechanism is active, the selected particle will be
randomly placed at a new position (ε value in this paper), then this particle will keep

following the PSO process to search a better solution. The other non-selected particle will
keep following the PSO iteration as usual and trying to find a new solution.

www.intechopen.com

Particle Swarm Optimization

428

4.3 Objective function
For searching a suitable ε value for RBFNN training, a function of root mean squared error

(RMSE) which evaluates discrepancies between the sampling data output yn and the

predictive output ∗

ny is applied. Thus, the objective function for NT sample is defined as

 () ()
() ()()

T

N

k

nn

n
N

kyky

yyf

T

∑
=

−

== 1

*

* RMSE ,ε (9)

where ()kyn
∗

 is the predictive output of the k-th sample data which is obtained by ε value

during training.
In the section II, the relationship between self-structure RBF network training and cluster
distance factor ε was discussed. If (9) can be reduced to a sufficiently small value, a suitable

value of ε could be obtained to train the structure of RBFNN. Thus, the predictive RBFNN

output would be closed to the sampling data output.

4.4 RBFNN structure determination by PSO
In this paper, our goal is to minimize the value of ()∗

nyf ,ε . The objective function minimized

by PSO and found potential optimal solution finally. Since we only search one parameter by
PSO (i.e., the cluster distance factor ε), the swarm number i=1, and defined the particle

number as mj ≤≤1 . In the initial state of PSO, all the particles’ positions aj (i.e., initial

cluster distance factor ε) were set as 0.02, vj were set as 0, and the Pbj and Gbj were

initialized by a random number generator in the range of [0, 1]. After particles moved by (6),
each particle will find a potential solution, the new past best position would be updated by
(7), and the global best position would be updated by (8). The particle would keep moving
to find a better solution until it reaches the goal or meets the termination condition (Lin et al,
2005). The pseudo code of our PSO-based cluster distance factor searching approach
presented in Fig. 2.

Figure 2. The pseudo code of PSO-based cluster distance factor searching

Create and initiate an N-dimension PSO: P

Repeat:

Execute PSO to update P by (5) and (6)
for each particle] ...1[mi∈

 if *),(*),(nijnij yPbfyf <ε

then
ijijPb ε=

 if *),(*),(ninij yGbfyPbf <

then
iji PbGb =

endfor

Until Termination condition is met

www.intechopen.com

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

429

5. Simulations and Results

5.1 Setting of simulation

The six nonlinear functions with different complexities are tested here. These tested
functions are listed as follows:

Ex. Tested function Range

1
)1(

)12)(2(
2x

xx
y

+

−−
=]12,8[−∈x

2
x

x
y

)sin(
=]10,10[−∈x

3 2/22 2

)21(1.1 xexxy −
+−=]5,5[−∈x

4
2

)cos1(
)

2
sin(5.0

xx
y

+
+=]8.10,5.4[−∈x

5)
10

2
sin()

5

2
sin(

xx
y

ππ
+=]10,0[∈x

6)
5

2
cos()

10
sin(

xx
y

ππ
+−=]10,10[−∈x

Table 1. The six tested nonlinear functions

In order to confirm the advantages of the proposed approach, the K-means algorithm
(Moddy & Darken, 1989) and GA-based self-growing RBFNN training algorithm (Yunfei &
Zhang, 2002) are also carries out in these tested functions. Due to (Yunfei & Zhang, 2002)
adopted Simple Genetic Algorithm (SGA) which using binary coding to train RBF structure
for saving computation time, but it will loose some accuracy compared to the real-valued,
i.e., this method may not present the optimal solution. So we implemented it with Real-
value Genetic Algorithm (RGA) to obtain accuracy results.
For every simulation, the training data set consists of 50 input-output data samples taken at
random, and the testing data set includes 75 samples different from the training data set. For
the definition of parameters in the proposed approach, w, c1 and c2 are given 0.12, 0.25 and
0.25 respectively, and the search range of ε is bounded between 0.2 and 1, the particle

number is 10. For the GA-based self-growing RBFNN training algorithm the search range of

ε in the input space is also in the range from 0.2 to 1, the crossover rate Pc is given 0.8, and

mutation rate Pm is given 0.01, the population size is 10. For the K-means method, the
optimal number of RBF neurons in the hidden layer is chosen to be 30 by experience.

5.2 Simulation results
After simulations, the RMSE of training data, RMSE of testing data, maximal error and
number of hidden node will be presented in tables for each case. In these tables, the three
involved algorithms are denotes as PSO-based, GA-based (Yunfei & Zhang, 2002) and K-
means (Moddy & Darken, 1989). Additionally, the real data and approximated data will be
shown in the same figure; meantime, the error from each approximation will be presented
by figures. There three sub-figures in each figure, the results from the left sub-figure to the

www.intechopen.com

Particle Swarm Optimization

430

right sub-figure are generated by PSO-based approach, GA-based approach and K-means
approach, respectively.
Example 1.

 PSO-based GA-based K-means

RMSE for training data 0.0332 0.0584 0.1552

RMSE for testing data 0.0520 0.0786 0.1962

Maximal error 0.3852 0.2355 0.9508

Number of hidden node 33 29 30

Table 2. Comparison between the three approaches in example 1

Figure 3. Curves of RBFNN output and real data in example 1. (solid-line represents the real
data, dashed-line represents the output data)

Figure 4. The errors between the real data and approximations in example 1

Example 2.

 PSO-based GA-based K-means

RMSE for training data 0.0035 0.0046 0.0234

RMSE for testing data 0.0099 0.0113 0.0357

Maximal error 0.0460 0.0509 0.1006

Number of hidden node 28 28 30

Table 3. Comparison between the three approaches in example 2

www.intechopen.com

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

431

Figure 5. Curves of RBFNN output and real data in example 2. (solid-line represents the real
data, dashed-line represents the output data)

Figure 6. The errors between the real data and approximations in example 2

Example 3.

 PSO-based GA-based K-means

RMSE for training data 0.0056 0.0173 0.1271

RMSE for testing data 0.0057 0.0188 0.0803

Maximal error 0.0134 0.0432 0.2441

Number of hidden node 24 22 30

Table 4. Comparison between the three approaches in example 3

Figure 7. Curves of RBFNN output and real data in example 3. (solid-line represents the real
data, dashed-line represents the output data)

www.intechopen.com

Particle Swarm Optimization

432

Figure 8. The errors between the real data and approximations in example 3

Example 4.

 PSO-based GA-based K-means

RMSE for training data 0.0079 0.0112 0.0337

RMSE for testing data 0.0192 0.0292 0.0740

Maximal error 0.1217 0.0939 0.1854

Number of hidden node 19 31 30

Table 5. Comparison between the three approaches in example 4

Figure 9. Curves of RBFNN output and real data in example 4. (solid-line represents the real
data, dashed-line represents the output data)

Figure 10. The errors between the real data and approximations in example 4

www.intechopen.com

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

433

Example 5.

 PSO-based GA-based K-means

RMSE for training data 0.0460 0.0519 0.0637

RMSE for testing data 0.0546 0.0564 0.0867

Maximal error 0.3056 0.3236 0.2208

Number of hidden node 20 21 30

Table 6. Comparison between the three approaches in example 5

Figure 11. Curves of RBFNN output and real data in example 5. (solid-line represents the
real data, dashed-line represents the output data)

Figure 12. The errors between the real data and approximations in example 5

Example 6.

 PSO-based GA-based K-means

RMSE for training data 0.0079 0.0092 0.0690

RMSE for testing data 0.0439 0.0509 0.0859

Maximal error 0.2159 0.2486 0.1855

Number of hidden node 29 27 30

Table 7. Comparison between the three approaches in example 6

www.intechopen.com

Particle Swarm Optimization

434

Figure 13. Curves of RBFNN output and real data in example 6. (solid-line represents the
real data, dashed-line represents the output data)

Figure 14. The errors between the real data and approximations in example 6

5.3 Discussion

In the simulation results in tables, PSO-based approach has lower RMSE for training data
and testing data. It means that over fitting does not happen in the proposed approach. From
figures of the curves of RBFNN output and real data, the approximated curves by PSO-
based approach is closer to the real data than these by others. From figures of the
approximated errors, it could be shown that PSO-based approach results small error in most
of sample, whereas the K-means approach has largest error.
We know that RBFNN needs different number of hidden node and cluster radius for
different complexities. K-means approach usually performs a larger error because it is not
able to decide a suitable number of hidden node. Though GA-based approach decides a
suitable number of hidden node, its cluster radius is not good enough to classify whole data.
The proposed approach is able to find out the optimal cluster radius to further decide a
number of hidden node because PSO has better capacity of global searching than GA.

6. Conclusion

This paper has presented a novel approach for self-structure RBFNN. A very important step
for the RBFNN training is to decide a proper number of hidden node. If the number of
hidden node does not chosen properly, the RBFNN may present poor global generalization
capability, slow training speed, and the requirement of large memory space. Therefore, to

www.intechopen.com

A Radial Basis Function Neural Network with Adaptive Structure
via Particle Swarm Optimization

435

decide a suitable cluster distance factor (ε) is the crucial condition for creating an optimal

self-structure RBFNN. This paper proposed a PSO-based approach for searching the optimal
ε ; further, RBFNN is able to determine the optimal number of hidden node automatically.

For proofing benefits of the proposed PSO-based approach, the simulations consisting of six
nonlinear system modeling were tested; meanwhile, GA-based approach and K-means
approach were also carried out for comparison. Simulation results show that the PSO-
RBFNN algorithm outperforms the GA-RBFNN and K-means methods by the minimal
training RMSE and the minimal testing RMSE.

7. References

Aiguo, S. & Jiren, L. (1998). Evolving Gaussian RBF network for nonlinear time series
modeling and prediction, IEEE Electronics Letters, Vol. 34 (12), pp. 1241-1243

Broomhead, D. S. & Lowe, D. (1988). Multivariable functional interpolation and adaptive
networks, Complex Systems, Vol. 2, pp. 321-355

Back, T.; Hammel, U. & Schwefel, H. P. (1997). Evolutionary computation: comments on the
history and current state, IEEE Trans. on Evolutionary Computation, Vol. 1, pp. 3-17

Chen, S.; Wu, Y. & Luk, B. L. (1999). Combined genetic algorithm optimization and
regularized orthogonal least squares learning for radial basis function networks,
IEEE Trans. on Neural Networks, Vol. 10 (5), pp. 1239-1243

Chen, S. (1995). Nonlinear time series modeling and prediction using Gaussian RBF
networks with enhances clustering and RLS learning, Electronics Letters, Vol. 31, No.
2, pp. 117-118

Eberhart, R. C. & Kennedy, J. (1995). A new optimizer using particle swarm theory,
Proceeding of 6th Int. Symp. Micro Machine and Human Science, pp. 39-43

Freeman, J. A. S. & Saad, D. (1995). Learning and generalization in radial basis function
networks, Neural Computation, Vo. 9 (7), pp. 1601-1622

Gudise, V. G. & Venayagamoorthy, G. K. (2003). Comparison of Particle Swarm
Optimization and Backpropagation as Training Algorithms for Neural Networks,
Proceeding of IEEE Swarm Intelligence Symposium, pp. 110-117

Karayiannis, N.B & Mi, G.W. (1997). Growing radial basis neural networks : merging
supervised and unsupervised learning with network growth techniques, IEEE
Trans. on Neural Networks, Vol. 8 (6), pp. 1492-1506

Lin, C. L.; Hsieh, S. T.; Sun, T. Y. & Liu, C. C. (2005). PSO-based learning rate adjustment for
blind source separation, Proceeding of International Symposium on Intelligent Signal
Processing and Communications Systems, pp. 181-184

Lowe, D. (1989). Adaptive radial basis function nonlinearities, and the problem of
generalization, Procedings of IEE International Conference on Artificial Neural Networks,
pp. 171-175

Moddy, Y. & Darken, C. J. (1989). Fast learning in network of locally tuned processing
unites, Neural computation, Vol.1, pp. 281-294

Song, A. & Lu, J. (1988). Evolving Gaussian RBF network for nonlinear time series modeling
and prediction, Electronics Letters, Vol. 34, No.12, pp. 1241-1243

www.intechopen.com

Particle Swarm Optimization

436

Sun, T. Y.; Hsieh, S. T. & Lin, C. W. (2005). Particle Swarm Optimization Incorporated with
Disturbance for Improving the Efficiency of Macrocell Overlap Removal and
Placement, Proceeding of The 2005 International Conference on Artificial Intelligence, pp.
122-125

Yunfei, B. & Zhang, L. (2002). Genetic algorithm based self-growing training for RBF neural
Network, IEEE Neural Networks, Vol. 1, pp. 840-845

Zheng, N.; Zhang, Z.; Shi, G. & Qiao, Y. (1999). Self-creating and adaptive learning of RBF
networks: merging soft-completion clustering algorithm with network growth
technique, Proceeding of International Joint Conference on Neural Networks, Vol. 2, pp.
1131-1135

www.intechopen.com

Particle Swarm Optimization

Edited by Aleksandar Lazinica

ISBN 978-953-7619-48-0

Hard cover, 476 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the

social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation

techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions

and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such

as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by

following the current optimum particles. This book represents the contributions of the top researchers in this

field and will serve as a valuable tool for professionals in this interdisciplinary field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tsung-Ying Sun, Chan-Cheng Liu, Chun-Ling Lin, Sheng-Ta Hsieh and Cheng-Sen Huang (2009). A Radial

Basis Function Neural Network with Adaptive Structure via Particle Swarm Optimization, Particle Swarm

Optimization, Aleksandar Lazinica (Ed.), ISBN: 978-953-7619-48-0, InTech, Available from:

http://www.intechopen.com/books/particle_swarm_optimization/a_radial_basis_function_neural_network_with_

adaptive_structure_via_particle_swarm_optimization

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

