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Particle Swarm Optimization Algorithm for 
Transportation Problems 

Han Huang1 and Zhifeng Hao2  
1School of Software Engineering, South China University of Technology 

 2College of Mathematical Science, South China University of Technology 
P. R. China 

1. Brief Introduction of PSO 

Particle swarm optimization (PSO) is a newer evolutionary computational method than 
genetic algorithm and evolutionary programming. PSO has some common properties of 
evolutionary computation like randomly searching, iteration time and so on. However, 
there are no crossover and mutation operators in the classical PSO. PSO simulates the social 
behavior of birds: Individual birds exchange information about their position, velocity and 
fitness, and the behavior of the flock is then influenced to increase the probability of 
migration to regions of high fitness. The framework of PSO can be described as Figure 1. 

 

Figure 1. The framework of classical PSO 

In the optimal size and shape design problem, the position of each bird is designed as 
variables x , while the velocity of each bird v  influences the incremental change in the 

position of each bird. For particle d  Kennedy proposed that position 
dx  be updated as: 

 1 1
d d d
t t tx x v+ += +  (1) 

 1 1 1 2 2( ) ( )d d d d g d
t t t t t tv v c r p x c r p x+ = + − + −  (2) 

Here, d
tp  is the best previous position of particle d  at time t , while g

tp  is the global best 

position in the swarm at time t . 1r  and 2r are uniform random numbers between 0 and 1, 

and 1 2 2c c= = . 

1. Initialize K  Particles 1 2, ,..., KX X X , calculating 1,..., Kpbest pbest and 

gbest , 1t = ; 

2. For 1,...,i K=  and 1,...,j N= , update particles and use iX  to refresh 

ipbest  and gbest ; (shown as equation 1 and 2) 

3. 1t t= + ; If max_t gen> , output gbest  and exit; else, return Step 2. 
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2. Particle Swarm Optimization for linear Transportation Problem 

2.1 Linear and Balance Transportation Problem 

The transportation problem (TP) is one of the fundamental problems of network flow 
optimization. A surprisingly large number of real-life applications can be formulated as a 
TP. It seeks determination of a minimum cost transportation plan for a single commodity 
from a number of sources to a number of destinations. So the LTP can be described as: 

Given there are n  sources and m  destinations. The amount of supply at source i  is ia  

and the demand at destination j  is
jb . The unit transportation cost between source i  and 

destination j  is ijc . ijx  is the transport amount from source i  to destination j , and the 

LTP model is: 

1 1

min
n m

ij ij

i j

z c x
= =

=∑∑  

 s.t.  

1

1,2,...,
m

ij i

j

x a i n
=

≤ =∑  (3) 

1

1, 2, ...,
n

i
ij j j mx b

=

=≥∑ .      

     0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =  

TP has been paid much attention to and classified into several types of transmutation. 
According to the nature of object function, there are four types: (1) linear TP and nonlinear 
TP. (2) single objective TP and multi objective. Based on the type of constraints, there are 
planar TP and solid TP. The single object LTP dealt with in this paper is the basic model for 
other kinds of transportation problems. 
A special LTP called balanced LTP is considered as follows: 

1 1

min
n m

ij ij

i j

z c x
= =

=∑∑  

 s.t.     

1

1,2,...,
m

ij i

j

x a i n
=

= =∑  (4) 

1

1,2,...,
n

ij j

i

x b j m
=

= =∑ . 

1 1

n m

i j

i j

a b
= =

=∑ ∑  

0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =  
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The fact that a n m×  LTP can be changed into a ( 1)n m× +  balanced LTP, can be found 

in operational research because the demand at destination 1m +  could be calculated by 

1

1 1

n m

m i j

i j

b a b+
= =

= −∑ ∑ with the condition 

1 1

n m

i j
i j

a b
= =

≥∑ ∑ . 

2.2 Initialization of PSO for Linear and Balance Particle Swarm Optimization 

A particle

11 1

1

...

... ... ...

...

m

n nm

x x

X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 stands for a solution to LTP. There are nm particles 

initialized to form nm  initial solutions in the initialization. Every element of set N  can be 

chosen as the first assignment to generate the solutions dispersedly, which is good for 
obtaining the optimal solution in the iteration. 
If a LTP is balanced, the following procedure can be used to obtain an initial solution: 
 

program GetOnePrimal (var X: Particle, first: int) 
var    i,j,k: integer; 
      N: Set of Integer; 
begin 
   k :=0; 

N := {1,2,…,nm};  

repeat 

if k=0 then  

k:=first ; 

else  

k:= a random element in N; 

i := (k -1 )/m + 1⎢ ⎥⎣ ⎦ ; 

j := ((k-1) mod m) +1; 

xij := min {ai, bj}; 

ai := ai - xij; 

bi := bi - xij; 

N := N \ {k}; 

until N is empty 

end. 
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And the initialization of PSO-TP can be designed as follows: 
 

program Initialization 
   var    i : integer; 
   begin 
     Get a balanced LTP; 

i := 1;  

repeat 

GetOnePrimal (Xi, i); 

i := i+1; 

until i > nm 

end. 

2.3 Updating Rule of PSO for Linear and Balance Particle Swarm Optimization 

In PSO algorithm, a new solution can be obtained by using the position updating rule as 
equations 2 and 3. However, the classical rule is unable to meet such constraints of TP as 

1

m

ij i

j

x a
=

=∑ and

1

n

ij j

i

x b
=

=∑ . A new rule is designed to overcome this shortcoming. For 

particle d , we propose that position 
dX  ( n m× ) be updated as 

 
1 2

1 2 1 2

1

( ) ( ) 0

[ ( ) ( )] 0

t t t t

t t t t t

d d g d
d
t d d d g d

P X P X t
V

V P X P X t

ϕ ϕ

λ λ ϕ ϕ
+

⎧ − + − =
= ⎨

+ − + − >⎩
  (5) 

     1 1

d d d

t t tX V X+ += +  (6) 

where t t

g dP X≠  and t t

d dP X≠ .  

If t t

g dP X=  and t t

d dP X≠ , 1 1ϕ = . If t t

g dP X≠  and t t

d dP X= , 2 1ϕ = . If 

t t

g dP X=  and t t

d dP X= , 1 1λ = . 

d

tP (n m× ) is the best previous position of particle d  at time t , while 
g

tP ( n m× ) is the 

global best position in the swarm at time t . 1ϕ  and 2ϕ  are uniform random numbers in (0, 

1), meeting 1 2 1ϕ ϕ+ = , while 1λ  is a uniform random number between [0.8, 1.0) and 

2 11λ λ= − . 

0,if t = 1 1

d d d

t t tX V X+ += +  

1 2( ) ( )d d g d d

t t t t tP X P X Xϕ ϕ= − + − +  
1 2 1 2( ) ( )d g d d d

t t t t tP P X X Xϕ ϕ ϕ ϕ+ − + +=  
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1

( 1)
m

d

ij

j

x t
=

+∑  

1 2 1 2

1 1 1 1 1

( ) ( ) ( ( ) ( )) ( )
m m m m m

d g d d d

ij ij ij ij ij

j j j j j

p t p t x t x t x tϕ ϕ ϕ ϕ
= = = = =

= + − + +∑ ∑ ∑ ∑ ∑
1 2 1 2( )i i i i i ia a a a a aϕ ϕ ϕ ϕ= + − + + =  

1

( 1)
n

d

ij

i

x t
=

+∑   

1 2 1 2

1 1 1 1 1

( ) ( ) ( ( ) ( )) ( )
n n n n n

d g d d d

ij ij ij ij ij

i i i i i

p t p t x t x t x tϕ ϕ ϕ ϕ
= = = = =

= + − + +∑ ∑ ∑ ∑ ∑
1 2 1 2( )j j j j j jb b b b b bϕ ϕ ϕ ϕ= + − + + =  

,0if t >  

1

d

tX + 1

d d

t tV X+= +  

1 2 1 2[ ( ) ( )]d d d g d d

t t t t t tV P X P X Xλ λ ϕ ϕ= + − + − +  

1 2 1 2 1 2[( ) ( )]d d g d d d

t t t t t tV P P X X Xλ λ ϕ ϕ ϕ ϕ+ + − + +=  

1 1 2 1 2 1 2( ) [( ) ( )]d d d g d d d

t t t t t t tX X P P X X Xλ λ ϕ ϕ ϕ ϕ−= − + + − + +  

1

( 1)
m

d

ij

j

x t
=

+∑ 1 2 1 2 1 2

1 1

( ( ) ( 1)) ( ( ))
m m

d d

ij ij i i i i i

j j

x t x t a a a a aλ λ ϕ ϕ ϕ ϕ
= =

− − + + − + += ∑ ∑  

1( ) 0i i i ia a a aλ= − + + =  

1

( 1)
n

d

ij

i

x t
=

+∑

1 2 1 2 1 2

1 1

( ( ) ( 1)) ( ( ))
n n

d d

ij ij j j j j j

i i

x t x t b b b b bλ λ ϕ ϕ ϕ ϕ
= =

− − + + − + += ∑ ∑  

1( ) 0j j j jb b b bλ − + + ==  
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Therefore, 1

d

tX +  would meet the condition that 

1

( 1)
m

d

ij i

j

x t a
=

+ =∑ and 

1

( 1)
n

d

ij j

i

x t b
=

+ =∑  with the function of Formulae 5 and 6. However, the new rule cannot 

ensure the last constraint that 0, 1,.., , 1,...,ijx i n j m≥ = = . In the following section, an 

extra operator is given to improve the algorithm. 

2.4 Negative Repair Operator 

A particle of PSO-TP (Formula 7) will be influenced by the negative repair operator if 

0, 1,..., , 1,...,kix k n i m< = = , which is indicated as follows: 

 
11 1 1

1

1

1

... ...

... ... ... ... ...
... ...

... ... ...... ...
... ...
... ...... ... ...
... ...

i m

k ki km

l li lm

nmnin

x x x

x x x

X
x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

 ᧤7᧥ 

 
 
 
 

program RepairOnePos (var X: Particle, k,i: int) 
begin 

   select the maximum element signed as lix  in Col. i; 

0 : kix x= , 0:li lix x x= − , : 0kix = ; 

change elements in Row.k into 
0

0

:
0

kj kj

kj

kj kj

x x

x x
x x

u

⎧
⎪
⎨
⎪
⎩

=

=
− >

;  

(u is the number of times when the following condition 0, 1,...,kjx j m> =  is met) 

change elements in Row. l into 
0

0

:
0

lj kj

lj

lj kj

x x

x x
x x

u

⎧
⎪
⎨
⎪
⎩

=

=
+ >

; 

end. 
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As a result, the procedure of negative repair operator can be described as: 
 

program NegativeRepair (var X: Particle) 
var    i,j: integer; 
begin 
      if some element of X is negative then 

repeat 

   If xij<0 is found then  

RepairOnePos (X, i, j); 

until Every element of X is not negative 

end. 

2.5 PSO Mutation 

Mutation is a popular operator in Genetic Algorithm, and a special PSO mutation is 
designed to help PSO-TP change the partial structure of some particles in order to get new 
types of solution. PSO-TP cannot fall into the local convergence easily because the mutation 
operator can explore the new solution. 
 

program PSOMutation (var X: Particle) 
begin 
    Obtain p and q randomly meeting 0<p<n and 0<q<m; 

  Select p rows {i1,…ip} and q lines {j1,…jq} randomly from matrix X to form a small matrix 
Y (yij,i=1,…,p,j=1,…,q); 

  

1{ },...,

y

i ij
j qj j

a x
∈

= ∑         ( 1,..., pi i i= )  

1{ },...,

y

j ij
i pi i

b x
∈

= ∑         ( 1,..., qj j j= ) 

Use a method like the one in initialization to form the initial assignment for Y; 

  Update X with Y; 

end. 

2.6 The Structure of PSO-TP 

According to the setting above, the structure of PSO-TP is shown as: 
 

program PSO-TP (problem: balanced LTP of n×m size, pm: float) 
var t:integer; 

begin 

t:=0; 
Initialization; 

www.intechopen.com



Particle Swarm Optimization 

 

282 

Obtain 0
gP ( n m× ) and 0

dP ( n m× )(d=1,…,n×m); 

repeat 

t:=t+1; 

Calculate 
d

tX  with Formula 5 and 6 (d=1,…,n×m); 

NegativeRepair(
d

tX )(d=1,…,n×m); 

Carry out PSOMutation(
d

tX ) by the probability pm; 

Update g
tP ( n m× ) and d

tP ( n m× )(d=1,…,n×m); 

until meeting the condition to stop 

end. 

3. Numerical Results 

There are two experiments in this section: one is comparing PSO-TP with genetic algorithm 
(GA) in some integer instances and the second is testing the performance of PSO-TP in the 
open problems. Both of the experiments are done at a PC with 3.06G Hz, 512M DDR 
memory and Windows XP operating system. GA and PSO-TP would stop when no better 
solution could be found in 500 iterations, which is considered as a virtual convergence of the 
algorithms. The probability of mutation in PSO-TP is set to be 0.05. 

 

Problem\ 
five runs 

PSO-TP 
Min 

PSO-TP 
Ave 

GA 
Min

GA 
Ave

PSO-TP 
Time(s) 

GA 
Time(s) 

P1 (3*4) 152 152 152 153 0.015 1.72 

P2 (4*8) 287 288 290 301 0.368 5.831 

P3 (3*4) 375 375 375 375 0.028 0.265 

P4 (3*4) 119 119 119 119 0.018 1.273 

P5 (3*4) 85 85 85 85 0.159 0.968 

P6*(15*20) 596 598 - - 36.4 - 

Table 1.  Comparison Between PSO-TP and GA 

As Table 1 shows, both the minimum cost and average cost obtained by PSO-TP are less 
than those of GA. Furthermore, the time cost of PSO-TP is much less than that of GA. In 
order to verify the effectiveness of PSO-TP, 9 real number instances are computed and the 
results are shown in Table 2. Since GA is unable to deal with the real number LTP directly, 
only PSO-T is tested. 
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Problem\five runs Optimal Value PSO-TP Average PSO-TP Time(s) 

No.1 67.98 67.98 0.02 

No.2 1020 1020 0.184 

No.4 13610 13610 0.168 

No.5 1580 1580 0.015 

No.6 98 98 0.023 

No.7 2000 2000 0.015 

No.8 250 250 <0.001 

No.9 215 215 0.003 

No.10 110 110 0.012 

Table 2.  Performance of PSO-TP in open problems 

According to the results in Table 2, PSO-TP can solve the test problems very quickly. The 
efficiency of PSO-TP may be due to the characteristic of PSO algorithm and the special 
operators. Through the function of the new position updating rule and negative repair 
operator, the idea of PSO is introduced to solve LTP successfully. The nature of PSO can 
accelerate the searching of the novel algorithm, which would also enable PSO-TP to get the 
local best solution. What’s more, the PSO mutation as an extra operator can help PSO-TP to 
avoid finishing searching prematurely. Therefore, PSO-TP can be a novel effective algorithm 
for solving TP. 

4. Particle Swarm Optimization for Non-linear Transportation Problem 

4.1 Non-linear and Balance Transportation Problem 

The unit transportation cost between source i  and destination j  is ( )ij ijf x  where 
ijx  is 

the transportation amount from source i  to destination j , and TP model is: 

1 1

min ( )
n m

ij ij

i j

z f x
= =

=∑∑  

 s.t.  

1

1,2,...,
m

ij i

j

x a i n
=

≤ =∑  (8) 

      

1

1, 2, ...,
n

i
ij j j mx b

=

=≥∑ .      

    0; 1,2,..., ; 1, 2,...,ijx i n j m≥ = =  
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According to the nature of object function, there are four types: linear TP in which the 

function ( )ij ijf x  is linear and nonlinear TP in which ( )ij ijf x  is non-linear, as well as 

single objective and multi-objective TP. Based on the types of constraints, there are planar 
TP and solid TP. The single object NLTP is dealt with in this paper. In many fields like 
railway transportation, the relation between transportation amount and price is often non-
linear, so NLTP is an important for application. 

4.2 Framework of PSO for Non-linear TP 

In the population of PSO-NLTP, an individual 

11 1

1

...

... ... ...

...

m

i

n nm

x x

X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 stands for a solution 

to NLTP (Exp. 2), where n m×  is the population size. There are n m×  individuals 

initialized to form n m×  initial solutions in the initialization. The initialization and 

mutation are the same as the ones in PSO-LTP (Section 2.2 and 2.5). 
And the framework of PSO-NLTP is given: 
 

Algorithm: PSO-NLTP  

Input: NLTP problem (Exp. 8) 
begin 

Initialization;          

Setting parameters;     

repeat 

Updating rule;           

Mutation;                 

Updating the current optimal solution 

until meeting the condition to stop 

end. 

Output: Optimal solution for NLTP 

 
In the parameter setting, The parameters of PSO-NLTP are all set adaptively: as the 
population size is n m× , the size of mutation matrix Y is set randomly meeting 0<p<n and 

0<q<m and the mutation probability mP  is calculated by 0.005m tP N= × , where 1tN =  

when 
( )t

bestX  is updated and 1t tN N= +  when 
( )t

bestX  remains the same as 
( 1)t

bestX −
. 

4.3 Updating Rule of PSO-NLTP 

As one of the important evolutionary operator, recombination is designed to optimize the 

individuals and make them meet the constraints of supply and demand as 

1

m

ij i

j

x a
=

=∑ and 
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1

n

ij j

i

x b
=

=∑ (Exp. 4). At the beginning of an iteration, every individual is recombined by the 

following expression. 

 
( 1) ( ) ( ) ( )

1 2 3
t t t t
i i best randomX X X Xϕ ϕ ϕ+ = + +  (9) 

( )t

bestX  is the best particle found by PSO-NLTP form iteration 0 to t . 
( )t

randomX  is the 

particle formed randomly (by sub-algorithm GetOnePrimal in section 2.2) for the updating 

rule of 
( )t
iX . 1ϕ , 2ϕ  and 3ϕ  are the weight terms meeting 1 2 3 1ϕ ϕ ϕ+ + = , which are 

calculated as Exp 4-6 show, where 
( ) )( t
if X is the cost of the solution for TP (Exp. 4).  

 ( )1 1 1 1( ) ( ) ( ) ( )
1 ) / ) ) )( ( ( (t t t t

i i best randomf X f X f X f Xϕ − − − −+ +=  (10) 

 ( )1 1 1 1( ) ( ) ( ) ( )
2 ) / ) ) )( ( ( (t t t t

ibest best randomf X f X f X f Xϕ − − − −+ +=  (11) 

 ( )1 1 1 1( ) ( ) ( ) ( )
3 ) / ) ) )( ( ( (t t t t

irandom best randomf X f X f X f Xϕ − − − −+ +=  (12) 

( 1)t
iX

+
 can be considered as a combination of 

( )t
iX , 

( )t

bestX  and 
( )t

randomX  based on 

the their quality, and proved to meet the constraints of supply and demand. 

( 1)

1

m
t

ij

j

x +

=

=∑
1

( ) ( ) ( )
1 2 3, , , , )(

m

j

t t t
ij i j best i j randomx x xϕ ϕ ϕ

=

+ +∑  

         
1 1 1

( ) ( ) ( )
1 2 3, , , ,

m m m

j j j

t t t
ij i j best i j randomx x xϕ ϕ ϕ

= = =

= + +∑ ∑ ∑  

         1 2 3i i i ia a a aϕ ϕ ϕ= + + =      ( 1,...,i n= ) 

( 1)

1

n
t

ij

i

x +

=

=∑
1

( ) ( ) ( )
1 2 3, , , , )(

n

i

t t t
ij i j best i j randomx x xϕ ϕ ϕ

=

+ +∑  

         
1 1 1

( ) ( ) ( )
1 2 3, , , ,

n n n

i i i

t t t
ij i j best i j randomx x xϕ ϕ ϕ

= = =

= + +∑ ∑ ∑  

         1 2 3j j j jb b b bϕ ϕ ϕ= + + =     ( 1,...,j m= ) 
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Furthermore, the recombination rule can also ensure the positive constraint that 
( 1) ( ) ( ) ( )

1 2 3, , , , 0, 1,.., , 1,...,t

ij

t t t
ij i j best i j randomx i n j mx x xϕ ϕ ϕ+ = ≥ = =+ + . 

4.4 Numerical Results 

There are 56 NLTP instances computed in the experiment, of which the results are shown in 
this section. The experiment is done at a PC with 3.06G Hz, 512M DDR memory and 
Windows XP operating system. The NLTP instances are generated by replacing the linear 
cost functions of the open problems with the non-linear functions. The methods which are 
effective for linear TP cannot deal with NLTP for the complexity of non-linear object 
function. The common NLTP cost functions are indicated in Table 1. 

 

Problem Transportation Cost Functions 

No.1 2( )ij ij ij ijf x c x=  

No.2 ( )ij ij ij ijf x c x=  

No.3 

( ) , 0

( ) , 2

2
(1 ) , 2

ij

ij ij

ij ij ij ij

ij

ij ij

x
c if x S

S

f x c if S x S

x S
c if S x

S

⎧
≤ <⎪

⎪⎪
= < ≤⎨
⎪

−⎪ + <
⎪⎩

 

No.4 5
( ) [sin( ) 1]

4
ij ij ij ij ijf x c x x

S

π
= +  

Table 3.  NLTP cost functions [15] 

The comparison between PSO-NLTP and EP with penalty strategy only indicates whether 
the recombination of PSO-NLTP is better at dealing with the constraints of NLTP (Exp. 8) 
than penalty strategy of EP. There cannot be any conclusion that PSO-NLTP or EP is better 
than the other because they are the algorithms for different applications. The three 
algorithms are computed in 50 runs independently, and the results are in Table 4 and Table 
5. They would stop when no better solution could be found in 100 iterations, which is 
considered as a virtual convergence of the algorithms.  
NLTP instances in Table 4 are formed with the non-linear functions (shown in Table 3) and 
the problems. And the instances in Table 5 are formed with the non-linear functions and the 

problems. We set 

1

/10
n

i

i

S a
=

=∑  in function No.3 and 1S =  in function No.4 in the 

experiment. 
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Problem 
PSO-NLTP 
Average 

GA 
Average 

EP 
Average 

PSO-NLTP 
Time(s) 

GA 
Time(s) 

EP 
Time(s) 

No.1-1 8.03 8.10 8.36 0.093 0.89 0.109 

No.1-2 112.29 114.25 120.61 0.11 0.312 0.125 

No.1-4 1348.3 1350.8 1476.1 0.062 0.109 0.078 

No.1-5 205.9 206.3 216.1 0.043 0.125 0.052 

No.1-6 12.64 12.72 13.53 0.062 0.75 0.078 

No.1-7 246.9 247.6 256.9 0.088 0.32 0.093 

No.1-8 84.72 84.72 87.5 <0.001 0.015 <0.001 

No.1-9 44.64 44.65 46.2 <0.001 0.046 <0.001 

No.1-10 24.85 24.97 25.83 <0.001 0.032 <0.001 

No.2-1 155.3 155.3 168.5 <0.001 0.016 <0.001 

No.2-2 2281.5 2281.5 2696.2 <0.001 0.015 <0.001 

No.2-4 28021 28021 30020.2 <0.001 0.015 <0.001 

No.2-5 3519.3 3520.4 3583.1 <0.001 0.015 <0.001 

No.2-6 264.9 266.5 314.4 <0.001 0.015 <0.001 

No.2-7 4576.9 4584.5 5326.0 0.009 0.052 0.012 

No.2-8 432.8 432.8 432.8 <0.001 0.015 <0.001 

No.2-9 386.3 386.3 386.3 <0.001 0.031 <0.001 

No.2-10 195.3 195.3 226.0 <0.001 0.006 <0.001 

No.3-1 309.9 310.0 346.6 <0.001 0.093 0.001 

No.3-2 4649.2 4650 5415.2 <0.001 0.921 0.012 

No.3-4 65496.7 66123.3 68223.3 <0.001 0.105 <0.001 

No.3-5 7038.1 7066.6 7220.9 <0.001 1.015 0.001 

No.3-6 540 540 672.5 0.001 0.062 0.002 

No.3-7 9171.0 9173.2 9833.3 <0.001 0.312 <0.001 

No.3-8 1033.4 1033.4 1066.7 <0.001 0.012 <0.001 

No.3-9 933.3 933.4 1006.4 0.002 0.147 0.015 

No.3-10 480 480 480 0.016 0.046 0.004 

No.4-1 107.6 107.8 118.2 0.063 0.159 0.078 

No.4-2 1583.5 1585.2 1622 0.062 0.285 0.093 

No.4-4 19528.4 19531.3 20119 0.075 0.968 0.068 

No.4-5 2466.9 2468.2 2880.2 0.072 0.625 0.046 

No.4-6 151.7 152.1 161.9 0.093 1.046 0.167 

No.4-7 3171.1 3173.8 3227.5 0.047 0.692 0.073 

No.4-8 467.1 467.1 467.1 <0.001 0.036 <0.001 

No.4-9 376.3 376.3 382.5 <0.001 0.081 0.003 

No.4-10 205.9 205.9 227.6 0.026 0.422 0.031 

Table 4.  Comparison I between PSO-NLTP, GA and EP with penalty strategy  
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Problem 
PSO-NLTP 
Average 

GA 
Average 

EP 
Average 

PSO-NLTP 
Time(s) 

GA 
Time(s) 

EP 
Time(s) 

No.1-11 1113.4 1143.09 1158.2 0.031 0.065 0.046 

No.1-12 429.3 440.3 488.3 0.187 1.312 0.203 

No.1-13 740.5 740.5 863.6 0.09 2.406 0.781 

No.1-14 2519.4 2529.0 2630.3 0.015 0.067 0.016 

No.1-15 297.2 297.9 309.2 0.046 0.178 0.058 

No.1-16 219.92 220.8 234.6 0.040 1.75 0.060 

No.2-11 49.7 51.9 64.2 <0.001 0.001 <0.001 

No.2-12 78.4 78.4 104.5 0.001 0.025 <0.001 

No.2-13 150.2 150.4 177.9 <0.001 0.015 <0.001 

No.2-14 118.6 118.2 148.4 <0.001 0.001 <0.001 

No.2-15 64.5 64.5 64.5 <0.001 0.031 <0.001 

No.2-16 47.1 47.8 53.4 <0.001 0.015 <0.001 

No.3-11 13.3 13.3 13.3 0.015 0.734 0.031 

No.3-12 21.0 21.0 26.3 0.018 0.308 0.036 

No.3-13 37.2 37.4 43.5 0.171 1.906 0.156 

No.3-14 37.5 37.8 46.7 0.011 0.578 0.008 

No.3-15 28.3 28.1 33 0.009 0.325 0.013 

No.3-16 22.5 23.0 29.6 <0.001 0.059 0.015 

No.4-11 8.6 8.8 37.4 0.001 0.106 0.001 

No.4-12 20.0 23.1 40.8 0.253 2.328 0.234 

No.4-13 49.0 52.3 72.1 0.109 2.031 0.359 

No.4-14 47.7 51.2 82.2 0.003 0.629 0.006 

No.4-15 11.97 12.06 36.58 0.019 0.484 0.026 

No.4-16 2.92 3.08 8.1 0.031 0.921 0.045 

Table 5.  Comparison II between PSO-NLTP, GA and EP with penalty strategy 

As Table 4 and Table 5 indicate, PSO-NLTP performs the best of three in the items of 
average transportation cost and average computational cost. The NLTP solutions found by 
EP with penalty strategy cost more than PSO-NLTP and GA, which indicates recombination 
of PSO-NLTP and crossover of GA handle the constraints of NLTP (Exp. 4) better than the 
penalty strategy. However, EP with penalty strategy cost less time than GA to converge 
because the crossover and mutation operator of GA is more complicated. PSO-NLTP can 
cost the least to obtain the best NLTP solution of the three tested methods. Its recombination 
makes the particles feasible and evolutionary for optimization. The combination of updating 
rule and mutation operators can play a part of global searching quickly, which makes PSO-
NLTP effective for solving NLTPs. 
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5. Discussions and Conclusions 

Most of the methods that solve linear transportation problems well cannot handle the non-
linear TP. An particle swarm optimization algorithm named PSO-NLTP is proposed in the 
present paper to deal with NLTP. The updating rule of PSO-NLTP can make the particles of 
the swarm optimally in the feasible solution space, which satisfies the constraints of NLTP. 
A mutation operator is added to strengthen the global optimal capacity of PSO-NLTP. In the 
experiment of computing 56 NLTP instances, PSO-NLTP performs much better than GA 
and EP with penalty strategy. All of the parameters of PSO-NLTP are set adaptively in the 
iteration so that it is good for the application of the proposed algorithm. Moreover, PSO-
NLTP can also solve linear TPs. 
The design of the updating rule of PSO can be considered as an example for solving 
optimization problems with special constraints. The operator is different from other 
methods such as stochastic approach, greedy decoders and repair mechanisms, which are to 
restrict the searching only to some feasible sub-space satisfying the constraints. It uses both 
the local and global heuristic information for searching in the whole feasible solution space. 
Furthermore, through the initial experimental result, it performs better than the penalty 
strategy which is another popular approach for handling constraints. 
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