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1Universidade de Trás-os-Montes e Alto Douro,  

2Instituto Superior de Engenharia do Porto 
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1. Introduction 

This chapter considers the particle swarm optimization algorithm as a system, whose 
dynamics is studied from the point of view of fractional calculus.   In this study some initial 
swarm particles are randomly changed, for the system stimulation, and its response is 
compared with a non-perturbed reference response. The perturbation effect in the PSO 
evolution is observed in the perspective of the fitness time behaviour of the best particle. 
The dynamics is represented through the median of a sample of experiments, while 
adopting the Fourier analysis for describing the phenomena. The influence upon the global 
dynamics is also analyzed. Two main issues are reported: the PSO dynamics when the 
system is subjected to random perturbations, and its modelling with fractional order 
transfer functions. 

2. Particle Swarm Optimization Basics 

Evolutionary algorithms have been successfully applied to solve complex optimization 
engineering problems. Together with genetic algorithms, the particle swarm optimization 
(PSO) algorithm, proposed by (Kennedy & Eberhart, 1995), has achieved considerable 
success in solving optimization problems. While PSO algorithms and related variants have 
been extensively studied (Clerk & Kennedy, 2002), the influence of perturbations signals 
over the operation conditions is not yet well known. 
The PSO algorithm was proposed originally by Kennedy and Eberhart (1995). This 
optimization technique is inspired in the way swarms behave and its elements move in a 
synchronized way, both as a defensive tactic and for searching food. An analogy is 
established between a particle and a swarm element. The particle movement is characterized 
by two vectors, representing its current position x and velocity v. Since 1995, many 
techniques were proposed to refine and/or complement the original canonical PSO 
algorithm, namely regarding it’s tuning parameters (Shi and Eberhat, 1999) and by 
considering hybridization with other evolutionary techniques (Lovbjerg et al., 2001). 
In this study a standard elementary PSO algorithm is considered (see Fig. 1). The basic 
algorithm begins by initializing the swarm randomly in the search space. As it can be seen in 
Fig. 1, where t and t + 1 represent two consecutive iterations, the position x of each particle 
is changed during the iterations by adding a new velocity v. This velocity is evaluated by 
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summing an increment to the previous velocity value. The increment is a function of two 
components representing the cognitive and the social knowledge.  
The cognitive knowledge of each particle is included by evaluating the difference between 
the current position x and its best position so far b. The social knowledge of each particle is 
incorporated through the difference between its current position x and the best swarm 
global position achieved so far g. The cognitive and social knowledge factors are multiplied 

by randomly uniformly generated terms ϕ1 and ϕ2, respectively. The particles velocity is 
restricted, in order to keep velocities from exploding, through the inertia term I (Clerk and 
Kennedy, 2002). 
 

Initialize Swarm 
  forAll particles  
    calculate fitness f 
  endfor 
Repeat 

  forAll particles 

    vt+1=Ivt+ϕ1(b-xt)+ ϕ2(g-xt) 
    xt+1=xt+vt+1 

  endfor 

  forAll particles  
    calculate fitness f 
  endfor 
until Stopping criteria 

Figure 1. Particle swarm optimization algorithm 

3. Fractional Calculus 

Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. 
Nevertheless, the application of FC just emerged in the last two decades, due to the progress 
in the area of chaos that revealed subtle relationships with the FC concepts. In the field of 
dynamical systems theory some work has been carried out but the proposed models and 
algorithms are still in a preliminary stage of establishment. 
The fundamentals aspects of FC theory are addressed in (Gement, 1938; Méhauté, 1991; 
Oustaloup, 1991; Podlubny, 1999). Concerning FC applications research efforts can be 
mentioned in the area of viscoelasticity, chaos, fractals, biology, electronics, signal 
processing, diffusion, wave propagation, percolation, modelling, control and irreversibility 
(Ross, 1974; Tenreiro Machado, 2001; Torvik, 1984; Vinagre, 2002; Westerlund, 2002). 

The FC is a generalization of the classical differential calculus to a non-integer order α ∈ C. 
Since its foundation has been the subject of distinct approaches. Due to this reason there are 
several alternative definitions of fractional derivatives. For example, the Laplace definition 

of a derivative of order α ∈ C of the signal x(t), Dα[x(t)], is a ‘direct’ generalization of the 
classic integer-order scheme yielding equation (1): 

 [ ] )(})({ sXstxDL αα =  (1) 

for zero initial conditions, where s represents the Laplace operator. This means that 
frequency-based analysis methods have a straightforward adaptation. 
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An alternative approach, based on the concept of fractional differential, is the Grünwald-
Letnikov definition given by equation (2) where h represents the time increment.  
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An important property revealed by equation (2) is that while an integer-order derivative 
implies just a finite series, the fractional-order derivative requires an infinite number of 
terms. This means that integer derivatives are ‘local’ operators in opposition with fractional 
derivatives which have, implicitly, a ‘memory’ of all past events.  
The characteristics revealed by fractional-order models make this mathematical tool well 
suited to describe phenomena such as irreversibility and chaos, because of its inherent 
memory property. In this line of thought, the propagation of perturbations and the 
appearance of long-term dynamic phenomena in a population of individuals subjected to an 
evolutionary process seems to be a case where FC tools fit adequately, as shown in (Solteiro 
Pires et al.; 2003, Solteiro Pires et al., 2006) for genetic algorithms. 

4. PSO Swarm Optimization Dynamic analysis 

4.1 Problem statement 

This section introduces the problem formulation adopted in the study of the PSO dynamic 
systems. Moreover, the dynamical phenomena involved in the signal propagation within 
the PSO population is analyzed. For a statistical sample of n independent cases, a particle is 
randomly initialized, in every experiment, and replaces the corresponding particle of the 
initial reference population. The experiments reveal a fractional dynamics of the 
perturbation propagation during the evolution which can be described by system theory 
tools. 
The PSO algorithm, called in this report the ‘system’, is applied in the optimization of: a 
quadratic function, the Eason function and the Bohachevsky function.  

 

Figure 2. Perturbation of the PSO system 

In the first test function case, the objective function consists in minimizing the quadratic 
function (3) which is adopted as a case study due to it’s simplicity. 

 
2)f( xx =  (3) 

This function has only one parameter and its global optimum value is located at f(x)|opt = 0. 

The variable interval is x ∈ [-100,100] and the algorithm uses an encoding scheme with real 
numbers to codify the particles. A PSO is executed during a period of Tm = 10000 iterations 

with {ϕ1, ϕ2} ~ U[0, 1.5]. 
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The influence of several factors can be analyzed in order to study the dynamics of the PSO 

system, particularly the inertia factor I or the ϕi factors, i = {1, 2}. This effect can vary 
according to the population size, fitness function and iteration number used. As mentioned 
previously, one particle of the initial population is changed randomly. The inertia parameter 
influence is studied to analyze the effect of the perturbation for the values of 
I = {0.50, 0.55,..., 0.80} versus the swarm population size pop = {6, 8,..., 12}. The variation of 
the best global particle fitness evolution is taken as the system output signal as illustrated in 
Fig. 2. 

4.2 The PSO dynamics 

Initially, the PSO system is executed without any initial perturbation signal, during 
Tm = 10000 iterations, for a predefined inertia weight value I and swarm population size. 
The data regarding this test is stored, namely the global particle fitness and the stochastic 
parameters. This experiment will serve as a reference test. The optimization system 
perturbation consists in replacing the first initial particle of the stored reference swarm 
population, in every algorithm execution, by another particle randomly generated. Indeed, 

this stimulus to the system, results in a swarm fitness modification δf which is evaluated. 
This perturbation test is repeated for n = 10000 cases. It is important to state that the 
remaining test conditions, namely the stochastic reference stored values, remain unchanged 
along the n experiments. Therefore, the variation of the resulting PSO swarm fitness 
perturbation, during the evolution, can be viewed as the output signal which varies during 
the successive iterations. 
The output signal consists in the difference between the population fitness with and without 

the initial perturbation, that is, δf(T) = fpert(T) − f(T). Figure 3a) shows the output signal 

δ f(T), for one particle replacement, in the iteration domain. In each experiment the Fourier 

transform of the signal perturbation, F[δ f(T)] (see Fig. 3b)) is evaluated in order to analyze 
the dynamics. 
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a) Iteration domain b) Polar diagram 

Figure 3. Output signal for an initial perturbation. Experiment with I = 0.7 and a swarm 
population size of pop = 12 elements.  

With the output signal Fourier description it is possible to evaluate the corresponding 
normalized transfer function (4): 
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where w represents the frequency, T the discrete time evolution (number of iterations used) 

and 1j −= . The transfer function H(jw) for this experiment is depicted in Figure 3b). 

Finally it is obtained a ‘representative’ transfer function, by using the median of the 
statistical sample (Tenreiro Machado & Galhano, 1998) of n experiments (see Figure 4).  
Figure 5 shows the archieved results for inertial values of I = {0.50, 0.55,..., 0.80}. The medians 
of the transfer functions calculated previously (i.e., for the real and the imaginary parts for each 
frequency) are taken as the final result of the numerical transfer function H(jw). 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

ℜ{H(jw)}

ℑ
{H

(j
w

)}

 
Figure 4. Median transfer function H(jw) of n = 10000 experiments for an inertial term I = 0.7 
and pop = 12 elements. 
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Figure 5. Median transfer function H(jw), of the n experiments for  I = {0.50, 0.55,…, 0.80} for 
a population swarm of pop = 12 elements. 
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Varying the swarm population number of elements in the interval pop ∈ [6, 12] results in a 
family of transfer functions. For a swarm size greater than 12 elements there is no difference 
between the reference test and the perturbation tests. It can be concluded that with large 
swarms an element has a negligible impact upon the search and, consequently, the 
performance of the algorithm is independent of the initial swarm. On the other hand, in 
small swarms, an element has a large impact on the evolution; therefore, it is necessary a 
large number of perturbation tests to lead to a convergence towards the statistical sample 
median. From the tests it can be observed that for I = 0.8 the median is very irregular 
because the system is close to the instability region (den Bergh and Engelbrecht, 2006). 

4.3 Dynamical analysis 

In this section the median of the numerical transfer functions is approximated by analytical 

expressions with gain k = 1 and one pole a ∈ R+ of fractional order α ∈ R+, given by equation 
(5): 
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Since the normalized Fourier transform (H) is used, it yields k = 1. In order to estimate the 

transfer function parameters {a, α} another PSO algorithm is used, which is named the 
identification PSO. The identification PSO is executed during Tide = 200 iterations with a 100 

particle swarm size. The PSO parameters are: {ϕ1, ϕ2}~U[0, 1.5], I = 0.6, and the transfer 

function parameters intervals are a ∈ [4 × 10-3, 50] and α ∈ [0, 100]. 
To guide the PSO search, the fitness function fide is used to measure the distance between the 
numerical median H(jwk) and the analytical expression G(jwk): 

 ∑
=

−=
nf

k

kk

1

ide )G(j)H(j)(jf ωωω  (6) 

where nf is the total number of sampling points and wk, k = {1,...,nf}, is the corresponding 
vector of frequencies. 
As explained previously, the optimization PSO has stochastic dynamics. Therefore, every 
time the PSO system is executed with a different initial particle replacement, it leads to a 
slightly different transfer function. Consequently, in order to obtain numerical convergence 
(Tenreiro Machado & Galhano, 1998) n = 10000 perturbation experiments are performed 
with different replacement particles, while all the other particles remain unchanged. The 
optimization PSO dynamics transfer function is evaluated by computing the normalized 
signals Fourier transform (FT) (equation 4). The transfer functions medians determined 
previously (i.e., for the real and the imaginary parts, and for each frequency) are taken as the 
final result of the numerical transfer function H(jw). 
Figure 6 and 7 show, superimposed, the normalized median transfer function H(jw) and the 
corresponding identified transfer function G(jw), both as polar and amplitude diagrams, 
respectively. As it can be observed from these figures the fractional order transfer function, 
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identified by the PSO, captures the optimization PSO dynamics quite well, apart from the 
high frequency range (not represented). 
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Figure 6. Polar Diagram of H(jw) and G(jw) for I = 0.70 and a swarm size of pop = 12 
elements 
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Figure 7. Amplitude Diagram of H(jw) and G(jw) for I = 0.7 and pop = 12 elements 

For evaluating the influence of the inertia parameter I and the swarm size, several 
simulations are performed ranging from I = 0.50 up to I = 0.80 and the number of swarm 

elements from pop = 6 up to pop = 12, respectively. The estimated parameters for {a, α} are 
depicted in Figure 8 and 9, respectively. 
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Figure 8. Parameter a versus {I, pop} 
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Figure 9. Parameter α versus {I, pop} 

The results reveal that the transfer function parameters {a, α} have some dependence with 
the inertia coefficient I and the swarm size pop. It can be observed that the transfer function 
parameters have maximum values at I = 0.65 and for pop = 10 elements. Moreover, it can be 

seen that there is a correlation between parameters a and α.  
In what concerns the transfer function, by enabling the zero/pole order to vary freely we get 

non-integer values for α. The alternative adoption of integer-order transfer functions would 
lead to a larger number of zero and poles to get the same quality in the fitting of curves. 

5. Other illustrative examples 

In this section additional experiments are presented, in which the PSO system is deployed to 
optimize: the Easom function (7) and the Bohachevsky function (8). 
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These functions (7,8) are more complex than the quadratic function used in previous section. 
In these cases, a swarm of pop = 20 elements was used in the experimental tests while 
varying the inertial parameter in the set I = {0.5, 0.6,…, 0.8}. The polar diagrams illustrated 
by Figures 10 and 11 were obtained for the Easom and the Bohachevsky fitness functions, 
respectively.  
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Figure 10. Median transfer function H(jw) of the n experiments for the Easom function and 
pop = 20 elements 
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Figure 11. Median transfer function H(jw), of the n experiments for the Bohachevsky 
function and pop = 20 elements 
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The approximations are carried out by the same identification PSO described previously. 
However, in these experiments, the medians of the numerical transfer functions are 
approximated by analytical expressions incorporating a time delay Td (9). 
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The polar diagrams confirm the existence of a time delay Td, which represents the 
perturbation propagation in the swarm evolution. Moreover, in these experiments the 
dynamics follows the behavior of a low-pass filter too. The parameters obtained by the 
identification PSO can be observed in Figure 12. The results reveal that the transfer function 

parameters {a, α, Td} have some dependence with the inertia coefficient I. 
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a) Easom function 
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b) Bohachevsky function 

Figure 12. Parameters {a, α, Td} of G(jw) 
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6. Conclusion 

This work analyzed the signal propagation and the phenomena involved in the discrete time 
evolution of a particle swarm optimization algorithm. The particle swarm algorithm was 
deployed as an optimization tool using three different functions as tests cases. The 
optimization PSO system was subjected to a statistical sample of tests. In each test a particle 
of a reference swarm was replaced by a randomly generated particle and the global 
population fitness perturbation effect measured. A second PSO algorithm was used to 
identify the parameters of a fractional order transfer function. The results indicate that the 
fractional calculus provides a good understanding of the effects corresponding to the 
propagation of the perturbations signals over the operating conditions. 
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