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1. Introduction 

The particle swarm optimization technique is one of the promising tools to find a proper 
optimum for an unknown function optimization. Especially, global search capability of the 
method is very powerful. The particle swarm optimization utilizes common knowledge of 
the group and individual experiences effectively. That is, direction for the best estimator 
that a particle has ever reached, direction for the best one that all particles have ever found 
and momentum are successfully combined to determine the next direction. At the same 
time, the method does not utilize gradient of the objective function. Only values of the 
objective function are used. In many applications, it is difficult or impossible to obtain the 
gradient of an objective function. Then, the particle swarm optimization can take advantage 
of the merit. 
However, this means that the method does not use local information of the function. Even if 
a particle is close to a global optimal, the particle moves based on three factors described 
above. In this case, it seems better to search neighbour area carefully. To do so, local 
information such as gradient is necessary. 
On the other hand, the simultaneous perturbation method is a kind of stochastic gradient 
method. The scheme can obtain the local information of the gradient without direct 
calculation of the gradient. The simultaneous perturbation estimates the gradient using a 
kind of finite difference technique. However, even if dimension of the parameters are large, 
the simultaneous perturbation requires only two values of the target function. Therefore, we 
can apply this to high dimensional optimization problems in effect. 
As mentioned now, since the simultaneous perturbation is a stochastic gradient method, we 
cannot expect global search capability. That is, this method cannot give a global optimal but 
a local one. 
Combination of the particle swarm optimization and the simultaneous perturbation 
optimization will yield interesting algorithms which have advantages of these two 
approaches. There are some ways to combine the particle swarm optimization and the 
simultaneous perturbation method. In this paper, we propose four new algorithms based on 
combinations of the particle swarm optimization and the simultaneous perturbation. Some 
results for test functions are also shown. 
Moreover, hardware implementation of these kinds of algorithms is interesting research 
target. Especially, the particle swarm optimization has plural search points which are 
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candidates of optimum. If we can evaluate these search points in parallel processing system, 
we can realize intriguing optimization scheme as a hardware system. From this point of 
view, we implemented the particle swarm optimization using the simultaneous 
perturbation by using field programmable gate array (FPGA). This paper presents detailed 
description on the implementation of the simultaneous perturbation particle swarm 
optimization. 

2. Particle swarm optimization and simultaneous perturbation 

2.1 Particle swarm optimization 

The particle swarm optimization is proposed by Eberhart and Kennedy (Kennedy & 
Eberhart, 1995). This scheme realizes an intelligent interesting computational technique. 
Intelligence come out swarm behaviour of creatures are successfully modelled as an 
optimization scheme (Bonabeau et al., 1999)(Engelbrecht, 2006). Many applications of the 
particle swarm optimization for some fields are reported (Juang, 2004)(Parsopoulos & 
Vrahatis, 2004)(Bo et al., 2007)( Fernandez et al., 2007)( Nanbo, 2007)(del Valle et al., 2008). 

Our problem is to find a minimum point of an objective function 1( )f x ∈ℜ  with an 

adjustable n-dimensional parameter vector nx∈ℜ . The algorithm of the particle swarm 

optimization is described as follows; 

  (1) 

  (2) 

where, the parameter vector tx  denote an estimator of the minimum point at the t-th 

iteration. tx∆  is called a velocity vector, that is, a modifying vector for the parameter vector. 

This term becomes so-called momentum for the next iteration. 

tp  is the best estimator that this particle has ever reached, tn  is the best one that all the 

particles have ever found until the t-th iteration. The coefficients 1φ  and 2φ  are two positive 

random numbers in a certain range to decide a balance between the individual best 
estimator and the swarm best one. Uniform distribution with upper limitation is used in this 
work. ω  denotes a coefficient to adjust the effect of the inertia, χ  is a gain coefficient for the 

update. 
As shown in Eq.(2), in the particle swarm optimization algorithm, each individual changes 
their position based on the balance of three factors; velocity, the individual best estimator 
and the group best estimator. All the particle change their position using Eq.(2). 

2.2 Simultaneous perturbation 

The simultaneous perturbation optimization method is very simple stochastic gradient 
method which does not require the gradient of an objective function but only two values of 
the function. The simultaneous perturbation was introduced by J.C.Spall in 1987 (Spall, 
1987). Convergence of the algorithm was proved in the framework of the stochastic 
approximation method (Spall, 1992). Y.Maeda also have independently proposed a learning 
rule of neural networks based on the simultaneous perturbation method and reported a 
comparison between the simultaneous perturbation type of learning rule of neural 
networks, the simple finite difference type of learning rule and the ordinary back-
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propagation method (Maeda et al.,1995). J.AIespector et al. and G.Cauwenberghs also 
individually proposed a parallel gradient descent method and stochastic error descent 
algorithm, respectively, which are identical to the simultaneous perturbation learning rule 
(Cauwenberghs, 1993) (Alespector et al., 1993). Many applications of the simultaneous 
perturbation are reported in the fields of neural networks (Maeda, 1997) and their hardware 
implementation (Maeda, 2003) (Maeda, 2005). The simultaneous perturbation method is 
described as follows; 

  (3) 

  (4) 

Where, a is a positive constant, c  and i

tc  are a perturbation vector and its i-th element 

which is determined randomly. i

tg∆  represents the i-th element of tg∆ . i

tc  is independent 

with different element and different iteration. For example, the segmented uniform 

distribution or the Bernoulli distribution is applicable to generate the perturbation. tg∆  

becomes an estimator of the gradient of the function. 
As is shown in Eq.(4), this method requires only two values of the target function despite of 
dimension of the function. That is, even if the dimension n of the evaluation function is so 
large, two value of the function gives the partial derivative of the function with respect to all 
the parameters, although ordinary finite difference requires many values of the function. 
Combination with the particle swarm optimization is very promising approach to improve 
performance of the particle swarm optimization. 

3. Combination of particle swarm optimization and simultaneous perturbation 

We can obtain a global optimal using the particle swarm optimization. However, 
unfortunately, since the particle swarm optimization itself does not have a capability 
searching the neighbor of the position, and it may miss the optimal point near the present 
position. As a result, efficiency of the particle swarm optimization may be limited in some 
cases. 
On the other hand, the simultaneous perturbation estimates gradient of the position. The 
simultaneous perturbation method searches only local area based on the estimated gradient. 
If we can add the local search capability of the simultaneous perturbation to global search 
one of the particle swarm optimization, we will have a useful optimization method with 
good global search capability and efficient local search ability at the same time. Therefore, 
combination of the particle swarm optimization and the simultaneous perturbation is 
promising and interesting approach. 
Combined methods of the particle swarm optimization and the simultaneous perturbation is 
proposed by Maeda (Maeda, 2006). In this work, the update algorithm which is a 
combination of particle swarm optimization and the simultaneous perturbation is applied 
for all the particles uniformly. In other words, the same update algorithm is used for all 
particles. 
In population, there are plural particles and we know the best one. The best individual is the 
best candidate for a global optimal at that iteration. A possibility that the particle is close to 
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the global optimal is high. We change the movement rule depending on a situation of the 
particles. Especially, the best particle has a specific meaning; 
From this point of view, we propose some schemes which are combinations of the particle 
swarm optimization and the simultaneous perturbation. 

3.1 Scheme 1 

We directly combine the idea of the particle swarm optimization and the simultaneous 
perturbation. In this method, the momentum term of Eq.(2) is replaced by the simultaneous 
perturbation term. The estimated gradient generated by Eq.(4) is used to change the 
direction of modification. The main equation is shown as follows; 

  
(5)

 

Where the i-th element of tg∆  is defined by Eq.(4). a is a coefficient to adjust the effect of the 

estimated gradient. 
Since the information is estimated by the simultaneous perturbation method, the algorithm 
does not use the gradient of the function directly but utilizes only two values of the objective 
function. Therefore, this scheme contains twice observations or calculations for the objective 
function. However, this number of the observations does not depend on the dimension n of 
the function. Local information of the gradient of the function is added to the ordinary 
particle swarm optimization effectively. Fig.l shows elements to generate modifying 
quantity in the first algorithm. 

 

Figure 1. Modifying vector of the algorithm 1 

3.2 Scheme 2 

In the algorithm 1, all individuals have the same characteristics. That is, Eq.(5) is applied for 
all particles. However, if the best particle is close to the global minimum, and this is likely, 
the best particle had better search neighbor of the present point carefully. Then, 
modification based on the original particle swarm optimization is not suitable for this 
particle. The gradient type of method is suitable. 
Therefore, in this algorithm 2, the simultaneous perturbation method of Eqs.(3) and (4) are 
applied only to the best particle. All the other individuals are updated by the ordinary 
particle swarm optimization shown in Eqs.(l) and (2). 

3.3 Scheme 3 

In this algorithm 3, the particle swarm optimization and the simultaneous perturbation are 
mixed. That is, in every iteration, half of individuals in the population are updated by the 
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particle swarm optimization, left half particles are modified only by the simultaneous 
perturbation. 
All the individuals select the particle swarm optimization or the simultaneous perturbation 
randomly with probability of 0.5 in every iteration. 
It is interesting what level of performance does such a simple mixture of the particle swarm 
optimization and the simultaneous perturbation has. Changing ratio of the particle swarm 
optimization and the simultaneous perturbation is another option. 

3.4 Scheme 4 

We have another option to construct new algorithm. Basically, we use the algorithm 3. 
However, the best individual is updated only by the simultaneous perturbation. The reason 
is as same as that of the algorithm 2. The best particle has a good chance to be a neighbor of 
a global minimum. Therefore, we always use the simultaneous perturbation for the best 
particle. 

4. Comparison 

In order to evaluate performance of these algorithms, we use the following test functions. 
These functions have their inherent characteristics about local minimum or slope. 

• Rastrigin function 

• Rosenbrock function 

• 2n-minima function 
Comparisons are carried out for ten-dimensional case, that is, n=10 for all test functions. 
Average of 50 trials is shown. 30 particles are included in the population. Change of average 
means that an average of the best particle in 30 particles at the iteration for 50 trials are 
shown. For the simultaneous perturbation term, the perturbation c is generated by uniform 
distribution in the interval [0.01 0.5] for the scheme 1 to 4. These setting are common for the 
following test functions. 
1. Rastrigin function 
The function is described as follows; 

  
(6)

 

The shape of this function is shown in Fig.2 for two-dimensional case. The value of the 
global minimum of the function is 0. Searched area is -5 up to +5 for the function. We found 
the best setting of the particle swarm optimization for the function χ =1.0 and ω =0.9. 

Upper limitation of 1φ  and 2φ  are 2.0 and 1.0, respectively. Using the setting (See Table 1), 

we compare these four methods and the ordinary particle swarm optimization.  
As shown in the figure, this function contains many local minimum points. It is generally 
difficult to find a global minimum using the gradient type of the method. It is difficult also 
for the particle swarm optimization to cope with the function. The past experiences will not 
give any clue to find the global minimum. This is one of difficult functions to obtain the 
global minimum. 
Change of the best particle is also depicted in Fig.3. The horizontal axis is number of 
observations for the function. The ordinary particle swarm optimization requires the same 
number of observations with the number of particles in the population. Since the scheme 1 
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contains the simultaneous perturbation procedure, the scheme uses twice number of the 
observations. However, this does not change, even if the dimension of the parameters 
increases. 

 

Figure 2. Rastrigin function 

 

Figure 3. Change of the best particle for Rastrigin function 

 

Table 1. Parameters setting for Rastrigin function 
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The scheme 2 has the number of the observations of the ordinary particle swarm 
optimization plus one, because only the best particle uses the simultaneous perturbation. 
The scheme 3 requires 1.5 times of number of the observation of the particle swarm 
optimization, because half of the particles in the population utilize the simultaneous 
perturbation. The scheme 4 basically uses the same number of the observations with the 
scheme 3. In our work, we take these different situations into account. For this function, 
scheme 1,3 and 4 have relatively good performance. 
2. Rosenbrock function 
Shape of the function is shown in Fig.4 for two-dimensional case. The value of the global 
minimum of the function is 0. Searched area is -2 up to +2. Parameters are shown in Table 2. 
Since the Rosenbrock has gradual descent, the gradient method with suitable gain 
coefficient will easily find the global minimum. However, we do not know the suitable gain 
coefficient so that the gradient method will be inefficient in many cases. On the other hand, 
the particle swarm optimization is beneficial for this kind of shape, because the momentum 
term accelerates moving speed and plural particles will be able to find the global minimum 
efficiently. 
Change of the best particle is depicted in Fig.5. From Fig.5, we can see that the scheme 2 and 
the ordinary particle swarm optimization have relatively good performance for this 
function. As we mentioned, the ordinary gradient method has not good performance, the 
particle swarm optimization is suitable. If we add local search for the best particle, the 
performance will increase. The results illustrate this. The scheme 1 does not have the 
momentum term, it is replaced by the estimated gradient term by the simultaneous 
perturbation. The momentum term accelerates convergence and the gradient term does not 
work well for flat slope. It seems that this results in this slow convergence. 

  
(7)

 

 
 

 

Figure 4. Rosenbrock function 
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Figure 5. Change of the best particle for Rosenbrock function  

 

 

Table 2. Parameters setting for Rosenbrock function 

3. 2n-minima function  
The 2n-minima function is 

  
(8)

 

Shape of the function is shown in Fig.6. Searched area is -5 up to +5. Table  3  shows 
parameters setting. The value of the global minimum of the function is -783.32. 
The function has some local minimum points and relatively flat bottom. This deteriorates 
search capability of the gradient method. Change of the best particle is also depicted in 
Fig.7. The scheme 4 has relatively good performance for this case. The function has flat 
bottom including a global minimum. In order to search the global minimum, it seems that 
the swarm search is useful. Searching the global minimum using many particles is efficient. 
Simultaneously, local search is necessary to find exact position of the global minimum. It 
seems that the scheme 4 matched for the case. 
As a result, we can say that the gradient search is important and combination with the 
particle swarm optimization will give us a powerful tool. 
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Figure 6. 2n-minima function 

 

 

Figure 7. Change of the best particle for 2n-minima function  

 

 

Table 3. Parameters setting for 2n-minima function 
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5. FPGA implementation 

Now, we implement the simultaneous perturbation particle swarm optimization using 
FPGA. Then we can realize one feature of parallel operation of the particle swarm 
optimization. This results in higher operation speed for optimization problems. 
We adopted VHDL (VHSIC Hardware Description Language) in basic circuit design for 
FPGA.   The   design  result  by  VHDL  is  configured   on  MU200 - SX60  board  with 
EP1S60F1020C6 (Altera) (see Fig.8). This FPGA contains 57,120 LEs with 5,215,104 bit user 
memory. 

 

Figure 8. FPGA board MU200-SX60 (MMS) 

 

Figure 9. Configuration of the SP particle swarm optimization system 
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Visual Elite (Summit) is used for the basic deign. Synplify Pro (Synplicity) carried out the 
logical synthesis for the VHDL. QuartusII (Altera) is used for wiring.Overall system 
configuration is shown in Fig.9. Basically, the system consists of three units; swarm unit, 
detection unit and simultaneous perturbation unit. 
In this system, we prepared three particles. These particles works parallel to obtain values of 
a target function, and are updated their positions and velocity. Therefore, even if the system 
has many particles, this does not effect on the overall operation speed. Number of the 
particles in this system is restricted by the scale of target FPGA. We should economize the 
design, if we would like to contain many particles. 
The target function with two parameters x1 and x2 is defined as follow; 

  
(9)

 

Based on Rastrigin function, we assume this test function with optimal value of 0 and 8th 
order. We would like to find the optimal point (0.0 0.0) in the range [-5.5 5.5]. Then optimal 
value of the function is 0. Fig. 10 shows shape of the function. 

 

 

 

Figure 10. Shape of the target function 

5.1 Swarm unit 

Swarm unit includes some particles which are candidate of the optimum point. Candidate 
values are memorized and updated in these particle parts. 
Configuration of the particle part is shown in Fig. 11. This part holds its position value and 
velocity. At the same time, modifying quantities for all particles are sent by the 
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simultaneous perturbation unit. The particle part updates its position and velocity based on 
these modifying quantities. 

 

 

Figure 11. Particle part 

5.2 Detection unit 

The detection unit finds and holds the best estimated value for each particle. We refer this 
estimator as individual best. And based on the individual best values of the each particle, 
the unit searches the best one that all the particles have ever found. We call it the group best. 
The individual best values and the group best value are stored in RAM. For iteration, new 
positions for all particles are compared with corresponding values stored in RAM. If new 
position is better, it is stored, that is, the individual best value is updated. Moreover, these 
are used to determine the group best value. 
These individual best values and the group best value are used in the swarm unit to update 
the velocity. 

5.3 Simultaneous perturbation unit 

The simultaneous perturbation unit realizes calculation of evaluation function for each 
particle, estimation of the gradient of the function based on the simultaneous perturbation. 
As a result, the unit produces estimated gradient for all the particles. The results are sent to 
the swarm unit. 

5.4 Implementation result 

Single precision floating point expression IEEE 574 is adopted to express all values in the 
system. Ordinary floating point operations are used to realize the simultaneous perturbation 
particle swarm optimization algorithm. 
We searched the area of [-5.5 5.5]. Initial positions of the particles were determined 
randomly from (2.401, 2.551), (-4.238, 4.026) or (-3.506, 1.753). Initial velocity was all zero. 

Then we defined value of χ  is 1. Coefficients 1φ  and 2φ  in the algorithm were selected from 

2i(=2),  2°(=1),  2-i(=0.5), 2-2(=0.25), 2-3(=0.125), 2-4(=0.0625), 2-5(=0.03125) or 2-6(=0.015625). 

This simplifies multiplication of these coefficients. The multiplication can be carried out by 
addition for exponent component. 
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Design result is depicted in Fig.12. 84% of LE is used for all this system design. We should 
economize the scale of the design, if we would like to implement much more particles in the 
system. Or, we can also adopt time-sharing usage of the single particle part. Then total 
operation speed will deteriorate. 

 

 

Figure 12. Design result 

 

 

Figure 13. Simulation result 
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Fig.13 shows a simulation result by Visual Elite. Upper six signals xi_l_l upto xi_3_2 denote 
values of parameters x1 and x2 of three particles, respectively. Lower three signals HI upto 
Pi3 are individual best values of three particles at the present iteration. x1 and x2 values are 
consecutively memorized. Between these, the best one becomes group best shown in Pg 
signal. f_Pg is the corresponding function value. In Fig.13 between three particle, the second 
particle of Pi2 became the group best value of Pg. We can find END flag of "LED" at 75th 
iteration. 

 

 

Figure 14. Operation result 

Fig.14 shows a change of the evaluation function of the best of the swarm for iteration. The 
system easily finds the optimum point with three particles. About 50 iteration, the best 
particle is very close to global optimum. As mentioned before, after 75 iteration, the system 
stoped with an end condition. 

6. Conclusion 

In this paper, we presented hardware implementation of the particle swarm optimization 
algorithm which is combination of the ordinary particle swarm optimization and the 
simultaneous perturbation method. FPGA is used to realize the system. This algorithm 
utilizes local information of objective function effectively without lack of advantage of the 
original particle swarm optimization. Moreover, the FPGA implementation gives higher 
operation speed effectively using parallelism of the particle swarm optimization. We 
confirmed viability of the system. 
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