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1. Introduction 

As it was shown by the authors in a previous work, the Finite-Difference Time-Domain 
(FDTD) method is adequate to solve numerically Maxwell's Equations for simulating the 
propagation of Ultra-Wideband (UWB) pulses in complex environments. These pulses are 
important in practice in high-resolution radar and GPS systems and in high performance 
(wideband) wireless communication links, because they are immune to selective frequency 
fading related to complex environments, such as residences, offices, laboratories among 
others. In this case, it is necessary to use spread spectrum techniques for transmission, in 
order to avoid interferences to other wireless systems, such as cell phone networks, GPS, 
Bluetooth and IEEE802.11. It is worth to mention that by combining these techniques to 
UWB pulses; it is possible to obtain a signal with power spectrum density under noise 
threshold, what is a very interesting characteristic for this application. 
The proposed simulated environment is a building consisting of several rooms (laboratories) 
separated by masonry. Internal and external walls are characterized by specific widths and 
electrical parameters. Wood doors were included in the analysis domain. The analysis 
region is then limited by U-PML (Uniaxial Perfectly Matched Layers) technique and the 
system is excited by omni-directional antennas. In order to make the simulations more real, 
Additive White Gaussian Noise was considered. Aiming at verifying the robustness of the 
radar network, objects are included in the domain in a semi-random spatial distribution, 
increasing the contribution of the wave scattering phenomena.  Omni-directional antennas 
were used to register transient electric field in specific points of the scenery, which are 
adequate for the propose of this work. From those transient responses, it is possible to 
determine the time intervals the electromagnetic signal requires to travel through the paths 
transceiver-intruder-transceiver and transceiver-intruder-receivers, forming, this way, a 
non-linear system of equations (involving circle and ellipses equations, respectively). 
In order to estimate the intruder position, the PSO method is used and a new methodology 
was conceived. The main idea is to apply PSO to determine the equidistant point to the 
circle and to the two ellipses generated by using the data extracted from received transient 
signals (those three curves usually does not have a single interception point for highly 
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scattering environments). The equidistant point, determined via PSO, is the position 
estimative for single radar. 
For a radar network, which is necessary for a large area under monitoring, the transmitters 
should operate in TDM (Time-Division Multiplexing) mode in order to avoid interference 
among them. For each possible transceiver-receivers combination, an estimate is obtained 
and, from the set of estimations, statistical parameters are calculated and used in order to 
produce a unique prediction of the intruder's position.  

2. The FDTD Method and its Applications 

The FDTD Method (Finite-Difference Time-Domain) had its first application in the solution 
of Maxwell’s equations, in 1966, when Kane Yee used it in the analysis of spread of 
electromagnetic waves through bidimensional structures (Yee, 1966). This technique defines 
the spacial positioning of the components of the electric and magnetic fields in such a way 
that Ampère and Faraday laws are satisfied, and it approaches the derivates, constituents of 
those equations, by centered finite differences, in which the updating of the components of 
the electric fields is alternately verified in relation to those of the magnetic fields, by forming 
this way what is known as the algorithm of Yee. The method constitutes a solution of 
complete wave, in which the reflection, refraction, and diffraction phenomena are implicitly 
included. 
Years passed by and, along with them, several scientific advances contributed to the 
establishment of this method as an important tool in the analysis and synthesis of problems 
in electromagnetism, among them it is noted: new high speed computers and auto-
performance computer networks; the expansion of the method for the solution of problems 
in the 3D space, with the inclusion of complex materials, and the condition of stability 
(Taflove & Brodwin, 1975); development of truncation techniques of the region of analysis, 
known as ABC´s (Absorbing Boundary Conditions), such as the operators of Bayliss-Turkel 
Bayliss, & Turkel, (1980), Mur of first and second orders (Mur, 1981),  Higdon technique 
(Ridon, 1987), Liao (Liao, 1987), PML of Berenger (Berenger, 1994), and the UPML of Sacks 
(Sacks et al., 1995). 
The FDTD method, for its simplicity of application, strength and application in all spectrum 
of frequencies, has been used in the solution of antenna problems (Zhang et al., 1988), circuit 
analysis in high frequencies (Fornberg et al., 2000), radars (Muller et al., 2005), photonic 
(Goorjian & Taflove, 1992), communication systems (Kondylis et al., 1999), periodic 
structures (Maloney & Kesler, 1998), medicine (Manteuffell & Simon, 2005) , electric 
grounding system (Tanabe, 2001) , etc. 

2.1 The Yee’s Algorithm 

Equations (1) and (2) represent the equations of Maxwell in its differential form, where E 
and H are the vectors intensity of electric and magnetic fields, respectively, μ is the magnetic 
permeability, ε is the electric permittivity of the medium and J is the current density vector. 
For the solution of these equations by the FDTD method, Kane Yee (Yee, 1966) proposed 
that the components of E (Ex, Ey, Ez) and H (Hx, Hy, Hz) were positioned in the space as it 
shown in Fig. 1. 椛x櫛 噺 伐µ ∂屈∂t  (1) 
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椛x屈 噺 ε ∂櫛∂t 髪 窟. (2) 

Such procedure is justified by the necessity of agreement with the mathematical operators 
indicated in the equations above. 

 

Figure 1. The Yee’s Cell 

This way, by expanding the curl operators in (1) and (2), it results in the following scalar 
equations 項茎掴項建 噺 な航 磐項継超項権 伐 項継佃項検 卑, (3.a) 

項茎槻項建 噺 な航 磐項継佃項捲 伐 項継掴項権 卑, (3.b) 

項茎佃項建 噺 な航 峭項継掴項検 伐 項継槻項捲 嶌, (3.c) 

and 

1 yx z
x

HE H
E

t z y
σ

ε

∂⎛ ⎞∂ ∂
= − −⎜ ⎟

∂ ∂ ∂⎝ ⎠
 (4.a) 

項継槻項建 噺 な綱 磐項茎掴項権 伐 項茎佃項捲 伐 購継槻卑, (4.b) 

項継佃項建 噺 な綱 峭項茎槻項捲 伐 項茎掴項検 伐 購継佃嶌, (4.c) 

respectively. 
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The derivates in (3) and (4) are then approximated by central finite differences, in the 
following way 

1 1
2 2

( ) ( )F l l F l lF

l l

+ ∆ − − ∆∂

∂ ∆
0  

(5) 

where F represents any component of either electric or magnetic field and 健 can be x, y, z or t. 
By applying (5) in (3) and (4), it results in the updating equations of the components of fields 
given by (6)-(7), as follows. 茎掴津袋怠態岫件, 倹, 倦岻 噺 茎掴津貸怠態岫件, 倹, 倦岻髪 ∆痛航 峪継槻津岫件, 倹, 倦 髪 な岻 伐 継槻津岫件, 倹, 倦岻∆佃 伐 継佃津岫件, 倹 髪 な, 倦岻 伐 継佃津岫件, 倹, 倦岻∆槻 崋, (6.a) 

茎槻津袋怠態岫件, 倹, 倦岻 噺 茎槻津貸怠態岫件, 倹, 倦岻髪 ∆痛航 峪継佃津岫件 髪 な, 倹, 倦岻 伐 継佃津岫件, 倹, 倦岻∆掴 伐 継掴津岫件, 倹, 倦 髪 な岻 伐 継掴津岫件, 倹, 倦岻∆佃 崋, (6.b) 

茎佃津袋怠態岫件, 倹, 倦岻 噺 茎佃津貸怠態岫件, 倹, 倦岻髪 ∆痛航 峪継掴津岫件, 倹 髪 な, 倦岻 伐 継掴津岫件, 倹, 倦岻∆槻 伐 継槻津岫件 髪 な, 倹, 倦岻 伐 継槻津岫件, 倹, 倦岻∆掴 崋, (6.c) 

and 

継掴津袋怠岫件, 倹, 倦岻 噺 継掴津岫件, 倹, 倦岻 嵜な 伐 購 ∆痛に綱な 髪 購 ∆痛に綱崟 髪 

髪 ∆痛綱 岾な 髪 購 ∆痛に綱峇 煩茎佃津袋怠/態岫件, 倹, 倦岻 伐 茎佃津袋怠/態岫件, 倹 伐 な, 倦岻∆槻
伐 茎槻津袋怠/態岫件, 倹, 倦岻 伐 茎槻津袋怠/態岫件, 倹, 倦 伐 な岻∆佃 崋, 

(7.a) 

継槻津袋怠岫件, 倹, 倦岻 噺 継槻津岫件, 倹, 倦岻 嵜な 伐 購 ∆痛に綱な 髪 購 ∆痛に綱崟 髪 

髪 ∆痛綱 岾な 髪 購 ∆痛に綱峇 煩茎掴津袋怠/態岫件, 倹, 倦岻 伐 茎掴津袋怠/態岫件, 倹, 倦 伐 な岻∆佃
伐 茎槻津袋怠/態岫件, 倹, 倦岻 伐 茎槻津袋怠/態岫件 伐 な, 倹, 倦岻∆掴 崋, 

(7.b) 

www.intechopen.com



Particle Swarm Optimization Applied for Locating an Intruder  
by an Ultra-Wideband Radar Network 

 

187 

継佃津袋怠岫件, 倹, 倦岻 噺 継佃津岫件, 倹, 倦岻 嵜な 伐 購 ∆痛に綱な 髪 購 ∆痛に綱崟 髪 

髪 ∆痛綱 岾な 髪 購 ∆痛に綱峇 煩茎槻津袋怠/態岫件, 倹, 倦岻 伐 茎槻津袋怠/態岫件 伐 な, 倹, 倦岻∆掴伐 茎掴津袋怠/態岫件, 倹, 倦岻 伐 茎掴津袋怠/態岫件, 倹 伐 な, 倦岻∆槻 崋, 
(7.c) 

where i,j,k and n are integers; i,j,k are indexes for the spatial coordinates x, y and z and n is 
the temporal index for the time t, in such way that x = i∆x, y = j∆y, z = k∆z and t = n∆t (∆x, ∆y 

and ∆z are the spatial increments and  ∆t is the time step). 

2.2 Precision and Stability 

The precision represents how close the obtained result is to the exact result, and the stability 
is the guarantee that the solution of the problem will not diverge. In order to precision and 
stability to be guaranteed, the following criteria are adopted in this work (Taflove & 
Hagness 2005): ∆淡,湛,炭判 λ鱈辿樽など  

and ∆痛判 な懸陳銚掴俵 な岫∆掴岻態 髪 な岫∆槻岻態 髪 な岫∆佃岻態
 . 

which means that the minimum wave length existing in the work environment has to be 
characterized by, at least, 10 cells (Taflove & Hagness 2005). Depending on the application, 
this number can be superior to 100, and the time increment will be limited by the maximum 
distance to be travelled, by the respective wave, in the cell of Yee (Taflove & Hagness 2005). 

2.3 The Sacks’ Uniaxial Perfecttly Matched Layers 

One of the problems of the numeric methods is the fact that they do not offer resources that 
permits the interruption of the spacial iterative process. This causes the method to be 
limited, mainly when the solution of open problems is taken into account. In order to solve 
this problem, several techniques have been developed, among them there is the UPML 
(Uniaxial perfecttly matched layers) (Sacks et al., 1995), which was used in this work. This 
method takes into account, around the region of analysis (Fig.2), layers perfectly matched, 
constituted by anisotropic media and with loss, which are characterized by the following 
equations of Maxwell, in the frequency domain. 椛x櫛 噺 伐jωµ岷s峅屈 (8) 椛x屈 噺 jωε岷s峅櫛, (9) 
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the target and by other objects. Transient responses obtained at certain points in space are 
used to determine the target’s position. 
In particular, multistatic radars can be composed by a transceiver (transmitter and receiver 
at the same point – Tx/Rx1) and, at least, two remote receivers (Rx2 and Rx3), such as 

illustrated by Fig. 4. The signal leaves the transceiver and reaches the target, which reflects it 
toward the receivers and the transceiver as well.  
From the transceiver perspective, the signal takes a certain amount of time for returning. 
This only means that the target could be at any point of a circle centered at the transceiver’s 
coordinates (Fig. 4). Longer the time, larger is the circumference. From the receiver 
perspective, the signal travels from the transmitter, it reaches the target and then it arrives at 
the receiver coordinates. This only means that the target is at the locus defined by an ellipse 
with foci at the transceiver’s and at the receiver’s coordinates (Fig. 3). Of course, longer the 
propagation time, greater is the total path (calculated by using time and the propagating 
speed) and larger is the ellipse’s semiminor axis. The solution of the system of equations this 
way composed provides the target’s position. 

 

Figure 3. Ideal multistatic radar 

 

Figure 4. The ellipse’s parameters 

Fig. 4 shows the ellipse’s basic parameters (T indicates the transceiver position, R indicates 
the receiver’s, position and P defines the intruder’s location). 

Target

Tx/Rx1

Rx2

Rx3
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The ellipse equation is given by  擦仔岫姉, 姿岻 噺 冊仔匝岫姉, 姿岻 髪 刷仔匝岫姉, 姿岻 伐 察仔匝 噺 宋, (12)

where   冊仔 岫姉, 姿岻 噺 珊仔範岫姿 伐 姿算仔岻 算伺史 詩仔 伐 岫姉 伐 姉算仔岻 史餐仔 詩仔飯, (13)

刷仔 岫姉, 姿岻 噺 産仔範岫姉 伐 姉算仔岻 算伺史 詩仔 伐 岫姿 伐 姿算仔岻 史餐仔 詩仔飯  
and 

(14)

察仔 噺 珊仔産仔, 
(15)

in which a is the semimajor axis, b is the semiminor axis, xc and yc are the coordinates of the 

center C of the ellipse, and α is the angle from the x-axis to the ellipse’s semimajor axis. 

Here, n is the receiver identifier (index). The parameters
nC

x ,
nC

y ,
na ,

nb  and 
nα  are 

calculated by 

姉算仔 噺 層匝 盤姉参 髪 姉三仔匪, 
(16)

姿算仔 噺 層匝 盤姿参 髪 姿三仔匪, 
(17)

珊仔 噺 層匝 盤纂参皿三仔匪, (18)

産仔 噺 層匝 磐謬纂参皿三仔匝 伐 纂参三仔匝 卑, (19)

纂参三仔 噺 謬岫姉参 伐 姉三仔岻匝 髪 岫姿参 伐 姿三仔岻匝, (20)

詩仔 噺 嗣珊仔貸層 磐姿参 貸 姿三仔姉参 貸 姉三仔卑.

 

(21)

were xT and yT are the coordinates of the transmitter, xR and yR are the coordinates of the 
receiver R and dTR is the distance from the receiver to the transmitter. Finally, dTPR is given 
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by the sum of the lengths of the segments 劇鶏 and 劇迎 (the total path length), estimated from 
the propagation time. 
The calculation of the propagation time is performed by two steps: 1) by sending a pulse 
and registering the transient response at the transceiver and at the receivers and 2) by 
sending a second pulse and subtracting the new obtained registers from the previously 
recorded set. Of course, it is assumed that the target is in movement; otherwise the data 
obtained from steps 1) and 2) would be identical. If the pulse is UWB, it is possible to detect 
the movement of the heart of a human intruder, meaning he would be a detectable target 
even if he kept perfectly static. 

3.2 Particle Swarm Optimization 

The particle swarm optimization (PSO) method is a modern heuristic optimization 
algorithm, based on group movement of animals, such as fishes, birds and insects. The 
movement of each animal (individual or particle) can be seen as a resultant vector of 
personal and collective characteristics (vector components). 
Proposed in (Kennedy & Eberhart, 1995), this method consists on the optimization of an 
objective function trough the exchange of information among the particles (individuals), 
resulting in a non-deterministic, but robust and efficient algorithm, which can be easily 
implemented computationally. 
In an initial moment, all the particles are positioned randomly in the searching space, in 
which the solution must be. The movement of each particle is the result of a vector sum of 
three distinct terms: the first contribution is related to the inertia of the particle (a particle’s 
personal component), the second is related to the best position occupied by the particle (a 
personal component - memory) and the third is relative to the best position found by the 
group (group contribution – cooperation). Each particle position (a multidimensional vector) 
corresponds to an alternative solution for the problem (combination of the multidimensional 
vector). Each alternative solution must be evaluated. 

Thus, at a given time step, a particle i changes its position from Xi
f

 to
new

Xi

f
according to 

,
new

X Xi i x i= + ∆
f f f

, 
(22) 

in which ix,∆
f

is the updated position increment for particle i, that is, it is the vector 

representing the position change for particle i  and it is given by 

. ( ) . ( ), , ,,

old
U W b X U W b Xgx i m i i i c i ix i

∆ = ∆ + − + −
f ff f

 

(23) 

The heights imW ,  (memory) and icW ,  (cooperation) are previously defined, U represents 

independent samples of a random variable uniformly distributed between zero and one, bi

f
 

is the best solution found by the particle i and bg

f
 is the best solution found by the swarm, 

up to the current interaction. 
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The initial values for the displacements, i.e. 
,

old

x i
∆
f

, are randomly chosen among the real 

values limited by 
max

x
−∆
f

 and 
max

x
∆
f

, in order to avoid large values and the consequent 

divergence from the solution. It is worth to mention that it is necessary to avoid such large 
values during the interactions. It was observed that usually the method results in 
divergence or in low precision due to this tendency. There are, however, some methods for 
minimize these problems, such as: 

1. The employment of a descending function, affecting the inertial term, such as an 
evanescent exponential function of time; 

2. The use of terms for reduction of the velocity at each interaction, known as 
constriction terms. 

3. Simply to limit each velocity component to the interval [
max

x
−∆
f

, 
max

x
∆
f

]. 

All the methods have been tested, and, although all of them were efficient, the last one was 
applied here. 

3.3 Estimation of the Intruder's Position with PSO 

After obtaining the time responses with the FDTD method, the radar theory can be 
employed. The parameters of the three curves (a circle and two ellipses) are calculated from 
the differences of the time responses (with and without the intruder), and the obtained 
system, when solved, deliveries the intruder's position estimation. However, the case where 
the three curves have a common point (Fig. 5a) does not always happen and the more 
frequent case is illustrated by Fig. 5b. This way, the objective of the PSO algorithm is to 
locate the point with the minimal distance from the three curves simultaneously. This 
defines the objective function, which is mathematically given by 

Fi = diCmin +  diE1min  +  diE2min , 
(24) 

in which diCmin is the minimal distance from particle i to the circle and diE
κ

min is the minimal 

distance from particle i to the ellipse κ. 
This way, the PSO algorithm acts towards the minimization of the objective function Fi.  

  

(a)                                                                                (b) 
Figure 5. Ideal radar configuration and (b) real radar configuration and the position estimate 
(objective of the PSO Locator) 

Target

Tx/Rx1

Rx2

Rx3

 

Estimate

Tx/Rx1

Rx2 

Rx3
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In order to create a more realistic situation, additive Gaussian white noise (AWGN) has 

been added to the FDTD time responses. A sample of noise ( )ξR  is generated by 

( ) 2 ln 1/(1 ( )) cos 2 ( )a j k
ξ σ ξ π ξ= −⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦R U U

, 

(25) 

in which σa = 0.02 for the present work, and U(ξ) has the same meaning of U in (23). 

3.4 Estimation of the numerical velocity for distance calculations. 

FDTD Method introduces numerical dispersion and numerical anisotropy for the 
propagating waves. This means that velocity of propagation is a function of frequency and 
of the propagation direction (Taflove & Brodwin, 1975.a). Due to this numerical 
characteristic of the FDTD methodology, it is not appropriate to use the light free space 
velocity. Besides that, the dielectric walls promote delays on the signals, affecting the 
average velocity. This way, as detailed in (Muller et al., 2005), and effective velocity was 
determined experimentally for calculating the ellipses parameters (distances). The idea is to 
measure the propagating time in multiple points around the source, with and without walls, 
and take an average of the obtained velocities (Muller et al., 2005). 
It is worth to mention that the procedure presented in (Muller et al., 2005) takes 
automatically into account numerical dispersion and anisotropy and the delays caused by 
walls. In real applications, obviously only walls’ delays must be considered for the correct 
operation of the radar system. 

4. Environment and Parameters of Simulation 

In this work, the indoor environment considered for the simulations is shown in Fig. 6.  In 
that building, there are two distinct kinds of walls, characterized by different electrical 
parameters, which are: the relative electric permittivity of the exterior walls is εr= 5.0 and 
those of the interior walls have εr= 4.2. In both of them, the chosen conductivity is ┫= 0.02 
S/m.  Everywhere else, the relative permittivity is equal to unity, except in the UPML. The 
thickness of walls are 27 (external) and 12 (internal) centimeters. 

 

Figure 6. Layout of the building (floor plan) 
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is 2000. An unfavorable situation of the target position is shown in Fig. 9. The transceivers 
are denoted by TRX1 and TRX2. The remote receivers are denoted by RX2,..., RX9. When a 
transceiver is transmitting, its receiver is denoted by RX1. The transceivers are activated in 
different time windows in accordance with TDM (time division multiplexing) scheme. The 
target, in this case, is on the line connecting the two transceivers, and it is situated outside 
the rooms where the transceivers are mounted. 

 

Figure 9.  An unfavorable position for the target and the radar elements’ positions 

The transmitting antennas are initially positioned in small windows in the walls (Fig. 9). 
Because of the diffraction in these windows, we can expect a larger estimation error as 
compared to the more favorable configurations. Fig. 10 shows the set ellipses for this case. 
There is a considerable dispersion of the ellipses. The estimated error for this situation is about 
17 cm, but even in this case one can still consider the precision of the target position estimation 
as rather good. Of course, more favorable conditions generate results with better precision. 
In this work, the final estimation of the position is obtained from statistically treating the 
responses obtained from all the possible combinations of multistatic radars (one transceiver 
and two receivers). The mean and standard deviation of the estimates are calculated. All the 
estimative outside the standard deviation, around the mean value, are not considered in the 
calculation of the final mean, which is the final output of the estimator. 

 
Figure 10. The set of ellipses obtained for locating the target 

Target
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Fig. 11 shows the convergence of the PSO method for a single multistatic radar (the 
transceiver and two receivers).  It is evident that the algorithm can be employed for solving 
this kind of problem, as far as the particles clearly move to the correct target’s position. 
Similar behavior was observed in many other experiments. 
Fig. 12 shows the transient electric field obtained by receiver 4 (see Fig. 9), in the presence of 
the target and in its absence. It is clear the perturbation caused in the reference signal by the 
dielectric cylinder. The perturbation (difference between the signals) is plotted in Fig. 13, 
from which the temporal information necessary for defining the ellipse with focus in that 
receiver and in the transceiver (when disturbance’s amplitude is different from zero). 
 
 
 
 

 

                                             (a)                                                                                      (b) 
 
 

 

                                             (c)                                                                                     (d) 
Figure 11.  PSO’s particles convergence for the location of the target (a) randomly 
distributed particles; (b) particles’ positions after 100 interactions; (c) particles’ positions 
after 500 interactions and (d) particles’ positions after 700 interactions 
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Figure 12.  Electric field data obtained by the receiver 4 (with and with no target) 

 

Figure 13. Difference between the signals depicted in Fig. 12 (disturbance caused by the 
target) 

Fig. 14(a) shows the configuration used for executing a second numerical experiment. In this 
case, the transceivers TRX1 and TRX2, represented by rhombuses, are positioned away from 
the walls. The receivers (represented by triangles) and the target (square) were positioned 
exactly as in the previous case (Fig. 9). For the case illustrated by Fig. 15(a), in which it is 
used only the transceiver TRX1, the PSO estimation is represented by the star (the estimated 
position was (432.98,410.92)) . The central cell of the target is (460,450) and, this way, the 
surface of the target was pointed out, as it is clearly shown by Fig. 15(a). Similar behavior 
was observed for the case illustrated by Fig. 15(b), in which only the transceiver TRX2 is 
used. It is worth to mention that the identified points of the target’s surface is, for each 
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simulation, closer to the correspondent used transceiver. This behavior is expected, as long 
as reflection is used for determining the propagation time used for calculating the circle’s 
and the ellipses’ parameters. 

 

 

Figure 14. Configuration used for the second experiment (axis represent the Yee’s cells 
indexes) 

 

 

(a)                                                                             (b) 
Figure 15. The PSO estimation for the second experiment (a) result obtained by using TRX1 
and (b) result obtained by using TRX2 

In order to increase the complexity of the environment, and for testing a more general 
situation, scatters were introduced in the environment and the situation previously 
analyzed was used as base for the configuration shown by Fig. 16, which defines the third 
experiment. Each scatter consists of a dielectric material with electrical conductivity of 0.02 

S/m and permittivity of 5.ε0. The diameters of the dielectric scatters are around 18 
centimeters. Such scatters create a chaotic electromagnetic environment, generating multiple 
reflections, refractions and delays on the propagation of the wave. As far as difference of 
electromagnetic transients are considered for calculating the propagation periods, such 
effects are suppressed and the obtained results are very similar to the previous experiment 
responses, as shown by Figs. 16(a) and 16(b). 
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(a)                                                                          (b) 
Figure 16. The PSO estimation for the third experiment (with dielectric scatters) (a) result 
obtained by using TRX1 and (b) result obtained by using TRX2 

6. Final Remarks 

We have presented in this work some results of numerical simulations of a radar array 
based on UWB pulses. The registers of the electric field have been obtained numerically 
using the FDTD method. In order to define the localization curves we have used the concept 
of optic rays. The solutions of the system of the nonlinear equations (which usually does not 
exist) defined for every combination of a transceiver and 2 remote receivers give an 
estimation of the target position. The solution, in those cases, are defined by determining the 
closest point in the space to the circle and for the two ellipses, for a single multistatic radar. 
The final estimation for the array of two transceivers and eight receivers is fulfilled by PSO 
method. We have shown that PSO is a useful tool for this type of problem. The proposed 
methodology seems to be robust, as long as the presence of dielectric scatters, which 
promotes a complex (chaotic) electromagnetic environment, does not substantially affects 
the performance of the position estimator. 
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