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1. Introduction     

Multi-robotics systems are currently subject of major interest in the robotics literature. In the 
leading journals can be found hundreds of articles, published in the last few years, 
concerning applications and theoretical studies of small groups maintaining in fixed 
formation (Fua et al., 2007; Kaminka et al., 2008) as well as swarms of thousands robots 
(Derenick & Spletzet, 2007; Daigle et. al, 2008). 
The large systems can be moreover represented by work published in (Peasgood et al., 2008) 
where collision free trajectories to reach individual goals are designed for 100 robots. The 
method using graph and spanning tree representation is developed for utilization in 
underground mine environment. In another example (Kloetzer & Belta,2007), a large swarm 
of robots is controlled using hierarchical abstractions. Inter-robot collision avoidance and 
environment containment are there guaranteed applying centralized communication 
architecture. Finally work presented in (Milutinovi & Lima, 2006) applies a Stochastic 
Hybrid Automation model for modeling and control of multi-agent population composed of 
a large number of agents. In this method probabilistic description of task allocation as well 
as distribution of the population over the work space is considered. As an example of 
common multi-robots application highway traffic coordination can be mentioned. In 
(Pallotino et al., 2007) is presented decentralized approach using traffic rules for control of 
tens vehicles. The method enables dynamically adding and removing of the vehicles and is 
based only on local communication which makes the algorithm scalable.  
Algorithms designed for smaller groups of robots are usually aimed at maintaining of 
vehicles in a predefined formation for the purpose of cooperative tasks accomplishing (as 
can be e.g. box pushing (Vig & Adams, 2006), load carrying (Tanner et al., 2003), snow 
shoveling (Saska et al., 2008) or aircraft as well as satellites cooperative mapping (Ren & 
Beard, 2003; Kang & Sparks, 2000). Another interesting application of formation driving is 
presented in (Fahimi, 2007) where autonomous boats are maintained in formations under 
sliding mode, which provides faster movement. The hot research topics in formations of 
autonomous robots, investigated nowadays, include e.g. data fusion: (Kaminka et al., 2008) 
represents the sensing capabilities using a monitoring multigraph. This approach allows the 
robots to adjust to sensory failures by switching of control graphs on-line. An application of 
data fusion can be cooperative localization of mobile formations: (Mourikis & Roumeliotis, 
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2006b) addresses a problem of resource allocation which provides the sensing frequencies, 
for each sensor on very robot, required in order to maximize the positioning accuracy of the 
group. This work is extended by a performance analysis providing upper bound on the 
robots' expected positioning uncertainty which is determined as a function of the sensors' 
noise covariance and relative position measurements (Moutikis & Roumeliotis, 2006a). 
Another separate branch of the research relevant to the formations of mobile robots is 
solving how to achieve the desired formation. An approach considering this task without 
assigning specific configuration to specific robots is published in (Kloder & Hutchinson, 
2006) where a new representation for the configuration space of permutation-invariant 
multi-robot groups is described.  
This chapter is focussed on the path planning and formation driving of autonomous car-like 
robots. In the literature formation driving approaches are divided into the three main 
groups: virtual structure, behavioral techniques, and leader-following methods. In the 
virtual structure approaches is the entire formation regarded as a single structure where to 
each vehicle is given a set of control to follow the desired trajectory of formation as a rigid 
body (Beard et al., 2001; Lalish et al., 2006). In behavior based methods the desired behaviors 
are designated for each agent and the final control is derived as a weighted sum with 
respect to the importance of each task (for basic ideas see (Langer et al., 1994; Parker, 1998). 
These classical methods have been extended for maintaining of shape of formations using 
desired patterns (Lawton et al., 2003; Balch & Arkin, 1998). In the leader-following 
approaches, a robot or even several robots are designated as leaders, while the others are 
following them (Desai et al., 2001; Das et al., 2003). Example of the methods using multiple 
leaders is presented in (Fredslund & Mataric, 2002) where due to limited communication the 
followers are leaded by their closest neighbors. Unfortunately all these results are focused 
on the following of a leader's trajectory which is assumed as an input of the methods. It is 
supposed that the trajectory is designed by a human operator or by a standard path 
planning method modified for formation requirements. In the literature there is no adequate 
method providing flexible control inputs for the followers as well as designing an optimal 
path for the leader of formation responding to the environment which is necessary for fully 
autonomous systems. 
This chapter proposes a path planning approach developed for leader-following formations 
of car-like robots which is an extension of work (published by the authors' team in (Saska et 
al., 2006)) designed for single robot. In this extended method a reference path calculated by 
the leader should be feasible for all following robots without changing a relative distance in 
the formation. This requirement can be satisfied using a solution which is composed of 
smoothly connected cubic splines and can be calculated on-line. Qualities of the result like 
the length and minimal radius of the resulting path as well as the distance to obstacles are 
merged into a discontinuous penalty function.  
The resulting global minimization problem is solved with Particle Swarm Optimization 
(PSO). Since the original PSO scheme has been developed, many various modifications were 
proposed that more or less improve the method. In context of our optimization problem, we 
are strongly limited by the requirement on low time complexity. Therefore, every 
modification that could be used here must not lead to any slow down of the convergence. 
This fact suspend some sequential hybridization of PSO and any other optimization 
technique. Also, any sub-swarm based and multi-start algorithms are not suitable. It will be 
shown that the original global-best PSO performs well and even significantly better than 
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genetic algorithms. Nevertheless, the chapter shows some comparison of PSO with limited 
maximum velocity and constricted PSO that can improve the result in case of small swarm 
and number of iterations.  

2. Formation Control 

The formation driving method described in this section is based on a leader-follower 
approach, in which the followers should follow a leader's trajectory. The method was 
developed by Barfoot and Clark (Barfoot et al., 2002; Barfoot & Clark, 2004) and later 
improved for following of trajectories with arbitrary shape within our team (Saska et al., 
2006; Hess et al., 2007). In this chapter there will be published only the parts of formation 
control necessary for understanding of restrictions applied in the path planning while a 
detailed description of control inputs for each vehicle can be found in (Saska et al., 2006; 
Hess et al., 2007). 
In the description of the method as well as in the final experiments, known map of 

environment and utilization of car-like robots with limits for maximum velocity rv  and 

minimum turning radius rR  will be assumed. Furthermore, around each vehicle will be 

considered distance rd  from its center in which the obstacles have to be avoided ( rd  is 

usually a function of robot’s width). 

 

 

Figure 1. Two subsequence snapshots of formation driving using fixed position of followers 
in Cartesian (a) and Curvelinear (b) coordinates. Solid lines denote path of leader while 
paths of followers are denoted by dashed lines 

Important fact of the formation driving of car-like robots that needs to be considered is 
caused by impossibility to change heading of the robot on spot. Due to this feature 
formations with fixed relative distance in Cartesian coordinates cannot be used, because 
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such structure makes smooth movement of the followers impossible (simple example is 
shown in Fig. 1. Therefore we utilized an approach in which the followers are maintained in 
relative distance to the leader in curvelinear coordinates with two axes p and q, where p 
traces movement of leader and q is perpendicular to p as is demonstrated in Fig. 1b. The 
positive direction of p is defined from actual position of the leader back to the origin of its 
movement and the positive direction of q is defined in the left half plane in direction of 
forward movement. 

The shape of formation is then uniquely determined by states )( )(tpL i
tψ  in travelled distance 

pi(t) from actual position of the leader along its trajectory and by offset distance )( )(tpi i
tq  

between positions of the leader and the ith  follower in perpendicular direction from the 

leaders' trajectory. The parameters )(tpi and )(tqi  defined for each follower i  can be 

varying during the mission and )(tpi
t is time when the leader was at the travelled distance 

)(tpi  behind the actual position. )}(),(),({)( ttytxt LLLL Θ=ψ  denotes the 

configuration of a leader robot at time t , and similarly )}(),(),({ ttytx iiii Θ=ψ , with 

},,1{ rni …∈ , denote the configuration for each of the rn  follower robots at time t . The 

Cartesian coordinates tt yx ,  for an arbitrary configuration )(tψ  define the position of a 

robot and )(tΘ  denotes its heading. 

To convert the state of the followers in curvelinear coordinates to the state in rectangular 

coordinates )(tiψ the following equations can be applied: 

  

(1)

 

where )}(),(),({)( )()()()( tpLtpLtpLtpL iiii
ttytxt Θ=ψ is state of the leader in time )(tpi

t . 

Applying the leader following approach using qp,  coordinates we can easily determine 

inadmissible interval of turning radius for the leader of formation as )();( tRtR ff

+−
, where 

  

(2)

 

These restrictions must be applied due to the different turning radius of the robots on the 
different position in the formation during turning. It is obvious that the robot following 
inner track should go slower and with smaller turning radius than the robot further from 
the centre of turning.  
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Since the leader trajectory has to be collision free for the leader but also for the followers, the 
shape of the formation should be included to the avoidance behaviour. The extended 
obstacle free distance for the leaders' planning can be then expressed as 

  (3) 

Remark 2.1 Time dependence and asymmetry of the formation will be for simplification of 
the algorithm description omitted and the variables will be considered as constants: 

  

(4) 

where T is total time of the formation movement. 

3. Path Description and Evaluation  

The path planning for the leader of formation can be realized by a search in the space of 
functions. In this approach the space is reduced to a sub-space which only contains strings 
of cubic splines. The mathematic notation of a cubic spline (Ye & Qu, 1999)  is 

  (5) 

where s is within the interval >< 1;0  and DCBA ,,, are constants. The whole string of 

the splines is then in 2D case uniquely determined by n8  variables (n  denotes the amount 

of splines in the string). The initial and desired state (position and orientation) of the 
formation is specified by 8 equations, while continuity of first and second derivative in the 
whole path, which is important for the formation driving as is shown in (Saska et al., 2006), 

is guaranteed by )1(6 −n  equations.  

 

 

 

Figure 2. Path representation 
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Therefore, only )1(2 −n  degree of freedom define the whole path, which conforms to 

positions of the points in the spline connections. The whole path representation used in our 
method is shown in Fig. 2. 
Each solution achieved by the global optimization method is evaluated by a cost function. 
The global minimum of this function corresponds to a smooth and short path that is safe 
(there is sufficient distance to obstacles). The cost function was in introduced method used 
in the form 

  (6) 

where part lengthf  corresponds to the length of the path which in 2D case can be computed 

by 

  
(7)

 

The component cedisf tan  (Fig. 3a) penalizes the paths close to an obstacle and it is defined 

by equation 

  

(8)

 

where dfp  penalizes solutions with a collision that can be avoided by a change in the 

formation and drp  penalizes paths with a collision of the leader. Parameter d  denotes 

minimal distance of the path to the closest obstacle and can be expressed as 

  
(9)

 

where O is set of all obstacles in the workspace of the robots. 

The part of the cost function radiusf  (Fig. 3b), that is necessary because of using the car-like 

robots as well as due to presented formation driving approach, is computed according 

  

(10)
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where solutions penalized only by rfp  can be repaired by a formation changing, while 

paths with radius smaller than rR  do not meet even requirements for a single robot. 

Parameter r is minimal radius along the whole path and it is defined by  

  

(11)

 

 

 

 

Figure 3. (a) cedisf tan , (b) radiusf  - components of cost function with denoted penalizations  

4. Particle Swarm Optimization 

Each particle i is represented as aD-dimensional position vector )(txi
G

and has a 

corresponding instantaneous velocity vector )(tvi
G

. The position vector encodes robot path 

according to the schema depicted in Fig. 2. In our simple case of three splines (two spline 

connections), the position vector is 4-dimensional and },,,{)( ,2,2,1,1 yxyxi PPPPtx =
G

. 

Furthermore, each particle remembers its individual best value of fitness function and 

position )(tpi
G

 that has resulted in that value. During each iteration t, the velocity update 

rule (12) is applied on each particle in the swarm: 

  

(12)
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The )(tpg
G

 is the best position of the entire swarm and represents the social knowledge. 

Another alternative can be "local best PSO", where the best position from a local 

neighborhood is used instead of )(tpg
G

. We chose the "global-best PSO" because of faster 

convergence that is consistent with our requirement on low time complexity. The parameter 
w is called inertia weight and during all iterations decreases linearly from wstart=0.8 to 
wend=0. The symbols R1 and R2 represent the diagonal matrices with random diagonal 

elements drawn from a uniform distribution between 0 and 1. The parameters 1ϕ  and 2ϕ  

are scalar constants that weight influence of particles' own experience and the social 

knowledge. The parameters were set 221 == ϕϕ  in compliance with literature 

recommendation. 
Next, the position update rule (13) is applied: 

  (13) 

If any component of )(tvi
G

 is less than maxV−  or greater than maxV+ , the corresponding 

value is replaced by maxV−  or maxV+ , respectively. The maxV  is maximum velocity 

parameter. This parameter (as well as the velocity and position vectors) is related to the 

spatial dimensions of the planning area. For the area with 4000080000 ×  pixels, some 

preliminary tests showed that 3000max =V was suitable setting. 

The update formulas (12) and (13) are applied during each iteration and the )(tpi
G

 and 

)(tpg
G

 values are updated simultaneously. The algorithm stops if maximum number of 

iterations is achieved. 
There are some specific moments in our application. The swarm initialization is the most 
important one. The particular components of the particle positions have the direct 
interpretations. They are coordinates of 2-D points in the robot workspace. Therefore, it is 
suitable to initialize the position vectors into a rectangle with one corner in the start position 
and the opposite corner in the goal position. However, there can be some different 
initialization strategies (e.g. initializing the spline connection points over the whole 
workspace or on the line connecting the start and the goal position. 
For our particular scenarios, we choose the initial position to be uniform random numbers 
from <30000;40000>. The same initialization was used for genetic algorithm described 
below. 

5. Genetic Algorithm 

The PSO has been compared to the most commonly used nature-inspired method - genetic 
algorithm (GA). In all experiments, the same GA scheme with stochastic uniform selection, 
scattered crossover and gaussian mutation was used (Vose, 1999). The particular settings 
have been chosen experimentally. 
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In the stochastic uniform selection a line is laid out in which each parent corresponds to a 
section of the line of length proportional to its scaled value. The algorithm moves along the 
line in equal sized steps and allocates a parent from the section it lands on. The "scattered" 
crossover selects randomly the genes to be recombined. The Gaussian mutation adds a 
random number drawn from Gaussian distribution with zero mean and variance linearly 

decreasing from 05.0 r  to 0125.0 r , where 0r  is the the initial range (for our experiments, 

1000030000400000 =−=r ). Moreover, elitism has been used that copies two best 

individuals from the previous generation into the new generation if a better individual was 
not created in the new generation. This prevents the loss of best solution and accelerates the 
convergence.  

6. Implementation Details 

Great number of evaluations is required by available optimization methods and therefore 
computational complexity of the cost function is key factor for real time applications. The 

most calculation-intensive part of the equation (6) is cedisf tan . It is done by big amount and 

complexity of obstacles from which the distance needs to be computed. In the presented 
method a distance grid map of the environment is pre-computed. Each cell in such matrix 
denotes minimum distance of relevant place to the closest obstacle according to equation (8). 
The regions outside the polygon denoting walls of the building or inside the obstacles could 
be signed by infinite value, because they are infeasible for the formation movement. 
Nevertheless due to the simple initialization used in this chapter all particles in the initial 
swarm can be intersecting an obstacle and therefore evaluated by the same value 

∞=cedisf tan .  

 

Figure 4. Map of utilized workspace with denoted zoomed areas of the scenarios: Situation 1 
and Situation 2 
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Figure 5. Distance map used for computing of the cost function. Black color denotes the 

regions where 0tan =cedisf  and white color denotes the region with maximum values of 

cedisf tan  

In such case even the smartest optimization method degrades to a random search. A 

solution could be to artificially add a rising of cedisf tan  outside the polygon from the walls 

of building (similarly inside the circular obstacles the increase will be from the borders to 
the center of obstacle) which enables the optimization method to reach the feasible space. 
Big advantage of such grid-map approach is possibility to use obstacles with arbitrarily 
complicated shape, that is usually done be autonomous mapping technique. An occupancy 
grid that is obtained by a range finder can be used as well. An example of the robot 
workspace with obstacles that was used for experiments is depicted on the Fig. 4 and the 
appropriate distance map is drawn in the Fig. 5.  

7. Experiments 

This section summarizes various types of experiments in static environment for two scenarios 
(Situation 1 and Situation 2) depicted in Fig. 4. First, the results obtained by PSO are discussed 
and further, the PSO is compared to genetic algorithm. The presented tests have been realized 
in the environment of computer science building in Wuerzburg (map is depicted in Fig. 4) 
which is frequently used for hardware experiments of indoor mobile robots. 

7.1 PSO Results 

Parameters of the PSO method were adjusted in agreement with (Saska et al., 2006), where 
the algorithm was used in similar application. As the test scenario were chosen situations 
with several local extremes corresponding to feasible as well as unfeasible paths for the 
leader. In Fig. 6 are presented two solutions of the Situation 1 designed by PSO method. The 
path evaluated by cost f=13.02 is close to the global optimal solution and is feasible for the 
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formation maintaining fixed shape. Contrariwise the second path (f=28.71) is close to one of 
the local optimal solutions and it is feasible only for a single robot. For the formation driving 
it means that the shape of the formation must be temporarily changed during the passage 
around the obstacles as well as in the loop replacing sharp unfeasible curve next to the 
corner of the room. We should note that the loop was created automatically by the path 
planning method. Such manoeuvres could be useful e.g. in crossroads of narrow corridors 
where straightforward movement is impossible due to the restriction of turning radius. 
 

 

Figure 6. Two different solutions of Situation 1 obtained by PSO 

Results of the second scenario, Situation 2, are shown in Fig. 7 where the solution with 
f=13.82 is feasible for the complete formation whereas the second solution (f=18.31) requires 
small changes of the positions of outer followers. The second path is shorter than the first 
solution, which is close to the global minimum of the cost function (6). Therefore the second 
solution could be preferred in the application where the shape of formation can be easily 
modified. 
 

 

Figure 7. Two different solutions of Situation 2 obtained by PSO 
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7.2 Comparison with GA 

The two scenarios described above were used for the comparison of PSO and GA. For both 
methods, the swarm (population) size was 30 and the number of iterations (generations) 
was 300. Such an excessive number of cost function evaluations enables better evaluation of 
results and the chance of the algorithm to converge into an optimum. 

 

 

Table 1. The minimum, mean, standard deviation and maximum of the set of minimum cost 
values found by particular runs for Situation 1. Set of results from 100 repeated runs was 
used 

 

 

Table 2. Situation 1 - absolute occurrences of different values of final minf  in the set of 100 

results of independent runs 

Because of statistical purposes, 100 runs of each method (with different random 
initialization) has been launched. The main quality criterion used is the minimum cost 

function minf  found at a particular moment. First, we took final values of the minimum 

cost value found in particular runs. Basic statistical properties computed from the 100 runs 
are depicted in Table 1. Although the mean best PSO solutions is lower than the mean best 
GA solution, the difference is not statistically significant (two-sample t-test with significance 
level 0.05 was used to investigate the significance of difference between the methods). 
However, high standard deviation and high maximum (worst result) obtained for GA 
results shows that in some runs, the genetic algorithm found extremely poor result that do 
not belong to any of the two optima shown in Fig. 6. This is especially evident from the 
Table 2, where the histogram of best solutions is depicted. The second column corresponds 
to the global minimum of cost function that lies under the value f=14. The numbers are 
absolute occurrences (of totally 100 runs) of the final minimum fitness values that are lower 
than 14. The third column describes hits to the local optima (that lies somewhere around 28). 
The other two columns correspond to quite poor (probably unusable) solutions. One can 
observe that for the Situation 1 the GA finds these bad solutions in 4 of totally 100 cases. On 
the other hand the PSO always finds at least the local minimum and is more susceptible to 
getting stuck in the local optimum. This fact is probably a tax on the faster convergence. The 
higher convergence rate of PSO can be observed from Fig. 8b, where the mean temporal 

evolution of minf  is depicted. One can see that the curve for PSO decreases and reaches 

minimum much more rapidly than the curve measured for GA. 
The results for Situation 2 are similar. This time, the mean result for GA is significantly 
worse (Table 3). In histogram (Table 4 and Fig. 9a), one can observe that GA again was 
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unable to find neither the global optimum (f<16) nor the local optimum ( )19;16(∈f )in 5 

of totally 100 cases. Moreover, it found the global optima fewer times than the PSO. Again, 
the convergence of PSO is much faster for the Situation 2. 

 

Figure 8. The results for Situation 1. The histogram of final minf values obtained from 100 

runs (a) and the temporal evolution of minf  values averaged over 100 runs (b) 

 

Figure 9. The results for Situation 2. The histogram of final minf  values obtained from 100 

runs (a) and the temporal evolution of minf  values averaged over 100 runs (b) 

 

Table. 3 The minimum, mean, standard deviation and maximum of the set of minimum cost 
values found by particular runs for Situation 2. Set of results from 100 repeated runs was 
used 
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Table 4. Situation 2 - absolute occurrences of different values of final fmin in the set of 100 
results of independent runs 

The conclusion of this section is that the PSO finds the solution much faster than GA . 
Moreover, the GA sometimes produces unusable poor solution. Both the PSO and GA 
parameters were tuned experimentally in some preliminary testing. 

7.3 Constriction and Dynamic Inertia Weight 

It has been already mentioned above that an acceptable modification of the PSO method 
must be very simple and should lead to improvement of algorithm's convergence rate. In 
this section, two very simple modifications are compared to the basic PSO described in 
Section 4. The first modification is the PSO with constriction coefficient (CCPSO) and the 
second is PSO with adaptive dynamic inertia weight (AIWPSO) (Fan & Chang, 2007). 
The constriction coefficient was derived from an eigenvalue analysis of swarm dynamics 
(Clerk, 1999). The method is used to balance exploration and exploitation trade-off. The  
velocity update Equation (12) is modified: 

  

(14)

 

where χ  is the constriction coefficient, which is computed from values of 1ϕ  and 2ϕ . We 

used 1.221 == ϕϕ  and  

  
(14)

 

where 21 ϕϕϕ += . The advantage is that the velocity clamping does not need to be used. 

The second modification - PSO with adaptive dynamic inertia weight (AIWPSO) (Fan & 

Chang, 2007) is based on dynamically changing inertia weight )(tww = . The principal 

modification is the nonlinear modification of the inertia weight. The nonlinear function is 

given by: w=(d)rwstart, where d  is the decrease rate and has been set experimentally to 

95.0=d  and r  changes through time according to the following rules: 1. 1+← rr  if 

the best cost function value (minimal value in the swarm) decreased (improved) and 2. 

1−← rr  if the best cost function value increased or remained the same. This mechanism 

wishes to make particles fly more quickly toward the potential optimal solution, and then 
through decreasing inertia weight to perform local refinement around the neighbourhood of 
the optimal solution.  
The comparison has been done using the Situation 2 described above. The results of 100 
runs are depicted on Fig. 10. For all runs, only 15 particles and 100 iterations were used. The 
results show that in average, better results are obtained by CCPSO, although the CCPSO has 
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slower convergence than PSO. On the other hand, the difference of the final best solutions is 
not significant. The PSO reached the global optimum area (f<20) in 73 runs and the final 
minimum cost value averaged over 100 runs was 73.25. The CCPSO reached the global 
optimum area in 71 runs and the final minimum cost value averaged over 100 runs was 
117.62. One can also see that the AIWPSO did not perform well. It found the global 
optimum area in 54 runs and the final minimum cost value averaged over 100 runs was 
1159.00. 

 

Figure 10. Comparison of three PSO modifcations. The temporal evolution of minf values 

averaged over 100 runs 

7.4 Simulation of Formation Driving 

 

Figure 11. Simulation of formation movement 
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For demonstration of the formation movement was chosen the feasible solution designed by 
PSO in situation 1. The path planning as well as the formation driving were adjusted for the 
formation of three robots in the line that is perpendicular to the leader's path. In the Fig. 11 
is zoomed part of the workspace with delineated positions of the robots during task 
execution. Robots were controlled by an approach that was presented by our team in (Hess 
et al. 2007). 

8. Conclusion and Future Work 

This chapter gave concrete recommendations about the use of PSO based spline-planner. 
Namely, a suitable PSO method with recommended parameter values is resumed and its 
main advantages and disadvantages are critically discussed. The original PSO with velocity 
clamping and linearly decreasing inertia weight performed well and was able to find better 
solution in shorter time than genetic algorithm. Because of strong limitations on time 
consumption, we do not recommend any complex modification. Among the two tested 
modification, the PSO with constriction coefficient could compete with the original PSO 
version. Finally, it was shown, how problematic is the use of PSO for formation path 
planning. In our cases, the only feasible paths corresponded to global optima of the cost 
function. A promising future direction is the modified random initialization of the swarm 
that can be adjusted in number of ways. The good initialization is simple instrument for 
improving the speed of the planning process that is for real time planning and dynamical 
environment response crucial.   
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